2 research outputs found

    Towards Scalable Multidimensional Execution Traces for xDSMLs

    Get PDF
    International audienceExecutable Domain Specific Modeling Languages (xDSML) opens many possibilities in terms of early verification and validation (V&V) of systems, including the use of dynamic V&V approaches. Such approaches rely on the notion of execution trace, i.e. the evolution of a system during a run. To benefit from dynamic V&V approaches, it is therefore necessary to characterize what is the structure of the executions traces of a given xDSML. Our goal is to provide an approach to design trace metamodels for xDSMLs. We identify seven problems that must be considered when modeling execution traces, including concurrency, modularity, and scalability. Then we present our envisioned approach to design scalable multidimensional trace metamodels for xDSMLs. Our work in progress relies on the dimensions of a trace (i.e. subsets of mu- table elements of the traced model) to provide an original structure that faces the identified problems, along with a trace API to manipulate them

    Towards Language-Oriented Modeling

    Get PDF
    In this habilitation à diriger des recherches (HDR), I review a decade of research work in the fields of Model-Driven Engineering (MDE) and Software Language Engineering (SLE). I propose contributions to support a language-oriented modeling, with the particular focus on enabling early validation & verification (V&V) of software-intensive systems. I first present foundational concepts and engineering facilities which help to capture the core domain knowledge into the various heterogeneous concerns of DSMLs (aka. metamodeling in the small), with a particular focus on executable DSMLs to automate the development of dynamic V&V tools. Then, I propose structural and behavioral DSML interfaces, and associated composition operators to reuse and integrate multiple DSMLs (aka. metamodeling in the large).In these research activities I explore various breakthroughs in terms of modularity and reusability of DSMLs. I also propose an original approach which bridges the gap between the concurrency theory and the algorithm theory, to integrate a formal concurrency model into the execution semantics of DSMLs. All the contributions have been implemented in software platforms — the language workbench Melange and the GEMOC studio – and experienced in real-world case studies to assess their validity. In this context, I also founded the GEMOC initiative, an attempt to federate the community on the grand challenge of the globalization of modeling languages
    corecore