43,659 research outputs found

    Modelling Social Interaction between Humans and Service Robots in Large Public Spaces

    Get PDF
    With the advent of service robots in public places (e.g., in airports and shopping malls), understanding socio-psychological interactions between humans and robots is of paramount importance. On the one hand, traditional robotic navigation systems consider humans and robots as moving obstacles and focus on the problem of real-time collision avoidance in Human-Robot Interaction (HRI) using mathematical models. On the other hand, the behavior of a robot has been determined with respect to a human. Parameters for human-human interaction have been assumed and applied to interactions involving robots. One major limitation is the lack of sufficient data for calibration and validation procedures. This paper models, calibrates and validates the socio-psychological interaction of the human in HRIs among crowds. The mathematical model is an extension of the Social Force Model for crowd modelling. The proposed model is calibrated and validated using open source datasets (including uninstructed human trajectories) from the Asia and Pacific Trade Center shopping mall in Osaka (Japan).In summary, the results of the calibration and validation on the multiple HRIs encountered in the datasets show that humans react to a service robot to a higher extend within a larger distance compared to the interaction range towards another human. This microscopic model, calibration and validation framework can be used to simulate HRI between service robots and humans, predict humans' behavior, conduct comparative studies, and gain insights into safe and comfortable human-robot relationships from the human's perspective

    Implementation of safe human robot collaboration for ultrasound guided radiation therapy

    Get PDF
    This thesis shows that safe human-robot-interaction and Human Robot Collaboration is possible for Ultrasound (US) guided radiotherapy. Via the chosen methodology, all components (US, optical room monitoring and robot) could be linked and integrated and realized in a realistic clinical workflow. US guided radiotherapy offers a complement and alternative to existing image-guided therapy approaches. The real-time capability of US and high soft tissue contrast allow target structures to be tracked and radiation delivery to be modulated. However, Ultrasound guided radiation therapy (USgRT) is not yet clinically established but is still under development, as reliable and safe methods of image acquisition are not yet available. In particular, the loss of contact of the US probe to the patient surface poses a problem for patient movements such as breathing. For this purpose, a Breathing and motion compensation (BaMC) was developed in this work, which together with the safe control of a lightweight robot represents a new development for USgRT. The developed BaMC can be used to control the US probe with contact to the patient. The conducted experiments have confirmed that a steady contact with the patient surface and thus a continuous image acquisition can be ensured by the developed methodology. In addition, the image position in space can be accurately maintained in the submillimeter range. The BaMC seamlessly integrates into a developed clinical workflow. The graphical user interfaces developed for this purpose, as well as direct haptic control with the robot, provide an easy interaction option for the clinical user. The developed autonomous positioning of the transducer represents a good example of the feasibility of the approach. With the help of the user interface, an acoustic plane can be defined and autonomously approached via the robot in a time-efficient and precise manner. The tests carried out show that this methodology is suitable for a wide range of transducer positions. Safety in a human-robot interaction task is essential and requires individually customized concepts. In this work, adequate monitoring mechanisms could be found to ensure both patient and staff safety. In collision tests it could be shown that the implemented detection measures work and that the robot moves into a safe parking position. The forces acting on the patient could thus be pushed well below the limits required by the standard. This work has demonstrated the first important steps towards safe robot-assisted ultrasound imaging, which is not only applicable to USgRT. The developed interfaces provide the basis for further investigations in this field, especially in the area of image recognition, for example to determine the position of the target structure. With the proof of safety of the developed system, first study in human can now follow

    Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus

    Get PDF
    The analysis and understanding of human-robot joint spatial behaviour (JSB) such as guiding, approaching, departing, or coordinating movements in narrow spaces and its communicative and dynamic aspects are key requirements on the road towards more intuitive interaction, safe encounter, and appealing living with mobile robots. This endeavours demand for appropriate models and methodologies to represent JSB and facilitate its analysis. In this paper, we adopt a qualitative trajectory calculus (QTC) as a formal foundation for the analysis and representation of such spatial behaviour of a human and a robot based on a compact encoding of the relative trajectories of two interacting agents in a sequential model. We present this QTC together with a distance measure and a probabilistic behaviour model and outline its usage in an actual JSB study.We argue that the proposed QTC coding scheme and derived methodologies for analysis and modelling are flexible and extensible to be adapted for a variety of other scenarios and studies. I

    Towards safety in physically assistive robots: eating assistance

    Get PDF
    Safety is one of the base elements to build trust in robots. This paper studies remedies to unavoidable collisions using robotics assistive feeding as an example task. Firstly, we propose an attention mechanism so the user can control the robot using gestures and thus prevent collisions. Secondly, when unwanted contacts are unavoidable we compare two safety strategies: active safety, using a force sensor to monitor maximum allowed forces; and passive safety using compliant controllers. Experimental evaluation shows that the gesture mechanism is effective to control the robot. Also, the impact forces obtained with both methods are similar and thus can be used independently. Additionally, users experimenting on purpose impacts declared that the impact was not harmful.Peer ReviewedPostprint (author's final draft

    An augmented reality system for safe human-robot collaboration

    Get PDF
    Closer interaction in Human-Robot Collaboration (HRC) could result in increased worker efficiency in manufacturing situations. However, physical cages often limit this. Our research is investigating the potential for using Augmented Reality (AR) to visualise virtual safety zones, thus replacing real cages. This paper presents initial experiments towards addressing the issues of how to display the safety zones and what size they should be in relation to a robot arm in order to ensure safe working practices
    • …
    corecore