165 research outputs found

    Towards real-time probabilistic risk assessment by sensing disruptive events from streamed news feeds

    Get PDF
    Risk management has become an important con- cern over recent years and understanding how risk models could be developed based on the availability of real time (streaming) data has become a challenge. As the volume and velocity of event data (from news media, for instance) continues to grow, we investigate how such data can be used to inform the development of dynamic risk models. A Bayesian Belief Network based approach is adopted in this work, which is able to make use of priors derived from a variety of different news sources (based on data available in RSS feeds)

    Data mining and fusion

    No full text

    How do Politicians use Facebook? An Applied Social Observatory

    Get PDF

    Event identification in social media using classification-clustering framework

    Get PDF
    In recent years, there has been increased interest in real-world event detection using publicly accessible data made available through Internet technology such as Twitter, Facebook and YouTube. In these highly interactive systems the general public are able to post real-time reactions to “real world" events - thereby acting as social sensors of terrestrial activity. Automatically detecting and categorizing events, particularly smallscale incidents, using streamed data is a non-trivial task, due to the heterogeneity, the scalability and the varied quality of the data as well as the presence of noise and irrelevant information. However, it would be of high value to public safety organisations such as local police, who need to respond accordingly. To address these challenges we present an end-to-end integrated event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering enables events to be detected, especially “disruptive events" - incidents that threaten social safety and security, or that could disrupt social order. We present an evaluation of the effectiveness of detecting events using a variety of features derived from Twitter posts, namely: temporal, spatial and textual content. We evaluate our framework on large-scale, realworld datasets from Twitter and Flickr. Furthermore, we apply our event detection system to a large corpus of tweets posted during the August 2011 riots in England. We show that our system can perform as well as terrestrial sources, such as police reports, traditional surveillance, and emergency calls, even better than local police intelligence in most cases. The framework developed in this thesis provides a scalable, online solution, to handle the high volume of social media documents in different languages including English, Arabic, Eastern languages such as Chinese, and many Latin languages. Moreover, event detection is a concept that is crucial to the assurance of public safety surrounding real-world events. Decision makers use information from a range of terrestrial and online sources to help inform decisions that enable them to develop policies and react appropriately to events as they unfold. Due to the heterogeneity and scale of the data and the fact that some messages are more salient than others for the purposes of understanding any risk to human safety and managing any disruption caused by events, automatic summarization of event-related microblogs is a non-trivial and important problem. In this thesis we tackle the task of automatic summarization of Twitter posts, and present three methods that produce summaries by selecting the most representative posts from real-world tweet-event clusters. To evaluate our approaches, we compare them to the state-of-the-art summarization systems and human generated summaries. Our results show that our proposed methods outperform all the other summarization systems for English and non-English corpora

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp
    • …
    corecore