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Abstract—Risk management has become an important con-
cern over recent years and understanding how risk models
could be developed based on the availability of real time
(streaming) data has become a challenge. As the volume and
velocity of event data (from news media, for instance) continues
to grow, we investigate how such data can be used to inform
the development of dynamic risk models. A Bayesian Belief
Network based approach is adopted in this work, which is
able to make use of priors derived from a variety of different
news sources (based on data available in RSS feeds).
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I. INTRODUCTION

All organisations, societies, infrastructures and ecosys-
tems have at least one thing in common: their ability to
operate, survive, or continue to function is dependent on a
varying number of interacting and interdependent processes,
actions and activities. This continuum has been defined
as a ‘state of operation’ that exhibits different behaviours
during normal operating conditions [1]. Risk to the ‘state
of operation’ can be defined in two ways: things that could
go wrong, a perception typically taken by risk analysts;
and more recently the ISO 31000:2009 risk management
standard redefined risk as ‘the effect of uncertainty of
objectives’. This follows a more strategic and positivist
viewpoint. In both cases risk can be considered as a casual
factor influencing a ‘state of operation’ or more simply an
operational state.

Risk is affected by dynamically occurring events. Today
the risk to an organization’s operational state may be rela-
tively low, but tomorrow an earthquake on the other side of
the world, a freak storm, an economic downturn, an influenza
pandemic, or simply a supplier going bankrupt, may lead
to a significant disruption to the organization, causing its
operational state to change. The chain of causality from a
single event to a failed state of operation is often complex
and the discipline of risk analysis aims to understand this
complex set of interactions and dependencies, and manage
them effectively. Disruption to one part of an operational
system can have implications elsewhere and failures in one
part of a ‘system’ can often “erode or overwhelm systems
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defenses elsewhere” through ‘risk pathways’ [2]. Take the
example of the 2011 Tsunami off the coast of Japan where
planning assumptions around the scale of a potential tsunami
led to the construction of a sea wall of a given size. Once this
line of defence was breached, the pumping sub-system has
problems, which ultimately led to the release of radioactive
gas. The uncertainty surrounding these events unfolded over
time with media reports on the latest developments taking
place in real-time [2].

It has been noted that risk to the operational state of early
societies was local in its impact but that the modernization
of society has increasingly created risk with global impact
[3]. The globalization of business has led to a situation
where, taking the example of the Tsunami in Japan, supply
chains across the world were affected by the disruption to
manufacturing in Japan. There are three key points to realise
here: (i) a risk affecting one part of a system (e.g. a breach of
the sea wall defense), has a causal impact on the likelihood
of risks being realized elsewhere in the system (e.g. the
ability to provide power to the pumping sub-system, and
the ability to maintain a safe operational environment for
the pumps to work), (ii) beyond the local system, the casual
impact could have an influence on the operational capability
of organisations on a global level due to the modernization
of society and globalisation, and (iii) events unfold over time
and as time elapses the likelihood of risks occurring changes,
with information pertaining to these changes being reported
with varying degrees of accuracy through various streams
of information e.g. news stories, social media streams and
from hardware sensors.

Given these three points, our research focus is therefore
on building risk models that can support risk analysts in
capturing the impact of single events and their causal effects
on other parts of a system. Such risk models can be informed
by using real time streaming data to update changes in
the likelihood of risks occurring (based on reported news
stories and social media posts, for instance). For example,
if organization x based in Europe is critically dependent on
organization y to supply components used in their manufac-
turing process — their ability to judge the importance of this
relationship constitutes a risk model. Further, if organization
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y is geographically located in a high-risk earthquake zone
such as in Japan or California, how can streamed media
be used to inform xs risk model that a disruption to that
dependency is imminent?

To achieve this we retrieve information over time from
various streamed media sources that are published by news
outlets of varying reputation and size. We analyze this infor-
mation at specific points in time to create prior probabilities
of event occurrence using a weighted theoretical framework
based on confidence (in the source), freshness (recency
of the information), and popularity (of the information
across all information collected), which are then fed into
a Bayesian risk model in the form of a Belief Net. The
advantage of using Bayesian Belief Net is that they can
be created very rapidly. Such models represent cause and
effect through conditional probability, and are particularly
suited to being updated with new information and therefore
enable the expected outcome of the model to be generated
given the new data. The latter point supports continual model
monitoring and rapid reaction to new model forecasts as
global events unfold.

II. METHOD
A. Sensing Events from Streamed News Media

Breaking news is reported in a number of real-time modes,
of which some are programatically harvestable and lend
themselves to the application of data mining techniques,
such a content analysis and summarization. In this work
we implement interfaces to a number of Really Simple
Syndication (RSS) endpoints that provide a stream of text
from local, national and international news broadcasters.
Within the text are reports of events to which we apply a
set of analytical techniques as summarised in the following
steps:

1) Data Collection: For the purposes of experimentation
we selected eight news sources of varying international size

(e.g. BBC, CNN, Daily Mail, Wales Online etc). We devel-
oped a computational application to download the published
RSS feeds of the sources every three hours. Each feed
contained 10 news stories and, depending on the frequency
of newsworthy events, there would be a number of new
stories and a number already seen by our application in
previous data collection runs. For each news story we save
the title, description, Globally Unique IDentifier (GUID)
and last publication date information into a database. We
collected data in this way for seven consecutive days.

2) Term Weighting: Terms that appear in each news title
are considered to represent the story. From the term set in
each story description we first remove commonly occurring
words (which reduce potential categorisation of the news
story) by using a list of stop words. In order to determine the
importance of each remaining term we calculate the Inverse
Document Frequency (IDF) for the term. This is achieved
by taking the total number of documents (news stories in
the database), and dividing it by the number of documents
in which the term appears — then taking the logarithm of
this division. Having obtained the IDF, we calculate the
Term Frequency (TF) by taking the number of times the
term appears in the document in question, and dividing it
by the total number of terms in the document. Using the
IDF and TF scores, we can compute the TEIDF weight
of the term by dividing the TF by the IDE. This metric
represents a measure of popularity of each term within a
dataset. While we use a window of three hours, sliding
time windows can be used to increase or decrease the size
of the overall dataset (number of news stories analysed)
when calculating TEIDF and therefore distinguish between
recent and older terms. Thus, a term with a high TEIDF
weight would occur frequently within a story, and in a high
number of news stories, thereby highlighting the news as
popular between news feeds and a story of possible interest
during the previous time window. However, the relevance
of the event is dependent on the effect it would have on an
individual organisation, so we next need to determine the
stories exhibiting terms of interest for previously identified
risk factors.

3) Mapping Operational Dependencies: We use a
Bayesian Belief Net (BBN) to represent a risk model (as
described in Section B), where each node in the model in-
cludes a phrase that relates to an organisational dependency
represented by that node. In this step we aim to identify
news stories that are related to terms in these phrases.
Suppose that the dependency is phrased as M4 Motorway
open and Accessible or ’Clear airspace at Cardiff Airport’.
To extract objects that could be affected by new events we
can extract terms that are commonly named entities from
these phrases (i.e. "M4 Motorway” and “Cardiff Airport™)
and configure our application to identify the presence of
these terms in any of the news feeds in our database. Where
the terms are present we proceed to determine the likelihood



of a disruptive event that may affect this dependency by
computing a probabilistic prior that can be fed into the
Bayesian Belief Net (BBN).

4) Identify Dependency State: Disruptive events are by
their nature counterproductive to the operational processes
on which organisations are dependent. Thus, where we
identify named entities within new stories, such as “M4
Motorway” or “Cardiff Airport”, we can further identify
terms in the story that are synonyms or antonyms for the
terms used to represent the dependency. For example, if a
story reports an event involving “M4 Motorway”, then it
stands that it will also include a term that represents its
state (e.g. ‘open’, ‘closed’, ‘shut’, ‘blocked’, ‘locked’). If
an antonym (opposite of ’open’) is identified we use the
story as evidence of a likely disruptive event, and identifying
synonyms indicates that the dependency will continue to
remain in the required state. Data about the news story
is then pushed into the next step, which is to compute a
probabilistic prior.

5) Computing Disruptive Event Prior Likelihood: As
we are deriving evidence-based event data and considering
it as input for the likelihood of a positive or negative
achievement of a dependent operation, we make use of
Dempster-Shafer theory, which has been described as an
appropriate method in assigning probabilities and dealing
with uncertainty. Bloch discussed the key features of the
theory in [4] and Beynon explained the advantages of
the theory over those that have been proposed and used
for decision modelling in [5]. In brief, the theory allows
representing uncertainty in relation to an event by setting
up an interval. The interval is based on two functions:
Belief (B) and Plausibility (PL). The function B represents
the confidence regarding the occurrence of an event, it is
drawn from the sum of all the evidence that lead for such
confidence:

B(E)=Y M (D
A

Where E is the evidence supporting the event; A E and
M is a mass probability which takes values in the range 0-1.
During interpretation a higher value of translates as a high
level of confidence towards the occurrence of the event. The
function PL measures the extent to which we disbelieve the
correctness of the event and is defined as:

PL(E)=1-B(E)=1- AM )

where E is the evidence that contradicts the event. Thus,
if the PL is 0.6 we state that the evidence that contradicts
the event has a confidence of 0.4.

B. Modeling Dependencies and Calculating Impact of
Events

To model risk we have used dependency modeling, which
is a way of analyzing the risks to an enterprise [6]. The im-

portance of the approach is to be explicit in how systems are
configured such that a directed graph is developed containing
a top-down model of dependencies. This approach is similar
to a Fault-Tree or Failure Mode analysis — but rather than
focus on what could fail, it addresses what is required to
be operational. There is a difference here, and it is crucial.
First, it considers a wide range of factors — not just technical.
Second, by focussing on what could fail, it is possible
to overlook potential failure modes that are not obvious.
In cases where unforeseen failures occur (i.e. an unknown
vulnerability is exploited), the failure mode perspective fails
to assist in the analysis of how the system will react
to this failure. Thinking from a goal-oriented perspective
encompasses tacit knowledge of requirements for successful
operation and, by underpinning the dependency model with
computational conditional probability, quantifies the impact
of the failure of one part of a system on all other parts in a
stochastic model. The approach is based on the assumption
that managers understand what they depend on every day
to keep things running, but are not acutely aware of every
possible mode of failure. It is based on the idea that risk is
about goals and all risk springs from the fact that achieving
our goals depends on many things, some of which we cannot
control or predict or, in some cases, even understand. In
this “dependability” context [6] defines risk as “the amount
by which the probability of achieving our business goals is
affected by things we cannot control, predict, or understand”,
which aligns well with our proposed framework for sensing
from streamed news feeds.

A dependency model is based on goals and objectives,
and the prerequisites to satisfy these goals. In other words,
it is a positivist, top-down approach working from goals to
requirements. This is in strong contrast with other method-
ologies which focus on faults, disasters and failures (i.e.,
the “threat/vulnerability/impact” model). There are a number
of advantages in the positivist approach, not least that it is
easier and more intuitive to think of goals and requirements.
Senior management people are more comfortable working
with them than with disasters. It also allows “shared” goals
between different departments in an organization’s depen-
dency model, or even different organizations’ dependency
models to be discovered and modeled as “shared risk”. As
an example, suppose an enterprise has a daily requirement
to transport supplies to and from suppliers and customers
distributed across the country. Our goal is a successful
delivery, and we are going to limit our analysis just to the
transportation. The issues we are concerned with here are
possible vehicular issues and possible travel problems. So,
the success of our goal will depend on:

« A vehicle that works properly
o The availability of fuel
o The state of the traffic
o Possible road closures
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Figure 2. Basic Dependency Model

We will call these the dependencies of our goal. The list
above is not supposed to be comprehensive, but illustrative
of the dependency modeling approach. The success of our
trip depends then on all these things, so we could draw a
diagram as in Figure 2.

In a more realistic situation, the success of a goal would
probably depend on many other items, but we use this
simple scenario for the purposes of this discussion. We
can view the entity ‘Transportation Successful’ as a goal
with various degrees of achievability. It might, for instance,
be fully achieved, partially achieved, slightly achieved, or
totally unachieved, or any degree of achievement we care
to come up with. For now, we only consider two extreme
possibilities: failure and success. We can also view the
dependencies — such as “Vehicle Working’, ‘Fuel Available’,
etc as goals in their own right, similar to ‘Transportation
Successful’. These too have various degrees of achievability
and again for the moment we will limit the possibilities to
just failure and success. It is important to note that these are
not fundamental limitations, just convenient simplifications
for the present discussion.

Elements on the extreme right of a dependency model do
not have dependencies, or at least they are not shown in
the model. These elements act as a sort of “given”. We can
think of it as the point where risk and uncertainty enter the
model. We can refer to such elements as ‘uncontrollables’ to
emphasize that we can not do anything about changing their
properties. However, they can represent a quantifiable metric
that captures the probability of their success or failure. To
support the computational calculation of probabilities in a
dependency model we use a Conditional Probability Table
(CPT). The probability of a dependant element being in
its desired state (i.e. operational), given that another event
has already occurred, is called a conditional probability
and is the foundation of a Bayesian model. Therefore, the
conditional probability that a dependant will be successful

can be calculated from the given probability of success of
its dependencies. A CPT specifies the probability of each
state for a dependant for every combination of the states of
all its dependencies. *Uncontrollables’ have no dependencies
within the model so we specify uncontrollables simply as
a static probability. For example, we could state that for
‘Roads Open’, the probability that the desired state will
occur (roads are open) is 90% or 0.9, while the probability
of the undesired state is 0.1. This can be based on previous
experience or existing data. With these given probabilities
and the CPTs, it is possible to calculate the conditional
probability of all the nodes in the model, right up to the
ultimate goal of the model. In this paper we aim to derive the
probabilities for ‘uncontrollables’ using a framework based
on factors of the data obtained from streamed news feeds.

C. Towards a Framework for Calculating Input to Proba-
bilistic Models

Events discovered from streamed media require some de-
gree of ranking in order to determine the level of confidence
that can be attributed to this kind of intellegence collected
using automated methods. Sun [7], suggested a ranking
scheme from events detected from data collected from
the online social network Twitter, based on the following
criteria:

o Confidence: A measurement of how much we trust the
source (e.g. based on the reputation of a news source);

o Popularity: A measurement of how popular an event is
in relation to all other detected events;

e Freshness: A measurement of how recent the event
occured.

In this work, we have re-purposed this ranking scheme to
enable us to derive probabilistic values for the ‘uncontrol-
lables’ in a dependency model.

1) Confidence: The confidence of each of the news
stories is represented using a reputation score between
0 to 1. A higher value indicates that the news story is
collected from a highly trusted source, whereas a lower
value indicates that the news story was published from a
lesser trusted source, and may therefore contain inaccurate
or untrustworthy information. The reputation scores are pre-
defined in a manner such as displayed in Table I. The overall
confidence of all news stories that are relevant to the success
or failure of a dependant in our model is calculated as the
mean confidence of all relevant stories, over all the stories
collected via news feeds, and is is defined as:

CND:CND31+CND52+...+ONDSN/N 3)

Where CND is the overall confidence for a collection
of relevant news stories D and CND1,...,CNDsN are
the confidence values for individual stories (s1,s2,....,sN) in
collection D, and N is the number of stories in D.



Source Confidence
BBC (bbc.co.uk) 1
Reuters (reuters.com) 1
Daily Mail (dailymail.co.uk ) 0.8
Wales Online (walesonline.co.uk) 04

Table I: Confidence in News Sources

2) Freshness: The freshness of a news story represents
a measure of recency and also takes a value in the range
0 to 1. This metric is derived from the time elapsed since
the news story was published in the RSS feed, as shown in
Table II.

Time (in hours) | Freshness
Below 2 1
2-4 0.8
5-7 0.6
8-10 0.4
Over 10 0.2

Table II: Freshness of News Sources

3) Popularity: The overall popularity of the event is
simply defined as

Pop(E) = N1(D)/N2(D) @

where Pop (E) is the popularity of the event in a collection
of news stories D, N1 is the number of news stories contain-
ing both a dependency term (e.g. ‘Motorway’) and a term
which relates to the success or failure of the dependency
(e.g. ‘Open’ or ‘Closed’); and N2 is the total number of
stories analysed. The probability of the success or failure of
an event is therefore formalised in a weighted equation as
follows:

W lxcon fidence+W 2xpopularity+W 3« freshness (5)

Where W1+W2+W3=1 and W1, W2 and W3 are weights
given to the confidence, popularity and freshness attributes,
depending on the importance of each feature to the risk
analyst. For example, one analyst may put more emphasis
on confidence in a source, while another may place more
importance on the recency of the story and therefore give
more weight to the freshness value. Allocation of weights is
therefore a subjective process.

IIT. INITIAL RESULTS

For this example we focus on identifying disruptive events
that may affect the dependencies in our model (see Fig. 2).
We considered two dependency factors: ’Roads Open’ and
’Weather OK’. Each dependency’s state is binary, and hence,

corresponds to two events. The prior probability of the belief
(B) and plausibility (P) of these dependencies is formulated
from news stories using the method discussed in the previous
section.

a) For ’Roads Open’ we use a term that relates to
a specific motorway ("M4’) and considers two outcomes
(Open, Closed). b) *Weather OK’ represents the weather
conditions on the transportation route at a particular time.
The terms used are regional names along the route (i.e
"Cardiff’, ’Reading’, ’London’) and weather terms (’rain’,
’snow’). The outcomes for this factor are Good and Bad.

We assigned confidence values to eight online news
sources, ranging from 0.9 to 0.5 and including national and
local news providers. The values have been chosen to ensure
that a story that arrives through a highly reputed source
provides important evidence regarding any particular event.
Further, we assigned the confidence, freshness and popular-
ity weights with the values of conf=0.2, fresh=0.3,pop= 0.5,
for formulating the priors of ‘Roads Open’ and ‘Weather
OK’

Table III presents the results of an analysis of news stories
using the defined method on two seperate days. Based on
the collection of the relating stories published on Day 1, the
estimated plausibility (i.e. p(P) - likelihood of a disruptive
event) is more indicative of an incident on the roads than Day
2. In the case of Weather, on both days there is no significant
change in probabilities for the events corresponding. By
treating the calculated plausibility p(P) and belief p(B) as
priors, we can feed these metrics into our Bayesian Belief
Net and recalculate the probability of success for each node.

Roads Open
Conf Fresh | Pop | p(P) | p(B)
Day 1 0.7 0.8 0.5 | 0.37 | 0.63
Day 2 0.75 0.6 | 0.67 | 0.34 | 0.67
Weather OK
Day 1 0.6 0.4 0.5 | 0.51 | 049
Day 2 0.6 0.4 0.5 | 0.51 | 0.49

Table III: Results

IV. RELATED WORK

This work aligns closely with research that has been
carried out for the forecasting of extreme events, such as
weather events like hurricanes. Prediction of such events
can be based on the development of complex physics-based
models and computational simulations or, recently (and more
relevant to this work) the development of network models
that can be used to identify “community dynamics”. A
community is often identified as a common structure that
can emerge in a variety of different types of systems — e.g.
social networks, biological and weather/climate networks.



Stanhaeuser et al. [10] also identify these as data driven
approaches for eliciting insights within complex networks
and associated relationships. A key observation in such
network-based models is that if a historic record of spatio-
temporal events can be obtained, a supervised machine
learning approach can be used to relate parameters that are
used to characterise such events. Hence, occurrence of a
set of events (observed with a certain degree of accuracy)
could be used as a means to forecast the co-occurrence of
another extreme event. Such a dynamic network-evolution
model can be applied to a number of potential scenarios —
and is not restricted to just forecasting of weather events.
Often, as outlined in [8], the objective is not to predict
an accurate numerical magnitude related to an extreme
event, but to seek potential classification of an event into
a number of pre-defined categories (i.e. provide enough
information to facilitate a decision maker). Classifications
such as “normal”, “above normal” and “below normal” (for
instance) can be used. The challenges identified by the
authors also closely relate to this work, namely: (i) the
multi-variate, spatio-temporal nature of the problem; (ii)
the curse of dimensionality, i.e. the ability to deal with a
very large number of features and identify those that are
likely to impact the decision maker; (iii) inter-correlated
and non-linear relationships, i.e. the occurrence of multiple
operating “phases” of a system, with feedback loops existing
between these phases. In [9], the authors have attempted
to identified the occurrence of “anomalous” communities
in such phased-based systems. Another perspective is taken
by Rahwan et al. [11], where they consider how “social
mobilisation” could be used to enable the detection of rare
events (considered in the context of the DARPA “Network
Challenge” [12] and the subsequent “Tag Challenge”). Both
challenges aimed to leverage on social networks to locate
10 weather balloons tethered at random locations or required
teams to locate and photograph 5 people across cities in two
continents. The subsequent challenges of aggregating such
information and ensuring that it is accurate through a veri-
fication process remain important challenges. Our approach
is aligned with the methodology followed in this work, as
we also attempt to find events that have a high information
content and subsequently aggregate them using a Bayesian
Belief Network. However, understanding how social data
could be used to extend data from news sources (which
already have undergone a verification process through an
editorial team) would an useful addition to our work.

V. CONCLUSION

In this paper we have presented a framework for the
detection of events from streamed news media, and the
derivation of metrics that can be used with a probablistic risk
model to translate the occurence of events into liklihoods
of successful or failed operations within the systems of an
enterprise.
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