71,029 research outputs found

    Dispersion in time and space: what propagating optical pulses in time (& not space) forces us to confront

    Get PDF
    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.Comment: v3: updates and clarifications. arXiv admin note: text overlap with arXiv:0810.568

    Many-body Green's function theory for electron-phonon interactions: the Kadanoff-Baym approach to spectral properties of the Holstein dimer

    Full text link
    We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state, and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Ref. [arXiv:1403.2968]. We show that choosing a homogeneous ground state solution leads to unstable dynamics for a sufficiently strong interaction, and that allowing a symmetry-broken state prevents this. The instability is caused by the bifurcation of the ground state and understood physically to be connected with the bipolaronic crossover of the exact system. This mean-field instability persists in the partially self-consistent Born approximation but is not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This functions amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid, and how they fail to describe the studied exact properties of the chosen model system.Comment: 12 figure

    Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment

    Get PDF
    The optical properties of slab-like photonic crystals are often discussed on the basis of effective index (EI) approximations, where a 2-D effective refractive index profile replaces the actual 3-D structure. Our aim is to assess this approximation by analogous steps that reduce finite 2-D waveguide Bragg-gratings (to be seen as sections through 3-D PC slabs and membranes) to 1-D problems, which are tractable by common transfer matrix methods. Application of the EI method is disputable in particular in cases where locally no guided modes are supported, as in the holes of a PC membrane. A variational procedure permits to derive suitable effective permittivities even in these cases. Depending on the structural properties, these values can well turn out to be lower than one, or even be negative. Both the “standard” and the variational procedures are compared with reference data, generated by a rigorous 2-D Helmholtz solver, for a series of example structures.\u

    Lifted Relax, Compensate and then Recover: From Approximate to Exact Lifted Probabilistic Inference

    Full text link
    We propose an approach to lifted approximate inference for first-order probabilistic models, such as Markov logic networks. It is based on performing exact lifted inference in a simplified first-order model, which is found by relaxing first-order constraints, and then compensating for the relaxation. These simplified models can be incrementally improved by carefully recovering constraints that have been relaxed, also at the first-order level. This leads to a spectrum of approximations, with lifted belief propagation on one end, and exact lifted inference on the other. We discuss how relaxation, compensation, and recovery can be performed, all at the firstorder level, and show empirically that our approach substantially improves on the approximations of both propositional solvers and lifted belief propagation.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Investigating a simple model of cutaneous wound healing angiogenesis

    Get PDF
    A simple model of wound healing angiogenesis is presented, and investigated using numerical and asymptotic techniques. The model captures many key qualitative features of the wound healing angiogenic response, such as the propagation of a structural unit into the wound centre. A detailed perturbative study is pursued, and is shown to capture all features of the model. This enables one to show that the level of the angiogenic response predicted by the model is governed to a good approximation by a small number of parameter groupings. Further investigation leads to predictions concerning how one should select between potential optimal means of stimulating cell proliferation in order to increase the level of the angiogenic response

    Resonantly Damped Propagating Kink Waves in Longitudinally Stratified Solar Waveguides

    Full text link
    It has been shown that resonant absorption is a robust physical mechanism to explain the observed damping of magnetohydrodynamic (MHD) kink waves in the solar atmosphere due to naturally occurring plasma inhomogeneity in the direction transverse to the direction of the magnetic field. Theoretical studies of this damping mechanism were greatly inspired by the first observations of post-flare standing kink modes in coronal loops using the Transition Region And Coronal Explorer (TRACE). More recently, these studies have been extended to explain the attenuation of propagating coronal kink waves observed by the Coronal Multi-Channel Polarimeter (CoMP). In the present study, for the first time we investigate the properties of propagating kink waves in solar waveguides including the effects of both longitudinal and transverse plasma inhomogeneity. Importantly, it is found that the wavelength is only dependent on the longitudinal stratification and the amplitude is simply a product of the two effects. In light of these results the advancement of solar atmospheric magnetoseismology by exploiting high spatial/temporal resolution observations of propagating kink waves in magnetic waveguides to determine the length scales of the plasma inhomogeneity along and transverse to the direction of the magnetic field is discussed.Comment: Accepted for publication in Ap
    • 

    corecore