1,404 research outputs found

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    A Novel Haptic Simulator for Evaluating and Training Salient Force-Based Skills for Laparoscopic Surgery

    Get PDF
    Laparoscopic surgery has evolved from an \u27alternative\u27 surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their \u27distance\u27 from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training. The overarching goal of this research was to demonstrate that a set of simple, simulator-based haptic exercises can be developed and used to train users for skilled application of forces with surgical tools. A set of salient or core haptic skills that underlie proficient laparoscopic surgery were identified, based on published time-motion studies. Low-cost, computer-based haptic training simulators were prototyped to simulate each of the identified salient haptic skills. All simulators were tested for construct validity by comparing surgeons\u27 performance on the simulators with the performance of novices with no previous laparoscopic experience. An integrated, \u27core haptic skills\u27 simulator capable of rendering the three validated haptic skills was built. To examine the efficacy of this novel salient haptic skills training simulator, novice participants were tested for training improvements in a detailed study. Results from the study demonstrated that simulator training enabled users to significantly improve force application for all three haptic tasks. Research outcomes from this project could greatly influence surgical skills simulator design, resulting in more efficient training

    The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview

    Get PDF
    Background: This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. Methods: Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. Results: After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. Discussion: Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed
    • …
    corecore