32 research outputs found

    High-accuracy digital elevation model generation and ship monitoring from synthetic aperture radar images: innovative techniques and experimental results.

    Get PDF
    In this Thesis several state-of-the-art and innovative techniques for Digital Elevation Model (DEM) generation from Synthetic Aperture Radar (SAR) images are deeply analyzed, with a special focus on the methods which allow the improvement of the accuracy of the DEM product, which is directly related to the geolocation accuracy of geocoded images and is considered as an enabling factor for a large series of civilian and Defence applications. Furthermore, some of the proposed techniques, which are based both on phase and amplitude information, are experimented on real data, i.e. COSMO-SkyMed (CSK) data, assessing the achievable performances compared with the state-of-the-art, and pointing out and quantitatively highlighting the acquisition and processing strategies which would allow to maximize the quality of the results. Moreover, a critical analysis is performed about the main errors affecting the applied techniques, as well as the limitations of the orbital configurations, identifying several complementary techniques which would allow to overcome or mitigate the observed drawbacks. An innovative procedure for on-demand DEM production from CSK SAR data is elaborated and proposed, as well as an auto-validation technique which would enable the validation of the produced DEM also where vertical ground truths are not available. Based on the obtained results and on the consequent critical analysis, several interferometric specifications for new generation SAR satellites are identified. Finally, a literature review is proposed about the main state-of-the-art ship monitoring techniques, considered as one of the main fields of application which takes benefit from SAR data, based on single/multi-platform multi-channel SAR data, with a focus on TanDEM-X (TDX). In particular, in Chapter 1 the main concepts concerning SAR operating principles are introduced and the main characteristics and performances of CSK and TDX satellite systems are described; in Chapter 2 a review is proposed about the state-of-the-art SAR interferometric techniques for DEM generation, analyzing all the relevant processing steps and deepening the study of the main solutions recently proposed in the literature to increase the accuracy of the interferometric processing; in Chapter 3 complementary and innovative techniques respect to the interferometric processing are analyzed to mitigate disadvantages and to improve performances; in Chapter 4 experimental results are presented, obtained in the generation of high accuracy DEM by applying to a dataset of CSK images properly selected state-of-the-art interferometric techniques and innovative methods to improve DEM accuracy, exploring relevant limitations, and pointing out innovative acquisition and processing strategies. In Chapter 5, the basic principles of Ground Moving Target Indication (GMTI) are described, focusing on Displaced Phase Center Antenna (DPCA) and Along-Track Interferometry (ATI) techniques

    TANDEM-X MISSION STATUS

    Get PDF

    Digital Surface Modelling in Developing Countries Using Spaceborne SAR Techniques

    Get PDF
    Topographic databases at the national level, in the form of Digital Surface Models (DSMs), are required for a large number of applications which have been spurred on by the increased use of Geographic Information Systems (GIS). Ground-Based (surveying, GPS, etc.) and traditional airborne approaches to generating topographic information are proving to be time consuming and costly for applications in developing countries. Where these countries are located in the tropical zone, they are affected by the additional problem of cloud cover which could cause delays for almost 75% of the year in obtaining optical imagery. The Caribbean happens to be one such affected territory that is in need of national digital topographic information for its GIS database developments, 3D visualization of landscapes and for use in the digital ortho-rectification of satellite imagery. The use of Synthetic Aperture Radar (SAR), with its cloud penetrating and day/night imaging capabilities, is emerging as a possible remote sensing tool for use in cloud affected territories. There has been success with airborne single-pass dual antennae systems (e.g. STAR 3i) and the Shuttle Radar Topographic Mapping (SRTM) mission. However, the use of these systems in the Caribbean are restrictive and datasets will not be generally available. The launching of imaging radar satellites such as ERS-1, ERS-2, Radarsat-1 and more recently Envisat have provided additional opportunities for augmenting the technologies available for generating medium accuracy, low cost, topographic information for developing countries by using the techniques of Radargrammetry (StereoSAR) and Interferometric SAR (InSAR). The primary aim of this research was to develop, from scratch, a prototype StereoSAR system based on automatic stereo matching and space intersection algorithms to generate medium accuracy, low cost DSMs, using various influencing parameters without any recourse to ground control points. The result was to be a software package to undertake this process for implementation on a personal computer. The DSMs generated from Radarsat-1 and Envisat SAR imagery were compared with a reference surface from airborne InSAR and conclusions with respect to the quality of the StereoSAR DSMs are presented. Work required to further improve the StereoSAR system is also suggested

    Digital Surface Modelling in Developing Countries Using Spaceborne SAR Techniques

    Get PDF
    Topographic databases at the national level, in the form of Digital Surface Models (DSMs), are required for a large number of applications which have been spurred on by the increased use of Geographic Information Systems (GIS). Ground-Based (surveying, GPS, etc.) and traditional airborne approaches to generating topographic information are proving to be time consuming and costly for applications in developing countries. Where these countries are located in the tropical zone, they are affected by the additional problem of cloud cover which could cause delays for almost 75% of the year in obtaining optical imagery. The Caribbean happens to be one such affected territory that is in need of national digital topographic information for its GIS database developments, 3D visualization of landscapes and for use in the digital ortho-rectification of satellite imagery. The use of Synthetic Aperture Radar (SAR), with its cloud penetrating and day/night imaging capabilities, is emerging as a possible remote sensing tool for use in cloud affected territories. There has been success with airborne single-pass dual antennae systems (e.g. STAR 3i) and the Shuttle Radar Topographic Mapping (SRTM) mission. However, the use of these systems in the Caribbean are restrictive and datasets will not be generally available. The launching of imaging radar satellites such as ERS-1, ERS-2, Radarsat-1 and more recently Envisat have provided additional opportunities for augmenting the technologies available for generating medium accuracy, low cost, topographic information for developing countries by using the techniques of Radargrammetry (StereoSAR) and Interferometric SAR (InSAR). The primary aim of this research was to develop, from scratch, a prototype StereoSAR system based on automatic stereo matching and space intersection algorithms to generate medium accuracy, low cost DSMs, using various influencing parameters without any recourse to ground control points. The result was to be a software package to undertake this process for implementation on a personal computer. The DSMs generated from Radarsat-1 and Envisat SAR imagery were compared with a reference surface from airborne InSAR and conclusions with respect to the quality of the StereoSAR DSMs are presented. Work required to further improve the StereoSAR system is also suggested

    Hemiboreaalsete metsade kaardistamine interferomeetrilise tehisava-radari andmetelt

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö uurib tehisavaradari (SAR) kasutusvõimalusi metsa kõrguse hindamiseks hemiboreaalsete metsade vööndis. Uurimistöö viidi läbi Tartu Üli¬kooli, Tartu Observatooriumi, Aalto Ülikooli, Euroopa Kosmoseagentuuri (ESA) kaugseire keskuse ESRIN ja Reach-U koostöös. Uurimistöös kasutatud satelliidi¬andmed on pärit Saksa Kosmosekeskuse (DLR) kõrglahutusega bistaatilise X-laineala tehisavaradari TanDEM-X satelliidipaarilt. Sagedasti uuenevad satelliidiandmed, nende globaalne katvus ja kõrge ruumi¬line lahutus võimaldavad tehisavaradari abil kaardistada metsi ning nendes toimu¬vaid muutusi suurtel maa-aladel. Radari abil on võimalik saada kõrge lahutusvõimega pilte, mis on tundlikud taimestikule, maapinna karedusele ja dielektrilistele omadustele. Sünkroonis lendava radaripaari samaaegselt tehtud pildid elimineerivad võimalikud ajalised muutused taimestikus ning tänu sellele on radariandmetest võimalik tuletada metsade vertikaalset struktuuri ja kõrgust. Uurimistöös käsitletakse tehisavaradari interferomeetrilise koherentsuse tund¬likkust metsa kõrguse suhtes ning analüüsitakse, millised keskkonna ja klimaati¬lised tingimused ning satelliidi orbiidiga seotud parameetrid mõjutavad radari¬piltidelt erinevate puuliikide kõrguse hindamise täpsust. Lisaks keskendub väitekiri interferomeetrilisele koherentsusele tuginevate mudelite analüüsi¬misele ning nende täpsuse hindamisele operatiivse metsa kõrguse kaardistamise raken-duseks. Vaatluse alla on võetud kolm testala, mis asuvad Soomaa rahvuspargis, Võrtsjärve idakaldal Rannus ja Peipsiveere looduskaitsealal ning katavad kokku 2291 hektarit metsa. 23 TanDEM-X satelliidipildi koherentsuspilte võrreldakse samadel testaladel aerolaserskaneerimise (LiDAR) abil mõõdetud puistute kõrgu¬sega, mis on omakorda jagatud kolme rühma (kuused, männid ja laia¬lehised segametsad). RVoG (Random Volume over Ground) taimekatte mudel ning sellest tule¬tatud lihtsamad pooleempiirilised mudelid sobituvad olemasolevate TanDEM-X koherentsuse ning LiDARi metsa puistute kõrgusandmetega hästi. Töö tule¬mused kinnitavad, et tulevikus on suurte ja erinevatest metsatüüpidest koosne¬vate metsade kõrguse kosmosest kaardistamisel otstarbekas kasutusele võtta esmalt just soovitatud lihtsamad ja universaalsemad mudelid.This thesis presents research in the field of radar remote sensing and contributes to the forest monitoring application development using space-borne synthetic aperture radar (SAR). Satellite data is particularly useful for large-scale forestry applications making high revisit monitoring of the state of forests worldwide possible. The sensitivity of SAR to the dielectric and geometrical properties of the targets, penetration capacity and coherent imaging properties make it a unique tool for mapping and monitoring forest biomes. SAR satellites are also capable of retrieving additional information about the structure of the forest, tree height and biomass estimates as an essential input for monitoring the changes in the carbon stocks. Interferometric SAR (InSAR) is an advanced SAR imaging technique that allows the retrieval of forest parameters while working in nearly all weather conditions, independently of daylight and cloud cover. This research concen¬trates on assessing the impact of different variables affecting hemiboreal forest height estimation from space-borne X-band interferometric SAR coherence data. In particular, the research analyses the changes in coherence dynamics related to seasonal conditions, tree species and imaging properties using a large collection of interferometric SAR images from different seasons over a four-year period. The study is carried out over three test sites in Estonia using the extensive multi-temporal dataset of 23 TanDEM-X images, covering 2291 hectares of forests to describe the relation between the interferometric SAR coherence mag¬nitude and forest parameters. The work demonstrates how the correlation of interferometric coherence and Airborne LiDAR Scanning (ALS)-derived forest height varies for pine and deciduous tree species, for summer (leaf-on) and winter (leaf-off) conditions and for flooded forest floor. A simple semi-empirical modelling approach is proposed as being suitable for wide area forest mapping with limited a priori information under a range of seasonal and environ¬¬mental conditions. A Random Volume over Ground (RVoG) model and three semi-empirical models are compared and validated against a large dataset of coherence magnitude and ALS-measured data over hemiboreal forests in Estonia. The results show that all proposed models perform well in describing the relationship between hemiboreal forest height and interferometric coherence, allowing in future to derive forest stand height with an accuracy suitable for a wide range of applications

    3D space intersection features extraction from Synthetic Aperture Radar images

    Get PDF
    The main purpose of this Thesis is to develop new theoretical models in order to extend the capabilities of SAR images space intersection techniques to generate three dimensional information. Furthermore, the study aims at acquiring new knowledge on SAR image interpretation through the three dimensional comprehension of the scene. The proposed methodologies allow to extend the known radargrammetric applications to vector data generation, exploiting SAR images acquired with every possible geometries. The considered geometries are points, circles, cylinders and lines. The study assesses the estimation accuracy of the features in terms of absolute and relative position and dimensions, analyzing the nowadays operational SAR sensors with a special focus on the national COSMO-SkyMed system. The proposed approach is original as it does not require the direct matching between homologous points of different images, which is a necessary step for the classical radargrammetric techniques; points belonging to the same feature, circular or linear, recognized in different images, are matched through specific models in order to estimate the dimensions and the location of the feature itself. This approach is robust with respect to the variation of the viewing angle of the input images and allows to better exploit archive data, acquired with diverse viewing geometries. The obtained results confirm the validity of the proposed theoretical approach and enable important applicative developments, especially in the Defence domain: (i) introducing original three dimensional measurement tools to support visual image interpretation; (ii) performing an advanced modelling of building counting only on SAR images; (iii) exploiting SAR images as a source for geospatial information and data; (iv) producing geospatial reference information, such as Ground Control Point, without any need for survey on the ground

    Forest height inventory from airborne Synthetic Aperture Radar

    Get PDF
    This study assesses the capabilities of commercially available airborne short wavelength Synthetic Aperture Radar (SAR) Interferometry (JnSAR) for retrieving individual tree and forest stand height. Individual tree and stand heights are of importance to the forest industry for a number of reasons. Tree height is a key variable for calculating the amount of wood volume in a tree stem, as well as for predictions of amount of timber for extraction. Forest stand height is an important indicator of standing biomass for management purposes as well as for the assessment of carbon storage. Height is also an important ecological parameter in its own right, and an important input parameter for line-of-site analysis. Remote sensing offers an alternative to destructive measurements for accurate, rapid and cost effective technique without user subjectivity. SAR provides the potential for direct height measurement over large areas, and can operate independently of lighting or weather conditions, which often restricts the use of other remote sensing techniques.In this study, tree height is estimated by subtracting a ground surface elevation model (a UK Ordnance Survey DEM, OSDE M , or a Digital Terrain Model, DTM, from commercial Intermap Technologies) from a Digital Surface Model, DSM, (from Intermap Technologies) and the results are then compared to field measurements of tree and stand heights. The accuracy of Intermap Technologies ST AR-3i InSAR DEM products are initially compared to national elevation data sets. Over various ground types, it was concluded that, within the test areas, over non-vegetated ground the mean difference between the DTM and OSDEM was l.38m RMSE with a l.05m Standard Deviation (SD), and this is within Intermap's stated accuracies. Over forested ground the mean difference was 13.5lm RMSE (2.2lm SD). This vegetation bias was primarily due to limitations of the interpolation procedure used to determine the DTM from the DSM.Subsequently, the use of two airborne InSAR data sets is assessed for top height retrieval as an operational product, as well as a precursor and supplement to satellite data. Firstly, X-band data from Intermap are used to retrieve homogenous plantation top height over four UK study sites using the difference between the DSM and OSDEM with mean underestimations of 33.48% (6.99m mean difference). When assessed for single species, the DSM-OSDEM procedure gave height underestimations of 18-24% for Sitka spruce and 40% for Scots pine, indicating a dependency on canopy structure. Correcting retrieved height based on linear regression with ground reference data is shown to improve height estimation; as such, applying a generic correction to retrieved heights from all four UK study sites improves overall accuracy to 16.77% (3.12m mean difference). For trees greater than 18m measured height, the accuracy is increased to 12.27% (0.92m mean difference).Secondly, X-band data are also used to retrieve tree total height over two heterogeneous woodland areas in Belize and the UK. In Glen Affric, UK, height retrieval using the X-band DSM-OSDEM procedure for individual trees produce mean underestimation of 94.87% (6.08m mean difference). In Belize, height retrieval using the X-band DSM-DEM procedure for individual trees produces a mean underestimation of 74.71% (6.85m mean difference). For the Belize test site, height retrieval using JPL Airsar C-band DSM-DEM procedure for individual trees produces retrieved heights with a mean underestimation of 55.97% (4.79m mean difference). The primary cause of error is that layover effects due to SAR geometry may result in the retrieved height from a specific image coordinate not representing the same geographical position as the measured height.Relationships between radar retrieved height and forest parameters such as stocking density and tree height and radar dependent properties such as slope and edge effects are presented as possible explanations for variations across the collected data. Supporting work using a simple coherent interferometric scattering model is also used to characterise and explain the effects on tree height retrieval due to variations in slope, number density, stand height and forest edges.The results indicate that top height retrieval over homogenous forest stands is feasible with similar accuracies to those found with other remote sensing techniques and ground survey. Individual tree location assessment does not appear to be a suitable technique for assessing height retrieval in heterogeneous environments, and further investigations are required to determine a more suitable approach. This new data set therefore potentially allows a rapid and timely management tool for use in cost-effective sustainable forest management and related applications

    Ultralight Radar Sensor for Autonomous Operations by Mini- and Micro-UAS

    Get PDF
    In recent years the boost in operations by mini- and micro-UAS (Unmanned Aircraft Systems, also known as Remotely Piloted Aircraft Systems - RPAS - or simply drones) and the successful miniaturization of electronic components were experienced. Radar sensors demonstrated to have favorable features for these operations. However, despite their ability to provide meaningful information for navigation, sense-and-avoid, and imaging tasks, currently very few radar sensors are exploited onboard or developed for autonomous operations with mini- and micro-UAS. Exploration of indoor complex, dangerous, and not easily accessible environments represents a possible application for mini-UAS based on radar technology. In this scenario, the objective of the thesis is to develop design strategies and processing approaches for a novel ultralight radar sensor able to provide the miniaturized platform with Simultaneous Localization and Mapping (SLAM) capabilities, mainly but not exclusively indoors. Millimeter-wave Interferometric Synthetic Aperture Radar (mmw InSAR) technology has been identified as a key asset. At the same time, testing of commercial lightweight radar is carried out to assess potentialities towards autonomous navigation, sense-and-avoid, and imaging. The two main research lines can be outlined as follows: - Long-term scenario: Development of very compact and ultralight Synthetic Aperture Radar able to provide mini- or micro-UAS with very accurate 3D awareness in indoor or GPS-denied complex and harsh environments. - Short-term scenario: Assessment of true potentialities of current commercial radar sensors in a UAS-oriented scenario. Within the framework of long-term scenario, after a review of state-of-art SAR sensors, Frequency-Modulated Continuous Wave (FMCW) SAR technology has been selected as preferred candidate. Design procedure tailored to this technology and software simulator for operations have been developed in MATLAB environment. Software simulator accounts for the analysis of ambiguous areas in a three-dimensional environment, different SAR focusing algorithms, and a Ray-Tracing algorithm specifically designed for indoor operations. The simulations provided relevant information on actual feasibility of the sensor, as well as mission design characteristics. Additionally, field tests have been carried out at Fraunhofer Institute FHR with a mmw SAR. Processing approaches developed from simulations proved to be effective when dealing with field tests. A very lightweight FMCW radar sensor manifactured by IMST GmbH has been tested for short-term scenario operations. The codes for data acquisition were developed in Python language both for Windows-based and GNU/Linux-based operative systems. The radar provided information on range and angle of targets in the scene, thus being interesting for radar-aided UAS navigation. Multiple-target tracking and radar odometry algorithms have been developed and tested on actual field data. Radar-only odometry provided to be effective under specific circumstances

    Signal theory and processing for burst-mode and ScanSAR interferometry

    Get PDF
    corecore