1,824 research outputs found

    Characterisation of the Haemodynamic Response Function (HRF) in the neonatal brain using functional MRI

    Get PDF
    Background: Preterm birth is associated with a marked increase in the risk of later neurodevelopmental impairment. With the incidence rising, novel tools are needed to provide an improved understanding of the underlying pathology and better prognostic information. Functional Magnetic Resonance Imaging (fMRI) with Blood Oxygen Level Dependent (BOLD) contrast has the potential to add greatly to the knowledge gained through traditional MRI techniques. However, it has been rarely used with neonatal subjects due to difficulties in application and inconsistent results. Central to this is uncertainity regarding the effects of early brain development on the Haemodynamic Response Function (HRF), knowledge of which is fundamental to fMRI methodology and analysis. Hypotheses: (1) Well localised and positive BOLD functional responses can be identified in the neonatal brain. (2) The morphology of the neonatal HRF differs significantly during early human development. (3) The application of an age-appropriate HRF will improve the identification of functional responses in neonatal fMRI studies. Methods: To test these hypotheses, a systematic fMRI study of neonatal subjects was carried out using a custom made somatosensory stimulus, and an adapted study design and analysis pipeline. The neonatal HRF was then characterised using an event related study design. The potential future application of the findings was then tested in a series of small experiments. Results: Well localised and positive BOLD functional responses were identified in neonatal subjects, with a maturational tendency towards an increasingly complex pattern of activation. A positive amplitude HRF was identified in neonatal subjects, with a maturational trend of a decreasing time-to-peak and increasing positive peak amplitude. Application of the empirical HRF significantly improved the precision of analysis in further fMRI studies. Conclusions: fMRI can be used to study functional activity in the neonatal brain, and may provide vital new information about both development and pathology

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Mental rotation in Williams syndrome: an impaired imagery ability

    Get PDF
    Typically developing young children and individuals with intellectual disabilities often perform poorly on mental rotation tasks when the stimulus they are rotating lacks a salient component. However, performance can be improved when salience is increased. The present study investigated the effect of salience on mental rotation performance by individuals with Williams syndrome. Individuals with Williams syndrome and matched controls were presented with two versions of a mental rotation task: a no salient component condition and a salient component condition. The results showed that component salience did not benefit individuals with Williams syndrome in the same manner as it did controls

    The Molecular-enriched Functional Circuits Underlying Consciousness and Cognition

    Get PDF
    Homo Sapiens consist of trillions of atoms, each inanimate, yet somehow collectively constituting a conscious being. The fundamental question of how organisms are organised to beget consciousness and cognition has largely been approached through independent examination of the structure and function of the nervous system at varying levels of granularity. As neuroscience progresses, it has thus increasingly fragmented into separate streams of research which study the brain at these different scales. This has resulted in the field becoming “data rich, but theory poor”, which is largely attributable to the paucity of methods which bridge these levels of analysis to provide novel trans-hierarchical insights and inform unified theories. The research in this doctoral thesis therefore aims to explore how a specific type of multimodal analysis - Receptor-Enriched Analysis of functional Connectivity by Targets (REACT) – can begin to bridge the theoretic void between molecular level mechanisms and systems levels dynamics to provide novel perspectives on the function and dysfunction of the brain. First, I provide a narrative synthesis of the challenges precluding a meaningful understanding of the human brain utilising conventional functional neuroimaging and outlining how incorporation of molecular information may help overcome these limitations. Specifically, by embedding functional dynamics in the molecular landscape of the brain, we can begin to move from the simple characterisation of “where” cognitive phenomena may be within the brain towards mechanistic accounts of “how” they are produced. Additionally, this offers enticing opportunities to link pharmacological treatments to novel molecular-network based biomarkers. Second, I explore how networks enriched with the spatial configurations of serotonergic and dopaminergic receptor subtypes are modulated by lysergic acid diethylamide (LSD) as compared to placebo in healthy participants. The results highlight the challenges of disentangling pharmacodynamics of drugs exhibiting rich pharmacology as well as identifying differential relationship between serotonergic and dopaminergic networks and phenomenological sub- components of psychedelic state. Third, I expand the remit of molecular-enriched network analyses beyond pure psychopharmacology to examine the direct and indirect actions of propofol anaesthesia on inhibitory and modulatory neurotransmission at both rest as well as during a naturalistic listening task. This work demonstrates for the first time that these molecular-networks can capture broader perceptual and cognitive-driven network reconfigurations as well as indirect pharmacological actions on neuromodulatory systems. Moreover, it provides evidence that the effects of propofol on consciousness are enacted through both direct inhibitory as well as indirect neuromodulatory mechanisms.Finally, I produce normative models of networks enriched with the principal neuromodulatory, excitatory, and inhibitory transmitter systems, testing their capacity to characterise neural dysfunction within and across several neuropsychiatric disorders. This work provides a computational foundation for large scale integration of molecular mechanisms and functional imaging to provide novel individualised biomarkers for neuropsychiatric disorders. Collectively, this thesis offers methodological and theoretical progress towards a trans-hierarchical characterisation of the human brain, providing insights into the neural correlates of both conscious contents and level as well as the perturbations underlying key neuropsychiatric conditions
    corecore