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ABSTRACT 

Background: Preterm birth is associated with a marked increase in the risk of later 

neurodevelopmental impairment. With the incidence rising, novel tools are needed to provide an 

improved understanding of the underlying pathology and better prognostic information. Functional 

Magnetic Resonance Imaging (fMRI) with Blood Oxygen Level Dependent (BOLD) contrast has the 

potential to add greatly to the knowledge gained through traditional MRI techniques. However, it 

has been rarely used with neonatal subjects due to difficulties in application and inconsistent results. 

Central to this is uncertainity regarding the effects of early brain development on the 

Haemodynamic Response Function (HRF), knowledge of which is fundamental to fMRI methodology 

and analysis.     

 

Hypotheses: (1) Well localised and positive BOLD functional responses can be identified in the 

neonatal brain. (2) The morphology of the neonatal HRF differs significantly during early human 

development. (3) The application of an age-appropriate HRF will improve the identification of 

functional responses in neonatal fMRI studies.   

 

Methods: To test these hypotheses, a systematic fMRI study of neonatal subjects was carried out 

using a custom made somatosensory stimulus, and an adapted study design and analysis pipeline. 

The neonatal HRF was then characterised using an event related study design. The potential future 

application of the findings was then tested in a series of small experiments.   

 

Results: Well localised and positive BOLD functional responses were identified in neonatal subjects, 

with a maturational tendency towards an increasingly complex pattern of activation. A positive 

amplitude HRF was identified in neonatal subjects, with a maturational trend of a decreasing time-
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to-peak and increasing positive peak amplitude. Application of the empirical HRF significantly 

improved the precision of analysis in further fMRI studies. 

 

Conclusions: fMRI can be used to study functional activity in the neonatal brain, and may provide 

vital new information about both development and pathology.  
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“the one knowledge worth having is to know one’s own mind”  

       F.H. Bradley 1930 

 

“In many ways there are greater differences between the brain 

of a 28 week infant and that of a 36 week infant than there are 

between the brain of the three-month old baby and an adult” 

     Pape and Wigglesworth 1979  
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Chapter 1  

1. Imaging the developing brain 

Explaining the workings of the brain, and thereby understanding and attempting to model its 

associated functions (including the somewhat ambiguous concept of consciousness) has always 

intrigued and yet evaded humankind. The challenge of such a vast and complex undertaking is 

emphasised when it is considered that the mature human brain contains an estimated 86 billion 

neurons (Brenner & Sejnowski 2011). Integral to such a process must be a deeper understanding of 

the development of the central nervous system (CNS), and moreover the mechanisms which 

underlie the establishment of the neural structural and functional pathways which ultimately 

mediate an individual’s interaction with the external environment.  

 

During approximately 40 weeks of gestational life, the central nervous system undergoes a rapid and 

dramatic, but highly structured sequence of programmed maturation and organisation (Rutherford 

2002-12, de-Graaf-Peters & Hadders-Algra 2006). At full term, the neonatal brain represents 

something of a dichotomy; highly complex in configuration and structure with much of the 

characteristic anatomy seen in adult life recognisable even at this early stage; and yet seemingly 

immature in terms of function, with only rudimentary primary sensory capabilities and an apparent 

lack of “conscious” thought processes (Lagercrantz & Changeux 2009). In recent years, dramatic 

advances seen in the field of neuro-imaging have led to the development of powerful novel 

techniques which have for the first time, allowed scientists and clinicians to visualise in-vivo, the 

developing human brain. Wide-spread application of these tools, has not only allowed 

developmental neuroscientists to begin the process of carefully characterising the brain’s early 

growth and maturation, but has also transformed clinical practice by providing a non-invasive means 

by which to assess a pathological brain state and gain vital diagnostic and prognostic information. 

Characteristic patterns of brain injury can now be recognised, many of which are unique to the 

developing brain. Imaging tools offer the potential to not only accurately characterise these lesions, 
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but moreover to understanding their immediate and long-term consequences. In recent years, 

remarkable advances in imaging are now allowing investigators the exciting opportunity to visualise 

and measure the functional activity of the living brain, which has the potential to dramatically add to 

our understanding of both normal and pathological brain development.   

 

The focus of this thesis is the optimisation of one of these novel techniques: functional MRI (fMRI), 

for use in studies of the developing human brain during the preterm and neonatal period. In the first 

chapter of this thesis, I will review the normal sequence of brain development and specifically how 

this can be characterised and studied using Magnetic Resonance Imaging (MRI). I will also discuss the 

compelling need for a deeper understanding of the harmful effects of preterm birth on the 

developing brain, and highlight how MRI has added immeasurably to this process. In the second 

chapter of this thesis, I present a brief overview of the fundamentals of MR imaging, with particular 

emphasis on the underlying principles of fMRI signal generation, methodology, and analysis. In the 

third chapter, I will summarise the findings of previously reported infant fMRI studies from the 

literature, and in doing so, attempt to identify possible reasons which may explain why the 

technique has been rarely applied to infant subjects (despite undoubted potential), and in particular 

why the field has been plagued by inconsistent results. These identified factors are then used to 

form the basis of the thesis aims and hypotheses as described in chapter 4. Two major studies were 

carried out during this thesis to try and achieve the aims of the thesis, which are then set out in 

chapters 5 and 6. Lastly, I have briefly described the methods and findings of a number of smaller 

projects in progress, to highlight the applicability of the findings derived from the main studies, and 

describe further key questions which are yet to be resolved.   

 

1.1. A need for accurate biomarkers of early brain pathology 

The neonatal period is particularly distinguished by a significant “structural-functional disconnect” in 

the state of the CNS, as at no other time in human life are the external manifestations of a particular 
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brain state as indistinct or subtle (Volpe 2008). Acquired or congenital pathology at this juncture in 

development are likely to lead to life-long changes in brain structure and function, the detrimental 

effects of which may not become apparent until later in life when the associated function is noted to 

have been adversely affected (or a further pathological state has developed). The exemplar of this 

effect is cerebral palsy, defined as a group of disorders of movement and postural control caused by 

a non-progressive defect or lesion of the developing brain (Bax 1964, Palmer 2004, Bax et al. 2005). 

Cerebral palsy represents a descriptive diagnosis of the neurological deficit and its associated 

disabilities, and in which the underlying aetiology may be known but is not required either for the 

diagnosis or classification (Palmer 2004, Bax et al. 2005). Frequently the diagnosis is therefore not 

made in the neonatal period, but more often in the second year of life when the affected child has 

been assessed by a clinician due to concerns about their neurodevelopment as the neurological and 

behavioural effects of the causative pathology become apparent (Wood 2006).     

 

In the developed world, the incidence of cerebral palsy has remained relatively unchanged in recent 

years at approximately 2.5 per 1000 live births in the UK, despite major and continuing advances in 

obstetric and neonatal clinical care (Blair & Watson 2006). This figure may be partly explained by the 

increasing incidence of preterm birth (delivery at less than 37 weeks gestation (Tucker et al. 2004)) 

which now represents 7-13% of all births in the developed world (Larroque et al. 2008, Mangham et 

al. 2009). Coupled with the increased survival of those born extremely preterm (less than 28 weeks 

gestation (Tucker et al. 2004)), the increasing numbers of these infants may mitigate somewhat the 

findings of recent population based studies which have found falling proportionate rates of cerebral 

palsy in premature infants at follow-up (explained in some part by a significant decrease in the 

incidence of the major causative pathologies such as cystic Periventricular-Leukomalacia (PVL)) 

(Hamrick et al. 2004, Platt et al. 2007, Robertson et al. 2007, Surman et al. 2009, van Haastert et al. 

2011, Sugiura et al. 2012). Regardless of these findings, the incidence rate of cerebral palsy is 

markedly increased in comparison to those delivered at term; as evidenced by the EPIPAGE cohort of 
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infants delivered between 22 and 32 weeks gestation in France, in which 8.2% of the infants at 2 

years of age and 9% at 5 years of age were affected by the condition (Ancel et al. 2006, Beaino et al. 

2010).  

 

Premature infants in early childhood have also been found to suffer from significantly poorer health 

outcomes in a number of other systems, including impaired growth and nutritional status, abnormal 

cardiovascular and respiratory function, and higher rates of respiratory pathologies (in particular 

chronic obstructive pulmonary diseases) (Doyle 2010, Hayes et al. 2011). In addition, studies in child- 

and young adulthood have also found that premature birth is an independent risk factor for the later 

development of perhaps more subtle (but no less significant) adverse neurological outcomes, 

including lower educational achievement, neurosensory disorders, learning and behavioural 

disabilities, and psychiatric illness (Hintz et al. 2005b, Allen 2008, Hack 2009, Doyle 2010, Nosarti et 

al. 2012). A specific pattern of childhood psychiatric disturbances appears to be particularly 

prominent and has been collectively termed the “preterm behavioural phenotype”, encompassing 

difficulties with inattention/hyperactivity, social, emotional, and internalising behaviour (Johnson et 

al. 2010, Johnson & Marlow 2011). Increased features of autistic spectrum disorder have been 

frequently reported in long term follow-up studies of preterm children, although the specificity of 

screening is likely affected by the increased prevalence of developmental delay and learning 

disabilities within the population (Johnson & Marlow 2011). A recent study by Nosarti and 

colleagues (2012) has also reported a marked increase in adult-onset psychiatric hospital admissions, 

suggesting that these difficulties are not benign in nature. Of importance, these adverse long-term 

neurological outcomes are seen to occur even in the absence of overt intra-cerebral pathology 

(Broitman et al. 2007, Allen 2008).     

 

The allocation of medical treatment and long-term supportive care required for the survivors of 

preterm birth has therefore become one of the major public health concerns for our current 
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generation (Kruse et al. 2009, Mangham et al. 2009, Ment et al. 2009). For a single child affected 

with cerebral palsy, the lifetime cost of the required healthcare and social interventions has been 

approximated at up to €860,000 in Denmark (Kruse et al. 2009); while in the UK the total cost per 

annum for a child with hemiplegia has been estimated at £13,050, with only 43% of this accounting 

for expenses directly related to their impairment (Beecham et al. 2001). Similarly, the annual 

economic costs of preterm birth to the public sector have been estimated to be a staggering £2.946 

billion, with an inverse relationship between the gestational age at birth and the average public 

sector cost per surviving child (Mangham et al. 2009).  

 

There are currently no established preventative strategies for the neurological sequelae of either 

preterm birth or cerebral palsy. Current treatments are predominately targeted at specific 

neurological problems (or their associated disabilities) and are initiated later in childhood when 

these deficits are behaviourally and clinically manifest (Allen 2002, Wood 2006, Ment et al. 2009). 

Although the implementation of interventional therapies as early as possible to change later 

outcome would ostensibly seem ideal, the evidence in support of such currently available strategies 

is not clear: with some studies suggesting a positive (but not sustained) effect on cognitive outcome 

in early childhood, but no benefit for later motor function (Blauw-Hospers & Hadders-Algra 2005, 

Orton et al. 2009, KoIdewijn et al 2010, Hadders-Algra 2011, Øberg et al. 2012). While these findings 

may represent a true limitation in effect; it is also possible that the development of new tools may 

allow for better targeted strategies which can take advantage of the early brain’s increased capacity 

for neurophysiological plasticity, particularly if they can be initiated before an acquired lesion is fully 

established (Johnston 2009, Staudt 2010, Hadders-Algra 2011, Øberg et al. 2012). There is therefore 

a pressing need for the development of novel highly accurate techniques with which both scientists 

and clinicians can understand more about the early development of the infant brain, the response to 

perinatal brain injury, and to gain diagnostic and prognostic insight (Ment et al. 2009). One might 

envisage that the information gained from these techniques could then be used as “biomarkers” to 
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precisely test and monitor the effects of any novel interventional strategies (including within the 

framework of a clinical trial), and to identify those patients who may benefit from a specific 

intervention well before any clinical signs may be apparent.    

 

1.2. Human brain development 

The structure and function of the mature human brain is the culmination of a complex and rapid, but 

highly structured programme of developmental changes in the morphology, organisation, and 

function of the central nervous system; starting from the first few weeks of in-utero fetal life and 

continuing through to young adulthood (summarised in figure 1.1) (Battin & Rutherford 2002, de 

Graaf-Peters & Hadders-Algra 2005, Volpe 2008). The importance of the correct timing and 

completion of these very early stages of brain ontogeny (the in-utero and peri-natal periods) is 

emphasised by the life-long and often severe consequences of the disruption caused by congenital 

disorders and other forms of brain pathology acquired within this period (Volpe JJ 2008, 2009b). 

Although a detailed description of all of the processes involved in the formation and maturation of 

the human brain is outside the scope of this thesis, a broad overview is presented here and is 

essential to put the work described later in context.       
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Figure 1.1: Summary chart displaying the timing of onset and activity of developmental processes in the 

human central nervous system. Broken lines denote an active process, with the bold lines denoting periods of 

greatest activity. During these processes, changes are also seen in the major neurotransmitter systems (lower 

part of figure; continuous bold lines denote periods of transmitter overexpression, thin broken lines denote 

that the transmitter is present). The GABA system is unique in that the function is known to switch form 

excitatory (bold broken line) to inhibitory (thin broken line) at approximately 40 weeks post-menstrual age 

(PMA). (Figure reproduced from de Graaf-Peters & Hadders-Algra 2005)  

 

1.2.1 Neurulation and development of the prosencephalon 

From the 3rd-4th weeks of human gestation, the dorsal aspect of the embryo undergoes a process of 

induction collectively known as “neurulation” which ultimately results in the formation of the central 

nervous system (brain and spinal cord) (Encha-Razavi & Sonigo 2003, Sadler 2005, Volpe 2008). The 

first key stages of “primary” neurulation occur at 18 days post conception, when the middle of the 

nascent ectoderm is  induced to differentiate into the primitive neural plate; with elevation and then 

fusion of the lateral borders leading to neural tube formation during days 21 to 30 (Sadler 2005). 

These primary processes result in the formation of the brain and the majority of the spinal cord, with 
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secondary neurulation (4-7 weeks gestation) responsible for the remaining caudal sections of the 

spinal cord through the epithelisation of coalesced mesodermal cells (Sadler 2005, Volpe 2008). 

Under the influence of gradients of gene expression, the neural tube then differentiates along 

several axes thus leading to the establishment of the major subdivisions of the central nervous 

system (Lagercrantz & Ringstedt 2001, de Graaf-Peters & Hadders-Algra 2005, Krispin et al. 2010).   

 

At 5 weeks gestation, the cephalic end of the neural tube gives rise to three primary vesicles which 

represent the putative hind-brain (rhomboencephalon), mid-brain (mesencephalon), and forebrain 

(prosencephalon) (Volpe 2008, Volpe P et al. 2009). Processes are mediated through transient 

signalling centres which code positional information on recipient cells in which combinations of 

transcription factors are induced leading to the acquisition of specific cellular identities (Rallu et al. 

2002, Richards et al. 2004). Development of the prosencephalon proceeds as a sequence of three 

events: firstly prosencephalic formation itself, followed by prosencephalic cleavage in 3 major 

planes; (horizontal) leading to paired olfactory and optic structures; (transverse) resulting in the 

separation of the diencephalon (which later give rise to posterior forebrain structures such as the 

thalamus) and the telencephalon (giving rise to the cerebral hemispheres); and (sagittal) forming the 

paired cerebral hemispheres, basal ganglia and lateral ventricles (Volpe 2008). The final stage 

comprises the development of the midline prosencephalic structures including the corpus callosum 

(beginning at 9 weeks gestation), the septum pellucidae, the optic chiasm, and the hypothalamus 

(Richards et al. 2004, Volpe 2008, Volpe P et al. 2009). Disruption to these crucial processes can 

therefore lead to a spectrum of clinical disorders from the relatively mild, such as partial agenesis of 

the corpus callosum, to the invariably lethal aprosencephaly (completely absent telencephalon and 

diencephalon) (Volpe P et al. 2009).      
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1.2.2. Cell proliferation, neuronal migration and differentiation 

Soon after the closure of the neural tube (approximately embryonic day 30), dividing neuroepithelial 

cells (also known as neural stem cells) form a rapidly proliferating subependymal layer or 

“ventricular zone” (Dhavan et al. 2001, Bystron et al. 2008). The processes of morphological and 

molecular differentiation which constitute neurogenesis then initiate in the ventricular zone at 

approximately embryonic day 33, with multipotent radial glial cells prominently generated at this 

stage (Bryston et al. 2008, Volpe 2008). In humans, a distinct upper layer of mitotic neurogenic cells 

is also visualised (termed the subventricular zone), which continues to proliferate through 

development eventually superseding the ventricular zone as the principal source of cortical neurons 

by 25 weeks gestation (Bryston et al. 2008). At approximately 7 weeks gestation, the preplate forms 

above the ventricular zone, which represents a transient community of neurons through which 

neurons migrate radially eventually leading to the formation the true cortical plate below a cell-

sparse subpial marginal zone (Dhavan et al. 2001). The cortex is then formed in an “inside-out” 

manner (figure 1.2(i)), as each subsequent wave of cells migrate along radial glial fibres through the 

intermediate zone, subplate, and past earlier-born cortical plate neurons to settle below the 

marginal zone (Dhavan et al. 2001, Gilmore and Herrup 2001, Bryston et al. 2008).     

 

     

Figure 1.2: (i) Schematic diagram of neuronal migration seen during corticogenesis. (a): Dividing cells initially 

occupy the ventricular zone (black circles), with only a thin mantle layer of cortical primordium forming the 

(i) (ii) 



32 
 

preplate above; (b) As waves of neurons migrate out of the ventricular zone (orange) into the preplate, it splits 

into the cell-sparse marginal zone, the cortical plate (accommodating the newly arrived neurons), and the 

subplate. (c–e) Further waves of neurons continue to migrate along radial glial fibres, and transit through the 

subplate and cortical plate. Later-born neurons therefore reside in the more superficial layers of the cortex. 

(Figure reproduced and adapted from Dhavan et al. 2001). (ii): The timeline of human cortical layer 

development. On embryonic day 30, the ventricular zone (VZ) is recognised, with subsequent formation of the 

preplate (PP) seen soon after on day 31-32. On day 45, new cells are visible within the subventricular zone 

(SVZ), with splitting of the preplate (as described above) into the intermediate (IZ), subplate (SP), cortical plate 

(CP), and marginal (MZ) (also containing the subpial granular layer (SG)) zones seen by 14 weeks gestation; 

(figure(ii) reproduced and adapted from Bystron et al. 2008). 

 

Connections develop as the immature neurons sprout axons, which are guided to their targets by 

chemo-attractive and repellent processes (De Graaf-Peters & Hadders-Algra 2005, Kostović & 

Jovanov-Milošević 2006). Of particular interest at this juncture is a relatively cell-sparse area below 

the cortical plate termed the subplate, which is thought to act as a transient “waiting room” for 

afferent sprouting axons (originating from the thalamus, basal forebrain, and brainstem nuclei) 

before they reach their cortical destination (Kostivić & Rakic 1990, Kostović & Jovanov-Milošević 

2006). The subplate is visible from approximately 12 weeks gestation, and is thickest and most easily 

recognised around 29 weeks gestation as the afferent fibres grow into the cortical plate and form 

connections (De Graaf-Peters & Hadders-Algra 2005, Kostović & Jovanov-Milošević 2006). The 

temporary afferents residing in the subplate appear not to be functionally silent, and are thought to 

have a unique and characteristic electrophysiological signature known as slow activity transients 

(SATs) (Vanhatalo et al. 2005, Hartley et al. 2012). After approximately the 31st gestational week, the 

subplate is seen to gradually regress and then disappear completely by full term gestation (De Graaf-

Peters & Hadders-Algra 2005, Kostović & Jovanov-Milošević 2006).  
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A particularly key process during this relatively rapid sequence of maturation is selective cell death 

(De Graaf-Peters & Hadders-Algra 2005, Volpe 2008). The term “Apoptosis” collectively refers to the 

programmed series of molecular and cellular events which are fundamental to the establishment of 

the normal pattern of brain organisation by regulating the growth of neuronal progenitor cells and 

removing aberrant synapses and axons, thereby maximising the efficiency of brain function and 

connectivity (Volpe 2008, Johnston 2009, Bullmore & Sporns 2012). Of interest, the apoptotic 

mechanisms resulting from excito-toxicity and mitochondrial dysfunction have also been found to be 

crucial during pathological events such as neonatal hypoxic ischaemic brain injury (Thornton et al. 

2012).   

 

1.2.3. Maturation and folding of the cerebral cortex   

The size of the surface area of the brain is closely related to the number of radial units projecting 

from the ventricular zone to the cortical plate, with regions characterised by a longer and later 

period of mitotic progenitor cell division generally developing a larger size (Rakic 1995, White et al. 

2010). Early in gestation, the brain is relatively lissencephalic (with a smooth surface), but very early 

signs of gyrification are present as early as 10 gestational weeks (Chi et al. 1977, White et al. 2010). 

The development sequence of gyrification has been well characterised and has been found to follow 

an precise timetable, with the large interhemispheric (10-15 weeks) and sylvian (14-19 weeks) 

fissures first to form (Chi et al. 1977, Battin & Rutherford 2002, White et al. 2010). The secondary 

and tertiary gyri (such as the central sulcus) are not seen until approximately 18-20 weeks when 

neuronal migration has been concluded (Van der Knaap et al. 1996, Volpe 2008, White et al. 2010, 

Habas et al. 2012). Macroscopically, the sulci are seen to first start as shallow grooves which 

progressively become deeper with the side walls gradually steepening, approximating  and 

eventually abutting (Van der Knaap et al. 1996, Battin et al. 1998, Habas et al. 2012). As they mature 

during the later stages of gestation (after approximately 32 weeks), the gyri and sulci develop a far 

more complex configuration and shape with the development of side branches and the intricate 
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patterns of folding characteristically seen in the mature adult brain (Battin & Rutherford 2002, 

Dubois et al. 2008).         

 

(i) (ii)(i) (ii)

    

Figure 1.3: (i) The surface area of the brain increases more rapidly than brain volume during the third 

trimester of gestation. Human brain growth is seen to obey an allometric scaling law with an exponent of 2/3 

explaining the relationship between the rapidly folding cortical surface area and the whole brain volume 

(figure reproduced from Kapellou et al. 2006). (ii) Development of cortical folding from 26 to 36 weeks post-

menstrual age. The rapid changes in gyrification and sulcation seen during the third trimester of human 

development are clearly evident on these inner cortical surface reconstructions derived from MRI data.  At 26 

weeks, the brain is relatively lissencephalic with the exception of the central sulci and sylvian fissures, in 

marked contrast to deeper and intricate (but still relatively immature) pattern of folding seen at 36 weeks. 

(Figure reproduced and adapted from Dubois et al. 2008).   

 

This pattern of cortical growth leads to a dramatic increase in the brain’s surface area (rather than 

thickness) in the third trimester of human development (24-36 weeks) with an exponential growth 

trajectory seen in contrast to a linear increase in whole brain volume (figure 1.3(i)) (Kapellou et al. 

2006, White et al. 2010). The relationship between the surface area and brain volume obeys an 

allometric scaling law, with similar scaling laws found to both across mammalian species and in 
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relation to other tissue types (Zhang and Sejnowski 2000, Kapellou et al. 2006). The mechanistic 

forces generated by “visoelastic tension” through the developing connections of the cortical fibres 

have been proposed to underlie the formation of the cortical gyri (Van Essen 1997, White et al. 

2010). Under this theory, areas of cortex which are densely connected to each other are “pulled 

together” by the tension exerted by the fibres, thereby leading to the protrusion of gyri as the brain 

continues to grow (with the sulci formed if the converse is true) (Van Essen 1997). This process also 

serves to maximise the efficiency of the brain’s framework of intrinsic connectivity by shortening the 

distance between communicating regions (Bullmore and Sporns 2012).   

 

1.2.4. Glial cells and myelination 

Although it is estimated that there are between 75 and 125 billion neurons in the mature human 

brain; they are far surpassed by the glial cells which can be up to 10 times more abundant (this 

relationship is highly region specific, with this ratio being largest in the white matter) (Lent et al. 

2011). Throughout the brain, neurons are surrounded by and interact with the two major 

subdivisions of glial cell; the microglia and macroglia, both of which perform a diverse set of 

functions which are vital for appropriate brain development and function (Parpura et al. 2012). 

Microglia migrate into and colonise the brain from the haematopoietic system early in development, 

and are the resident macrophages of the central nervous system (Pont-Lezica et al. 2012). In the 

fetal brain, microglia have been found to be most concentrated in areas of cell death, angiogenesis, 

and in the marginal layer; and are closely associated with radial glial cells (Pont-Lezica et al. 2012). 

Macroglia in contrast, are derived from the same progenitor cells as neurons, with the most 

prominent forms being astrocytes and oligodendocytes (Miller 2002, Volpe 2008, Parpura et al. 

2012). Astrocytes perform an extensive role in development including nutritive and supportive roles 

for neuronal homeostasis, the removal of excess neurotransmitters, inflammatory responses, and 

the induction and elimination of synapses (Parpura et al. 2012). In the mature brain, they perform 
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further vital roles in neuronal plasticity, neurotransmission, and are a key component of the 

neurovascular unit involved in neuro-vascular coupling (Attwell et al. 2010, Parpura et al. 2012).  

 

Oligodendrocytes are generally thought to be the last cell type to proliferate and differentiate during 

CNS development. Although the earliest oligodendrocyte precursors are seen to arise in the neural 

tube itself and later from the ventricular and subventricular zones, they have been found to migrate 

considerable distances to reach their final destinations predominately in the cerebral and spinal cord 

white matter (Miller 2002). Immature oligodendrocytes proliferate and surround the developing 

axons of the white matter, mature through neuronal neuregulin expression, and are then 

responsible for the formation of the fatty myelin bilayer which insulates the axons and allows rapid 

and efficient impulse conduction (Vartanian et al. 1994, Miller 2002, Volpe 2008). Although some 

myelin protein expression is seen in the spinal cord as early as the first trimester, myelination is 

predominately an ex-utero post-term process which occurs relatively rapidly throughout the first 2 

postnatal years, but continues even in adolescence (Kinney et al. 1988, Weidenheim et al. 1996, 

Battin & Rutherford 2002, Deoni et al. 2011). As with nearly all other aspects of CNS development, 

myelination is seen to proceed according to a recognised and structured schedule: with the proximal 

pathways myelinating prior to the distal; the afferent sensory pathways before the motor/efferent; 

the projection pathways before associative; the central areas before the cerebral poles; and the 

occipital pole prior to the frontotemporal poles (Kinney et al. 1988, Deoni et al. 2011).    

 

1.2.5. Neurotransmitter receptor expression and actvity 

In addition to their clear role in signal transmission across synapses, neurotransmitters are thought 

to also play an essential role in neural development, and are integral to the processes of 

proliferation, migration, and differentiation (Verney 2003, Luján et al. 2005, Manent & Repressa 

2007, Aronica et al. 2011). An exemplar of these roles can be seen in the transient but highly 

correlated increases in acetylcholinesterase positive staining within the fibres which accumulate in 
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both the subplate and the medio-dorsal thalamus in the 2nd and 3rd trimesters of gestation (Kostović 

& Goldman-Rakic, 1983, Kostović et al. 2002). Positive-staining cells for all of the major 

neurotransmitter receptors are seen from the first trimester of gestation, with region and time 

specific changes in their expression seen throughout development (Verney 1999, 2003, de Graaf-

Peters & Hadders-Algra 2005, Aronica et al. 2011). A good example of these differences in 

expression during development is found in the catecholaminergic system which is thought to be 

present from approximately 8-10 weeks gestation. Whilst some serotonin receptor subtypes appear 

to acquire mature numbers by full term gestation, the receptors of the dopaminergic system have 

been found to increase at a much slower rate with mature levels in the pyramidal system not seen 

until puberty (Verney 1999, 2002, 2003).   

 

The primary excitatory and inhibitory neurotransmitter systems in the mature adult brain are 

glutamate and γ–aminobutyric acid (GABA) respectively; and receptors of both systems are known 

to be extensively expressed in the developing human brain (Verney 2003, Luján et al. 2005, Manent 

and Repressa 2007). Both transmission systems mediate their actions through ionotropic (ligand-

gated channels) and metabotropic (G-protein coupled) receptors, with marked differences in the 

proportion of receptor sub-types and the expression of particular sub-units seen throughout the 

early human development (Verney 2003, Luján et al. 2005). The principal excitatory 

neurotransmitter in the fetal and early neonatal brain is paradoxically GABA, acting predominately 

through ionotropic GABAA chloride-permeable receptor channels (Ben-Ari et al. 2007, Briggs & 

Galanopoulou 2011). This effect occurs due to the higher intracellular chloride (Cl-) environment of 

immature neurons: with depolarisation occurring as a result of the raised concentration leading to 

an efflux of Cl- ions following opening of the GABA receptor channel (Briggs & Galanopoulou 2011).   

 

Functional receptors to both glutamate and GABA are seen during the early proliferative stages of 

brain development, and blockage has been found to profoundly alter patterns of DNA synthesis (and 
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resultant cell differentiation) (Luján et al. 2005, Manent and Repressa 2007). Alterations in the 

expression of receptors to both systems also thought to play a role in neuronal migration and 

chemotaxis, via the induction of neuronal cell motility, the promotion of cell layer entry, and the 

prevention of over-migration through modulatory signals (Manent and Repressa 2007). In addition, 

the complex sequence of processes which lead to synapse formation and maturation are also 

partially mediated through trends in neurotransmitter receptor expression, with resultant effects on 

cell–cell adhesion, inter-neuronal signalling, site-specific recruitment of protein complexes, and 

activity-dependent postsynaptic development (Luján et al. 2005).   

 

Rapid synaptogenesis continues postnatally up to approximately 2 years of age, from which the 

density and number gradually decrease during adolescence to approximately 60% of the maximum 

level in infancy (Huttenlocher & Dabholkar 1997). Synapse production is highly region specific during 

early development, with rapid bursts occurring firstly in the visual and auditory cortices, with the 

frontal and prefrontal areas the last to peak (Huttenlocher & Dabholkar 1997, Sowell et al. 1999, 

Johnston 2009). These bursts of synaptogenesis largely correlate with known region-specific 

milestones of behavioural neuro-development and are intrinsically regulated through a complicated 

pattern of axonal and target derived factors, and glial cell activity (Bourgeois et al. 1989, Johnston 

2009, Eroglu & Barres 2010). Synapse elimination in contrast, is highly activity dependent and can be 

permanently affected by alterations in the environment as suggested by the landmark visual 

deprivation experiments of Hubel and Wiesel (reviewed in Constatine-Paton 2008). The 

overproduction of synapses and subsequent selective pruning is thought key to the plasticity which 

underlies both the normal processes of learning throughout childhood and the greater propensity of 

the neonatal brain to compensate for localised brain injury (Johnston 2009).  

 

Intracellular calcium (Ca2+) control is critical throughout human brain development; in particular 

playing a prominent role in neuronal migration, and in the development and organisation of 
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neuronal systems through the regulation of neurite outgrowth, synapse formation, and selective cell 

death (Volpe 2008, Michaelsen and Lohman 2010). Developmental plateaus in the expression of 

particular glutamate and GABA receptor subtypes appear to allow enhanced Ca2+ influx; with the 

relative over-expression of two particular subtypes of the ionotropic glutamate receptor (NMDA and 

AMPA) seemingly leading to a tendency towards excitability in the neonatal brain, thus rendering 

the brain overtly susceptible to the excito-toxic effects of hypoxic ischaemic injury (Volpe 2008, 

Aronica et al. 2011, Thornton et al. 2012). Coupled with the relative underdevelopment of the GABA 

inhibitory system, the neonatal brain is therefore also relatively predisposed to seizures, which are 

commonly seen following acute cerebral insults (Ben-Ari et al. 2007, Briggs & Galanopoulou 2011).  

 

1.2.6. Intracranial vascular development 

In correspondence with the rapid development and growth of the human brain, the vascular system 

develops in a predominately adaptive manner so that the metabolic and nutritional requirements of 

the adjacent neural tissue can be met (Raybaud 2010). In the first 8 gestational weeks, the metabolic 

and nutritional requirements of the developing CNS are fed firstly via simple diffusion from the 

surrounding amniotic fluid, and then via a primitive menigeal meshwork within dense connective 

tissue (meninx primitiva) around the newly closed neural tube (Padget 1948, Raybaud 2010, Kathuria 

et al. 2011). At approximately 5-7 weeks gestation, the primary vesicles of the brain differentiate (as 

described in section 1.2.1), and the first foundations of the arterial circulation are seen when the 

meninx primitiva invaginates into the neural tube and deposits a primitive choroid plexus (Padget 

1948, Kathuria et al. 2011). As the maturing neural tube grows and thickens, intrinsic capillaries then 

develop and branch out from the meninx primitiva to penetrate the underlying parenchyma and 

supply areas with the highest metabolic demand: starting with the ventricular and subventricular 

zones early in gestation, and later the cortex in the third trimester and onwards (Gilles 2001, 

Takashima et al. 2009, Raybaud 2010). The first recognisable vessel to form at the base of the 

developing cerebrum is the internal carotid artery (at approximately 28 days gestation) which feeds 



40 
 

the vesicles of the forebrain, midbrain, and hindbrain, with subsequent branching and further 

development of the vertebral and basilar arteries leading to a more recognisable adult-like arterial 

organisation by approximately 35 days gestation (Padget 1948). In this arrangement, approximately 

97% of the intracerebral blood supply is provided via flow through the paired internal carotid 

arteries and basilar artery, with the remaining 3% supplied to the cerebellum via branches of the 

vertebral artery (Nagasawa et al. 2000).   

 

Angiogenesis proceeds in two discrete forms of germinal matrix; the striatal channels (which support 

the metabolic requirements of the central grey matter) and the extra-striatal channels (which supply 

the future white matter and cortex) (Gilles 2001). Muscularisation of the vessel walls are seen firstly 

in the striatal channels, with the majority of extra-striatal channels lacking a muscularis until the end 

of normal gestation (Norman & O’Klusky 1986, Kamei et al. 1992, Gilles 2001). Extra-striatal channel 

development appears to be governed through the rapid increase in cortical surface area over the 

third trimester of gestation, with rapid branching and penetration into the parenchyma maintaining 

an approximate interval of 100 micrometers between vessels (Kuban and Gilles 1985, Gilles 2001, 

Risser et al. 2009). During early human infancy, capillary branching continues to proceed at a 

significant rate with a two to three-fold increase in vascular volume, exchange surface area, and 

vessel length seen into adulthood (Risser et al. 2009).    

 

1.3. MR imaging of the developing human brain 

Much of the knowledge about human brain development described in the previous passages has 

been gained through a handful of landmark ex-vivo studies performed on small groups of post-

mortem specimens, many of which had been affected by varying degrees of pathology (Padget 1948, 

Chi et al. 1977, Kuban & Gilles 1985, Kinney et al. 1988, Kostivić and Rakic 1990, Judaš et al. 2011). 

While some information (particularly on a cellular level) is likely only to ever be gained by this means, 

a complementary understanding of the living brain is also clearly essential to gain a complete picture 
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of its overall structure, function and development. Knowledge and visualisation of the in-vivo brain is 

of particular relevance in the clinical setting, as evidenced by the exponential rise in the use of 

medical imaging techniques which have become an indispensable component of patient 

investigation and management. Whilst widely available imaging tools such as projection radiography 

(X-rays) and ultrasound have long provided invaluable diagnostic information, these techniques 

suffer from innate limitations which restrict either their use (such as the potential harm to a patient 

from recurrent exposure to the ionising radiation of X-rays) and their ability to accurately visualise 

different body tissue types due to limits in the possible contrast and/or resolution.  

 

MR imaging allows the acquisition of high spatial resolution images with excellent tissue contrast, 

which can be obtained in any plane (including in 3-dimensions), and without the risks of ionising 

radiation (Westbrook & Roth 2005). The principle of the technique lies in the detection of changes in 

the magnetic properties of the hydrogen ion nucleus, and in particular within the highly abundant 

water molecules of biological tissue (Westbrook & Roth 2005, McRobbie et al. 2010). Further major 

advantages of the technique also lie in the quantifiable nature of the acquired signal and the 

inherent flexibility, which can allow the detailed visualisation and accurate measurement of diverse 

aspects of macroscopic tissue structure, integrity, and composition. In addition, specially designed 

acquisition sequences can be used to investigate in-vivo functional measures of the tissue, such as 

the chemical composition (MR spectroscopy) and the local cerebral blood flow (Arterial Spin 

Labelling (ASL)) (McRobbie et al. 2010). These attributes have made MR imaging now commonplace 

both as a clinical investigation and for use in the research setting; where the objective measures 

provided can be utilised to accurately characterise specific tissue properties, directly test study 

hypotheses, and as a biomarker for clinical research (Miller 2004, Ment et al. 2009, Limperopoulos 

2010, Thayyil et al. 2010, Matthews et al. 2011). An overview of the principles of MR signal 

generation and acquisition is provided in Chapter 2, with specific reference to the detection of 
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localised changes in the oxygen binding state of haemoglobin which are associated with brain 

activity and underlie the focus of this thesis, functional MRI (fMRI).    

 

The use of MR imaging in studies of the neonatal brain has dramatically increased over the last 30 

years, such that a medline search shows an increase in publications (using the search terms 

“neonate”, “MRI”, “human” “brain”) from just 3 in 1982, to 263 in 2011 (see figure 1.4) 

(http://www.ncbi.nlm.nih.gov/pubmed). MRI techniques are particularly suited for studying the 

developing brain, as many of the described positive safety and image quality attributes are 

particularly paramount in research involving human fetuses and infants (Rutherford et al. 2008, 

Merchant et al 2009, Limperopoulos 2010, Panigrahy et al. 2010). Moreover, the quantitative nature 

of MRI data is particularly suitable for longitudinal studies of the early brain, as the growth and 

development can be accurately characterised and modelled (Battin & Rutherford 2002, Kapellou et 

al. 2006, Rutherford et al. 2008, Aljabar et al. 2011, Kuklisova-Murgasova et al. 2011, Silk & Wood 

2011, Serag et al. 2012). 
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Figure 1.4: Since 1982, the number of published articles describing work involving MRI studies of the human 

neonatal brain has steadily increased. (Figure derived from a total number of 4074 publications identified 

through medline using the search terms “neonate” “MRI” “human” and “brain”).           
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MR imaging therefore provides a means with which to accurately study and characterise early 

human CNS development, as the previously described developmental processes translate into 

dramatic macroscopic changes in the growth, composition, and function of the brain. These 

processes underlie a fundamental challenge of the field, which is to make suitable adaptations to 

optimise the image acquisition (and later analysis) to appropriately account for their cumulative 

effects (Rutherford et al. 2004, 2008, Panigrahy et al. 2010, Studholme 2011). These challenges 

include the purely practical (appropriate monitoring, immobilisation of the subject to minimise 

motion artefact, maintenance of clinical stability throughout the period of scanning); to making 

necessary adaptations to the acquisition sequence parameters; to altering computerised software 

packages for image analysis to take into account the very different contrast characteristics of 

developing brain tissue (Merchant et al. 2009, Maalouf & Counsell 2002, Xue et al. 2007, Panigrahy 

et al. 2010). 

 

1.3.1. MRI of normal brain development in the third trimester 

The majority of information gained from MRI studies of the developing brain prior to full term, have 

been gained from premature infants of an equivalent post-menstrual age (PMA) to the third 

trimester of human gestation (24 weeks to full term). With the development of advanced fetal 

imaging techniques (and in particular robust motion correction algorithms), complementary 

information has been gained from in-utero infants from approximately 20 weeks gestation (Jiang et 

al. 2007, Rutherford et al. 2008, Studholme 2011). As described previously, the fetal brain begins as 

a relatively lissencephalic structure, with the most of the major gyri and sulci not visible until the 

third trimester (as shown in figure 1.5(i), section 1.2.3) (Van der Knaap 1996, Battin et al. 1998, 

White et al. 2010). Owing to the mutli-planar nature of the technique, MR imaging is particularly 

suited to the characterisation of shape and the accurate measurement of volume; and these 

properties have allowed careful study of the patterns of maturation in both fetal and preterm infant 

populations (Van der Knaap 1996, Battin et al. 1998, Hűppi et al. 1998, Kapellou et al. 2006, Dubois 
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et al. 2008, Habas et al. 2012). While brain volume has been measured to steadily increase in the 

third trimester at a rate of 22ml/wk (resulting in an approximate threefold increase); the increases in 

cortical grey matter volume are even greater (approximately fourfold) (Hűppi et al. 1998, Kapellou et 

al. 2006, Xue et al. 2007). The rate of increase in cortical volume is further exceeded by the surface 

area of the brain (as the increase in volume does not correspond to an increase in cortical thickness), 

with an allometric scaling law (of approximate exponent 1.3) relating the whole brain volume to 

surface area (see figure 1.3(i)) (Kapellou et al. 2006, Xue at al. 2007).    

 

   

 

Figure 1.5 (i): Marked maturational changes in the appearances of the brain can be seen on T2-weighted MR 

imaging. At 27 weeks PMA, the brain is relatively smooth with only the central sulcus visible bilaterally. The 

white matter is of high signal, and concentric “bands” representing the laminar structure of the developing 

cortex are still visible (yellow arrow). Sulcation and gyrification can be seen to progress through the third 

trimester, with a progressive decrease in the white matter signal. The appearance of the 2 year old brain is far 

more similar to that of the mature adult brain on T2-weighted MR imaging, with a rich and complex pattern of 

cortical folding and low signal in the white matter (Images not to scale). (ii): The T2 value of the white matter 

in the centrum semi-ovale shows a linear decrease with increasing PMA (figure (ii) reproduced from Counsell 

et al. 2003).   
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In addition to the structural growth of the brain, tissue specific changes in contrast are visualised 

throughout development, largely due to maturational changes in cellular density and an associated 

decrease in tissue water content (see figures 1.5(i) and 1.6) (Battin & Rutherford 2002, Counsell et al. 

2003). This process can be quantified by measuring changes in tissue specific MR properties such as 

the T2 value (the transverse relaxation time); which is higher in free water (where the interactions 

between protons are weaker) than in a bound state (as in macromolecules such as fat and protein) 

(Deoni 2010, McRobbie et al. 2010). With increasing PMA, T2 values are therefore seen to linearly 

decrease in both the deep grey matter (basal ganglia and thalamus) and immature white matter 

(Figure 1.5(ii)) (Counsell et al. 2003).    

 

In the early third trimester, concentric bands of alternating signal intensity are visible within the 

white matter on both T1 and T2 weighted imaging, and are thought to represent transient features 

of the laminar structure of the developing cortex (figure 1.5(i)) (Battin et al. 1998, Battin & 

Rutherford 2002, Kostović et al. 2002, 2006, Radoš et al. 2006). At the start of the third trimester (24 

gestational weeks), four distinct “bands” are seen at the level of the centrum semi-ovale 

representing a cortical layer, the subcortical white matter, an intermediate zone of migrating glial 

cells, and a periventricular zone of developing white matter adjacent to the germinal matrix (Battin 

et al. 1998). Inferiorly, the bands are present but incomplete and are described as “caps” (adjacent 

to the anterior horns of the lateral ventricles) and “arrowheads” (adjacent to the posterior horns) 

(Battin & Rutherford 2002). Through post-mortem MRI and correlated histological staining studies, 

Kostović and colleagues have suggested that the relatively thick band of low signal on T1 imaging 

(and high on T2 imaging, see figure 1.5(i)) immediately below the cortical plate represents the 

transient subplate, which is characterised by a large extracellular space, and an abundance of 

glycosaminoglycans and chondroitin sulphate proteoglycans (Kostović et al. 2002, 2006, Radoš et al. 

2006). On MR imaging, the subplate is most prominent at approximately 28-29 gestational weeks (at 

this stage is approximately 4-5 times thicker than the cortical plate), and is then seen to gradually 
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regress from approximately 31-32 weeks until it is no longer visible at full term gestation (Kostović et 

al. 2006, Radoš et al. 2006).  

 

 

Figure 1.6: Progression of axonal myelination as visualised on T1-weighted MR imaging. At 34+2 weeks PMA, 

myelin is not evident and the white matter is uniformly of low signal on T1-weighted imaging. At 

approximately term equivalent age (41+1 weeks PMA), myelin is first seen in the posterior limb of the internal 

capsule (PLIC) as a thin band of high signal (arrowed yellow). By 3 months of age (52 weeks PMA), myelin is 

also now visible in the anterior limb of the internal capsule, and optic radiations. By 2 years of age, myelination 

is far more extensive and can be seen throughout the periventricular white matter and the external limb of the 

internal capsule. Therefore, in comparison to the preterm infant, the contrast of the white matter in the 

mature adult brain is completely reversed and universally of high signal. (Images are not to scale).  

 

Although histologically, early evidence of myelin can be identified as early as the 12th gestational 

week, the majority of intracerebral myelination is known to occur post-term. Myelination is first 

seen in the posterior limb of the internal capsule (PLIC) at approximately 36 weeks gestation, with a 

clear band of myelin visible at term equivalent age (see figure 1.6) (Van der Knaap & Valk 1990, 

Rutherford et al. 1998, Battin & Rutherford 2002). In other areas, although myelin is not clearly 

visible, more sensitive markers of white matter microstructure and function such as those derived 

from diffusion weighted imaging show maturational changes consistent with an early “pre-

myelinating” state, which further correlates with histological increases in axonal calibre, local 

oligodendrocytes and the levels of microtubule-associated proteins (which together are also 
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associated with faster axonal conduction velocities) (Wimberger et al. 1995, Hűppi et al. 1998, Neil 

et al. 1998, Dudink et al. 2008).  

 

1.3.2. MRI of normal postnatal brain development  

Despite clear differences in functional capability, the human neocortex at full term gestation 

surprisingly contains the same number of neurons as a mature adult (Bhadwaj et al. 2006, 

Nowakowski 2006, Lagercrantz & Changeux 2009). Although the rate of overall brain growth 

continues to be rapid over the subsequent 2 years of life (as measured through increases in whole 

brain volume) (Zhang et al. 2005), much of the development during this period has been found to 

involve tissue specific maturation and activity dependent changes in connectivity (Lagercrantz & 

Changeux 2009). A prime example of this is that all of the sulci and gyri which can be identified in the 

mature adult brain are recognisable by full term gestation; although the sulci continue to deepen 

throughout infancy and the folding becomes more convoluted to accommodate the increasing 

whole brain size (Armstrong et al. 1995, White et al. 2010).   

 

Changes in the volume and MR signal of the cortex in early childhood appear to correlate with the 

heterochronous patterns of postnatal synaptogenesis (Huttenlocher & Dabholkar 1997, Sowell et al. 

2004, Westlye et al. 2010). Similarly, the thinning of the cortex seen in later childhood is thought to 

be representative of the selective synaptic pruning occurring at that time (Sowell et al. 2004, 

Westlye et al. 2010).  T1 and T2 values are both seen to decrease in the grey matter and more 

significantly within the white matter during the first year of postnatal life due to a reduction in free 

water content (together with increasing compartmentalisation of water by macromolecules such as 

myelin) and increases in the paramagnetic iron content (Leppert et al. 2009, Deoni et al. 2010, 2011). 

Subtle changes in signal are also seen in other key structures including the deep grey matter, with 

increasingly clear demarcation of the distinct nuclei within the basal ganglia and thalamus evident 

postnatally (Barkovich 1998, Cowan 2002).  
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Figure 1.7: Myelination of the white matter during the first year of postnatal life as measured through 

changes in the Myelin Water Fraction. As seen in histological studies, quantitative data derived from MR 

measurements using multi-component relaxometry shows a clear spatiotemporal progression with myelin first 

seen in the deep white matter (internal capsule), and then later the superficial areas such as the 

periventricular white matter. (Figure reproduced from Deoni et al. 2011)  

 

The major driver of the enormous changes in T1 and T2 values within the developing white matter at 

this juncture is myelination, which proceeds throughout the central nervous system in a caudal to 

cephalic manner, with the frontal white matter last to myelinate (Barkovich 1998, Cowan 2002, 

Deoni et al. 2011). In addition to characterising the schedule of myelination visually with MRI, it is 

also possible to quantify the developmental changes indirectly using techniques such as diffusion 

weighted imaging (such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA)), 

and directly by measuring the myelin water fraction (MWF) using multi-component relaxometry (see 

figure 1.7) (Cowan 2002, Ben Bashat et al. 2005, Zhang et al. 2005, Huang et al. 2006, Deoni et al. 

2011, Geng et al. 2012). Furthermore, through constructing a mathematical tensor which can 

represent the underlying directionality of the restricted water diffusion in axon fibre bundles, it is 

also possible to delineate and visualise the trajectory and integrity of specific fibre “pathways” 

(termed diffusion tensor imaging (DTI) tractrography) (Dudink et al. 2008, Geng et al. 2012).     
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1.4. Brain injury and preterm birth 

As survival rates have improved with advances in neonatal care, it has become apparent that 

preterm birth engenders a very specific pathological phenotype in young adulthood with suboptimal 

function affecting a number of physiological systems through the complex interplay of multiple 

gene-environment interactions (Allen 2008, Ment et al. 2009, Hack 2009, Doyle 2010). Neurological 

difficulties are particularly prevalent; with up to 9% of infants affected by cerebral palsy, and up to 

50% of very low birthweight (<1000g) affected by cognitive impairment, behavioural difficulties and 

a requirement for special educational support (Hintz et al. 2005b, Allen 2008, Larroque et al. 2008, 

Johnson et al. 2009, Beaino et al. 2010, Johnson et al. 2010). Disabilities are greater in male infants, 

and those delivered at younger gestational ages (Beaino et al. 2010, Kent et al. 2012). Although the 

incidence and spectrum of disabilities have been well described, the underlying neuropathalogical 

correlates remain relatively poorly understood and cover a spectrum of lesions, many of which are 

unique to prematurity (Ment et al. 2009, Volpe JJ 2009b).  

 

Pioneering research has led to a greater understanding of the physiological processes which 

comprise early human development, which have importantly then led to marked improvements in 

the standard and outcomes of neonatal clinical care. These include knowledge of the potential 

pathogenic effects of inappropriate treatment such as excessive invasive ventilation and oxygen 

therapy, and the benefits of appropriate temperature control and nutrition (Ambalavanan & Carlo 

2006, Eichenwald & Stark 2008, Groenendaal et al. 2010, Civardi et al. 2011). Similarly, these 

changes in clinical practice have seen gradual improvements in the incidence of previously common 

severe forms of preterm brain injury, in particular cystic-PVL and Haemorrhagic Parenchymal 

Infarction (HPI) (Platt et al. 2007, Robertson et al. 2007, Surman et al. 2009, Groenendaal et al. 2010, 

van Haastert et al. 2011). Of importance, neurodevelopment abnormalities remain common in 

preterm infants even in the absence of these rarer forms of overt brain injury, suggesting a more 
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global insult to brain development which Volpe has termed the “Encephalopathy of Prematurity” 

(Allen et al. 2008, Volpe JJ 2009a,b).  

 

The anatomical appearances of the brain in the neonatal period visualised with both cranial 

ultrasound and less commonly MRI are often used by clinicians to identify high risk infants and 

provide families with prognostic information about neurodevelopment. However, existing studies 

suggest that the qualitative assessment of the images derived from both techniques suffers from 

wide confidence intervals and cannot be considered to be reliable for predicting later adverse 

outcome, with the exception of motor impairment (Nongena et al. 2010). By accurately quantifying 

changes in brain structure and function, the more widespread application of advanced MRI 

techniques has started to allow researchers to begin to truly understand the underlying 

pathophysiology and objectively characterise its effects on development. These studies have 

suggested that preterm birth engenders a specific pathological brain phenotype, and further that 

specific alterations in neural connectivity may underlie the life-long impairments in neurological 

function (Ment & Constable 2007, Dudink et al. 2008, Ment et al. 2009, Lubsen et al. 2011, Smyser et 

al. 2011). In this section, I will briefly summarise the spectrum of brain injury seen in infants born 

prematurely, and highlight how information derived from MRI techniques has added enormously to 

the knowledge of the underlying pathophysiology.  

 

1.4.1. Intraventricular Haemorrhage  

Intraventricular haemorrhage (IVH) remains a common problem affecting between 20-49% of 

extremely low birth weight infants (Larroque et al. 2003, Kadri et al. 2006, Volpe 2008). The 

haemorrhage arises from the highly vascularised and densely cellular subependymal germinal matrix 

of the developing brain (Volpe 2008). This germinal matrix contains an elaborate capillary bed, with 

a rich arterial blood supply and a well developed venous drainage system which terminates in the 

vein of Galen (Kuban & Gilles 1985, Takashima et al. 2009, Raybaud 2010). The haemorrhage most 
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commonly arises in the fragile endothelial-lined vessels of the capillary bed, with subsequent spread 

into the adjoining lateral ventricles (Volpe 2008). Pathogenesis is multi-factorial, with specific facets 

of preterm physiology and clinical management thought to predispose the infants to IVH including: a 

lack of cerebral autoregulation, frequent and sudden episodes of rapid cerebral blood flow change 

secondary to ventilatory support, an increased incidence of anaemia, platelet and coagulation 

disturbances, and immature vascular integrity (Perlman et al. 1983, Amato et al. 1988, Soul et al. 

2007, Volpe 2008, Takashima et al. 2009). The consequences of IVH can generally be classified into 

three categories: destruction of the germinal matrix leading to a loss of glial precursor cells; post-

haemorrhagic ventricular dilatation and hydrocephalus; and infarction of the adjacent parenchyma 

(termed a Haemorrhagic Parenchymal Infarction (HPI)) due to impaired drainage of the medullary 

veins in the periventricular white matter (de Vries et al. 2001, Volpe 2008).    

 

IVH is typically classified into 4 “grades” based on ultrasound appearances (Levene & de Crispgny 

1983). In the EPIPAGE cohort, the incidence of IVH without ventricular dilatation (grades 1 and 2) 

was 20% amongst all of the infants delivered between 22-32 weeks gestation, although the 

incidence was markedly higher in the most immature infants (40% of infants delivered at 23-24 

weeks gestation) (Larroque et al. 2003). The incidences of IVH with ventricular dilatation (grade 3) 

and extension into the adjacent parenchyma (grade 4 with HPI) are significantly less affecting 3-5.7% 

of preterm infants (Larroque et al. 2003, Groenendaal et al. 2010). Both grade 3 and 4 IVH carry a 

significant risk of developing severe adverse sequelae, with post-haemorrhagic ventricular dilatation 

requiring surgical intervention in up to 56% of infants, and cerebral palsy in nearly 50% of infants 

with grade 4 IVH (Brouwer et al. 2008).      

 

1.4.2. Periventricular Leukomalacia and white matter injury 

White matter injury is the most common form of neuropathology affecting at least 50% of all 

preterm infants (Volpe JJ 2008, 2009b). Abnormalities can be both focal (as in HPI) or global, and are 
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accompanied by varying degrees of neuronal-axonal injury throughout the brain including the cortex, 

deep grey matter (thalamus and basal ganglia), brain stem, and cerebellum (figure 1.8) (Volpe JJ 

2009a,b, Ment et al. 2009). With the exception of focal injury secondary to grade 4 IVH (HPI), current 

theories contend that all other forms of white matter preterm injury result from a common 

pathophysiological pathway which result in a spectrum of injury which can all be described within a 

continuum of periventricular leukamalacia (PVL) (Volpe JJ 2009a,b). The primary pathogenic 

mechanisms of PVL are generally considered to be hypoxia-ischaemia and inflammation which have 

been initiated through intra-uterine infection and/or postnatal sepsis, although some evidence has 

also suggested an additional causative role for high grade IVH (Volpe 2008, Kusters et al. 2009, 

Takashima et al. 2009, Volpe 2011). Downstream, excitotoxicity and free radical accumulation 

appear to mediate the mechanisms of damage, resulting in marked astrogliosis, microgliosis, and 

alterations in oligodendrocyte maturation (with an initial loss of premyelinating oligodendrocytes) 

(Armstrong &Norman 1974, Volpe JJ 2009a,b, Volpe 2011). Importantly, similar pathological changes 

in the white matter are also seen in primate models of preterm birth and neonatal intensive care 

treatment (Inder et al. 2005). 

 

In the most severe cases, macroscopic areas of necrosis are seen in the periventricular white matter, 

which result in the formation several weeks later of multiple large cysts (measuring several 

millimetres or more in diameter), with the appearance typically termed cystic-PVL (figure 1.8(c)) 

(Banker & Larroche 1962, Armstrong & Norman 1974, Volpe JJ 2009a,b). The original descriptions of 

PVL by Virchow (1867) (and later refined in a large case series by Banker & Larroche (1962)) were of 

focal demyelination in the white matter secondary to infarction in preterm infants of 34 weeks 

gestation and above, and almost certainly were describing this most severe form of the disease 

(Armstrong & Norman 1974, De Vries et al. 2002, Deng et al. 2008). Encouragingly, studies across a 

number of different countries within the developed world have consistently shown that the 

incidence of cystic-PVL has steadily decreased over the last 20 years, and now affects just 0.5-5% of 
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preterm infants born at less than 33 weeks gestation (Larroque at el. 2003, Hamrick et al. 2004, van 

Hassert et al. 2011, Sugiura et al. 2012). Although the neurodevelopmental outcome of cystic-PVL is 

highly dependent on the location of the cystic lesions, extensive lesions are invariably associated 

with poor outcome with up to 90% of affected infants later developing cerebral palsy, typically of a 

spastic diplegic type (de Vries et al. 2004, Ancel et al. 2006, van Haastert et al. 2011).   

 

Far more common than the overt macroscopic lesions of cystic-PVL, are areas of gliotic scarring 

which arise from microscopic necrosis in the peri-ventricular white matter, and a more diffuse effect 

on white matter maturation and function, which collectively has been termed “non-cystic” PVL 

(Volpe JJ 2009a,b, Volpe 2011). The identification of this more subtle white matter injury in preterm 

infants has dramatically increased due to the greater sensitivity of neuroimaging techniques (and in 

particular MRI). Moreover, quantitative MR measures of this “milder” form of injury have been 

found to inversely correlate with neurodevelopmental outcome, suggesting that it is not entirely 

benign in nature (Counsell et al. 2006, Krishnan et al. 2007, Cheong et al. 2009). This form of 

common injury is difficult to detect with cranial ultrasound examination, and was probably present 

(but not recognised) in the majority of preterm infants reported to have “normal brain appearances” 

in historical cohorts who developed later adverse neurodevelopmental outcome (Allen 2008, Volpe 

2008).     
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Figure 1.8: The spectrum of white matter pathology seen in preterm infants on T2-weighted MRI. White 

matter injury is seen in approximately 50% of all infants born prematurely; (a) The commonest lesion is Diffuse 

Excessive High Signal Intensity (DEHSI) in the periventricular white matter (yellow arrow); (b) low signal 

punctate lesions seen here in the centrum semiovale (orange arrow); (c) cystic Periventricular Leukomalacia 

(PVL) with multiple large cysts in the white matter (blue arrow); (d) porencephalic cyst (red arrow) arising from 

the roof of the left lateral ventricle following grade 4 intraventricular haemorrhage (Haemorrhagic 

Parenchymal Infarction (HPI)).   

 

1.4.2.1. MRI appearances of white matter injury 

MR imaging is particularly sensitive at identifying white matter abnormalities, with up to 80% of 

preterm infants showing increased T2 signal and decreased volume within the white matter on MR 

imaging at term equivalent PMA (figure 1.8(a)) (Maalouf et al. 1999, Dyet et all. 2006, Hagmann et al. 

2009, Rutherford et al. 2010). Objective measures of white matter volume and morphometric 

studies have confirmed a significant reduction in white matter volume which is maintained even in 

adolescence (Inder et al. 2005, Giminez et al. 2006, Kesler et al. 2008, Nosarti et al. 2008). The 

clinical importance of increased T2 signal in the white matter (termed Diffuse Excessive High Signal 

Intensity (DEHSI)) is uncertain, with recent studies suggesting that the appearance does not 

correlate with later adverse neurodevelopmental outcome in childhood (Hart et al. 2011, Kidokoro 

et al. 2011). However, a clearer association between white matter signal abnormalities and outcome 

is identified when more specific quantitative measures derived from diffusion weighted imaging 

such as the ADC, FA and radial diffusivity (RD) are studied, which furthermore suggest that the 
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underlying pathology may involve oligodendrocyte and axonal abnormalities (Counsell et al. 2006, 

Krishnan et al. 2007 Cheong et al. 2009). 

 

Punctate white matter lesions are seen in approximately 20% of preterm infants on conventional MR 

imaging, and can be distributed throughout the white matter in addition to the periventricular areas 

(figure 1.8(b)) (Cornette et al. 2002, Dyet et al. 2006, Rutherford et al. 2010). The aetiology is unclear, 

although studies utilising susceptibility weighted imaging (SWI) suggest that there may be different 

forms with some lesions clearly haemorrhagic in origin, while others appear to represent early gliosis 

and microglial infiltration (Rutherford et al. 2010, Niwa et al. 2011). Although the lesions are small 

and transient enough that they are not readily visible on cranial ultrasound examination and are 

usually no longer visible with MRI at term equivalent gestational age, some studies have suggested 

that they are not entirely benign, and are associated with a qualitative reduction in cortical 

maturation and myelination at term equivalent age (Ramenghi et al. 2007). Clinical outcome 

measures however suggest that neurodevelopment is not adversely affected except in those infants 

with a large number of punctuate lesions and/or additional cerebral pathology (Cornette et al. 2002, 

Dyet et al. 2006, Bassi et al. 2011).   

 

1.4.2.2. Detailed MRI studies of white matter microstructure 

Metrics derived from Diffusion Tensor Imaging (DTI) have been used in a number of studies to probe 

the alterations in white matter microstructure which are associated with prematurity. The 

fundamental premise of these studies is that healthy and appropriately developed (and/or 

myelinated) white matter tracts will have increased diffusion of water along the principle tract 

direction, with a corresponding restriction perpendicular to this, represented by a high FA and low 

RD (reviewed in Dudink et al. 2008). In addition to studies measuring these parameters using pre-

defined regions of interest (ROIs), the recent development of advanced techniques such as Tract-

Based Spatial Statistics (TBSS) have made it possible to perform whole brain, voxelwise analyses to 
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test detailed hypotheses across groups of patients (Smith et al. 2006, Ball et al. 2010). These studies 

have shown that even in the absence of overt white matter lesions on conventional MR images, 

significant reductions are present in the FA of the centrum semiovale, frontal white matter, and 

corpus callosum in preterm infants at term equivalent age in comparison to control infants (figure 

1.9) (Anjari et al. 2007). In addition, the microstructure of the white matter has been found to be 

more extensively and significantly impaired in infants born at younger gestational ages, those with a 

history of chronic lung disease (with an oxygen requirement at 36 weeks PMA), and in those with a 

high lesion load of punctate white matter lesions (Anjari et al. 2007, Anjari et al. 2009, Ball et al. 

2010, Bassi et al. 2011).    

 

The possible utility of these objective measures of white matter microstructure integrity as 

biomarkers has been highlighted by recent studies which have demonstrated that reductions in FA 

correlate with standardised concurrent measures of neurodevelopmental status; such as 

performance in the Griffiths Mental Developmental Scale (GMDS) at 2 years, Intelligent Quotient 

(IQ) scores, and assessment of verbal and visual-motor integration at 12 and 16 years of age 

(Counsell et al. 2008, Constable et al. 2008, Mullen et al. 2011). Crucially, 2 recent studies have also 

found that alterations in FA at term equivalent age can be similarly correlated with 

neurodevelopmental outcome at 2 years of age in both ex-preterm infants and in term infants 

following hypoxic ischaemic encephalopathy, suggesting that it can be used as an imaging biomarker 

which accurately correlates with later outcome (Tusor et al. 2012, van Kooij et al 2012).  
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Figure 1.9: Preterm birth is associated with significant decreases in white matter microstructure at term 

equivalent age. Observer-independent whole brain analysis techniques such as Tract-based Spatial Statistics 

(TBSS) can be used to identify significant decreases (blue) in the Fractional Anisotropy (FA) of the white matter 

(group mean FA skeleton is shown in green) in infants born at less than 28 weeks gestation in comparison to 

term born controls (Figure adapted and reproduced from Anjari et al. 2007).    

 

The directional information derived from diffusion DTI data can be further analysed to reconstruct 

white matter fibre tract pathways, and therefore to directly investigate the effects of prematurity on 

particular distributions of structural connectivity. Using this approach, Bassi and colleagues 

demonstrated a significant correlation between the FA of the optic radiations as delineated by 

probabilistic tractography and a visual assessment at term equivalent age (Bassi et al. 2008). Of 

further interest, in a later study, it was found that visual function at term equivalent age could not 

be predicted by the FA within the optic radiations when assessed at an earlier scan during the 

preterm period, suggesting that any alteration in white matter microstructure and resultant visual 

function was occurring as a postnatal process during the preterm period (Groppo et al. 2012). Similar 

correlations have been described between the cortico-spinal tracts and later motor outcome in 

infants with focal brain injury (Roze et al. 2012).         

 

1.4.3. Brain growth and volume 

In addition to obvious white matter axonal damage, the damage of PVL also involves accompanying 

neuronal damage which can be identified during the initial stages of the disease in the preterm 
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period, and can be seen throughout the cortex, deep grey matter and cerebellum (Ment et al. 2009, 

Volpe JJ 2009a,b, Lubsen et al. 2011). A recent meta-analysis of 15 MRI studies has found that very 

preterm infants as young adults have a significant reduction in whole brain volume and an 

associated increase in ventricular volume in comparison to term-born controls (de Kieviet et al. 

2012). This reduction is seen throughout the brain, and in particular in several key structures 

including the thalamus, hippocampus, corpus callosum, cortex, and white matter (de Kieviet et al. 

2012). The degree of later brain volume loss has been found to be related to the gestation of the 

infant at birth, and appears to be directly related to the level of neurodevelopmental and cognitive 

impairment (Nosarti et al. 2008). While the exact pathophysiological mechanism underlying this 

volume loss remains uncertain, it seems likely that a disruption to the normal patterns of 

intracerebral connectivity is integral to these changes (Lubsen et al. 2011, Ball et al. 2011).  

 

1.4.3.1. Cortical volume and development  

Despite a reduction in adolescence, preterm infants without a history of chronic lung disease do not 

have a reduced whole brain volume at term equivalent age in comparison to term-born controls 

(Ajayi-Obe et al. 2000, Zacharia et al. 2006, Boardman et al. 2007, de Kieviet et al. 2012). Although 

brain volume is preserved, morphometric MRI studies have found a specific but significant reduction 

in the volume, surface area and the complexity of folding of the cortex at term equivalent age; which 

suggests that whole brain growth failure appears to be a secondary consequence following on from 

these early signs of pathology (Ajayi-Obe et al. 2000, Inder et al. 2005, Kapellou et al. 2006). The 

importance of this period further is highlighted by studies which have found that the rate of cerebral 

cortical growth in the preterm period is highly predictive of cognitive ability (but not motor 

outcome) later in childhood at 2 and 6 years of age (Kapellou et al. 2006, Rathbone et al. 2011). 

Together with the known reductions in white matter integrity and volume, these findings could be 

interpreted as strongly supportive of the “veso-elastic tension” hypothesis of cortical gyrification as 

proposed by van Essen, as a reduction in the underlying white matter connectivity would be 
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expected to result in a decrease in the tensile forces which are proposed to cause cortical folding 

(van Essen 1997).           

 

Detailed quantitative studies using computer-based morphometric techniques such as Voxel-based 

Morphometry (VBM) have consistently identified particular areas of specific volume loss in the 

prefrontal, fronto-temporal, temporal, hippocampal and cingulate areas in preterm infants in later 

childhood and adolescence; with these effects more profound in male subjects (Peterson et al. 2000, 

Kesler et al. 2008, Nosarti et al. 2008, Nagy et al. 2009, Soria-Pastor 2009). In addition, 

accompanying deficits are also seen in the functional skills associated with these cortical areas 

including reading, language, executive control and visual-spatial attention (Allen 2008, Kesler et al. 

2008, Nosarti et al. 2008). Crucially, a recent study using Deformation-based morphometry (DBM) 

has shown that a similar pattern of volume loss in the anterior temporal lobes and orbitofrontal 

areas can be identified even as early as term equivalent age (figure 1.10) (Ball et al. 2011).  

 

 

Figure 1.10: At term-equivalent age, there are regional reductions in brain volume which are maintained into 

adolescence. Deformation based morphometry shows that an increasing degree of prematurity at birth is 

associated with a decrease in volume in the anterior temporal lobes, the orbito-frontal areas, the posterior 

cingulate, the thalamus, and the centrum semiovale. (figure reproduced and adapted from Ball et al. 2011) 
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1.4.3.2. Thalamo-cortical connectivity  

The thalamus is a key structure in determining the function of the brain, as nearly all incoming 

information to the cortex is relayed through the thalamus and via its associated connections 

(Behrens et al. 2003a, Sherman 2007, Wang et al. 2010). Within the thalamus, a distinct pattern of 

cytoarchitecture can be recognised from at least 2 years of age in human subjects, with specific 

nuclei differentiated by the pattern of anatomical connectivity with the cortex (Behrens et al. 2003a, 

Counsell et al. 2007, Broser et al. 2011). From the perspective of thalamocortical connectivity, the 

third trimester of human gestation represents a critical juncture in development and perhaps a 

specific window of vulnerability, as a dense network of thalamo-cortical circuitry is established 

through the transient subplate (Kostović & Jovanov-Milošević 2006, Ball et al. 2011). 

 

The thalamus appears to be particularly susceptible to injury following preterm birth, as volumetric 

studies have found that even in the absence of severe white matter disease, infants born preterm 

have significant reductions in thalamic volume at term equivalent age (figure 1.10) (Inder et al. 2005, 

Boardman et al. 2006, Srinivasan et al. 2007, Ball et al. 2011). In keeping with the described trends 

seen in injury of other brain structures, the degree of prematurity at birth is inversely correlated 

with the volume of the thalamus (Inder et al. 2005, Boardman et al. 2006, Ball et al. 2011). The 

importance of thalamic growth and connectivity was underlined in a recent study by Ball and 

colleagues in which thalamic volume (controlling for the degree of prematurity at birth) was shown 

to predict both specific patterns of decreased brain volume, and impaired white matter 

microstructure in the corticospinal tracts and corpus callosum (Ball et al. 2011). In addition, a 

combined imaging phenotype of reduced white matter and thalamic volume at term equivalent age 

has been found to be highly predictive of adverse neurodevelopmental outcome at 1 and 2 years of 

age (Inder et al. 2005, Boardman et al. 2010).  
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1.4.3.3. Cerebellar growth and development 

Although long known to be integral to sensori-motor function and coordination, in recent years the 

cerebellum has come under increasing scrutiny in neuroscientific studies as its crucial role in learning, 

attention, and cognitive function has become apparent (Manto & Jissendi 2012). The cerebellum is 

of particular interest as it has a unique pattern of connectivity and development distinct from that of 

the supratentorial cerebrum, and additionally undergoes a period of rapid growth during the third 

trimester of human gestation (Limperopoulos et al. 2005, Manto & Jissendi 2012). Injury to the 

cerebellum has classically been under-recognised in preterm infants, largely due to the restraints in 

visualisation imposed by cranial ultrasound examination (Limperopoulos & du Plessis 2006). In one 

cohort, cerebellar haemorrhage was identified in nearly 20% of infants with a birth weight less than 

750g (Limperopoulos et al. 2005). Even in the absence of direct cerebellar injury, its growth appears 

to be adversely affected by preterm delivery, with a significantly reduced volume seen in 

adolescence in comparison to term-born controls (de Kieviet et al. 2012). However, as seen with 

whole brain volume measurements, a reduction is not seen at term equivalent age in the absence of 

supra-tentorial lesions (Shah et al. 2006, Srinivasan et al. 2007).  

 

Recent studies have also found that cerebellar injury appears to confer a significant increase in the 

risk of later neurodevelopmental impairment, with one study finding that as high as 66% of infants 

with preterm cerebellar haemorrhage developed later neurological difficulties (including a significant 

increase in autistic tendencies) (Limperopoulos et al. 2007). While a single study found only a weak 

correlation (which was partially mediated by the degree of white matter injury) between cerebellar 

volume and cognitive and motor outcome (Shah et al. 2006), recent studies have identified a 

stronger correlation between objective measures of reduced cerebellar volume and adverse 

neurological outcome at 2 years (Lind et al. 2011, van Kooij et al. 2012). Moreover, the effects of 

impaired cerebellar growth can be life-long, as evidenced by an inverse association between 
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cerebellar volume and the prevalence of neuropsychological difficulties in young adulthood (Parker 

et al. 2008).        

 

1.5. Summary 

The human brain undergoes a dramatic and rapid, but highly structured pattern of maturation 

during gestational life. Disruption to these developmental processes leads to life-long 

neurodevelopmental difficulties, as highlighted by the marked increase in incidence seen in infants 

born prematurely, even in the absence of overt cerebral pathology. In-vivo neuroimaging tools, and 

in particular MRI techniques, have provided a wealth of new information about the underlying 

pathophysiology; and have identified a specific imaging phenotype which appears to result from the 

preterm period, and can be readily detected at term equivalent age. The application of advanced 

MRI tools may have the potential to act as much needed biomarkers for predicting outcome and 

measuring the response to therapeutic intervention.     
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Chapter 2 

2. Functional Magnetic Resonance Imaging 

Whilst a great wealth of knowledge about the structure and development of the immature brain has 

long come via detailed histological and macroscopic ex-vivo studies, a true understanding has been 

limited by the relative lack of capacity to provide information about the brain’s function. In recent 

years, functional brain imaging techniques have become commonplace in the neuroscience and 

clinical communities as a means with which to gain objective information about and/or visualise 

“brain activity” through the measurement of the underlying or associated short-term (and often 

brief) physiological processes (Huettel et al. 2004). The information derived from these techniques is 

extremely diverse, and covers a wide spectrum of temporal and spatial resolutions. Although largely 

complementary, different techniques provide information which may represent both direct and 

indirect measures of the neuronal activity, and therefore the comprehensive integration of this 

multi-modal data remains a necessary but highly complex challenge. At the finest end of the 

resolution scale, in-vitro electrophysiology can be used to directly measure the rapid changes in 

neuronal membrane potential which accompany neurotransmission, at a spatial resolution as fine as 

in a single neuron. In contrast, in-vivo imaging techniques (such as functional MRI (fMRI) and 

Positron Emission Tomography (PET)) may not offer such fine spatial or temporal information, but 

provide a wealth of rich information which describes the activity of large populations of neurones in 

their natural state (Matthews 2001, Huettel et al. 2004).  

 

Fundamental to two of the most prominent in-vivo techniques currently in use is the long-

recognised principle that neuronal activity is a highly metabolic process, and that the local demand 

for the required substrates are provided by a rapid increase in blood flow via the dense cerebral 

vasculature (reviewed in Gjedde 2001, Buxton 2009, Kim & Ogawa 2012). The first of these 

techniques to reach prominence was PET, in which changes in local brain blood flow and metabolism 

are identified following the injection of a radioactive tracer (Sokoloff et al 1977, reviewed in Jones & 
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Rabiner 2012). Functional MRI (fMRI) overcomes some of the major disadvantages inherent to PET, 

as it is without exposure to ionising radiation, does not require the expensive development and 

storage of radioactive isotopes, and has less limitations to the temporal resolution at which data can 

be sampled (Matthews 2001, Huettel et al. 2004, Buxton 2009).  In the last 30 years, these 

techniques have transformed neuroscience by offering the potential to accurately localise, measure, 

and characterise large-scale patterns of function in the living, working brain.    

 

The concept of localisation and “mapping” of brain function was first proposed by Franz Joseph Gall 

(1758-1828) and advocated by the phrenologists of the early nineteenth century, who maintained 

that specific personality attributes were supported by distinct areas of the brain, and that these 

traits could be identified by palpating a relative increase or decrease in size as bumps or smoothness 

felt on the overlying skull (Simpson 2005). Despite phrenology falling out of favour later in the 

nineteenth century, localisation of brain function was later confirmed in the celebrated clinical case 

reports of Paul Broca (1824-1880) who described a series of patients suffering from expressive 

aphasia (loss of speech production) following damage to an area in the left lateral frontal lobe (now 

known as Broca’s area) (Finger 2004, Simpson 2005). Although further cases of lesion and location-

specific loss of function were reported throughout the nineteenth century (reviewed in Frith 2007), 

the next major advance in brain mapping was the detailed work of the German neurologist Korbinian 

Brodmann (1868-1918). Brodmann described 52 distinct subdivisions of the human cerebral cortex 

based on careful examination of their histological (termed “cyto-architectonic”) characteristics 

(translated and reproduced in Garey 1999). Brodmann’s eponymous areas are still used in current 

neuroscience, and in particular to classify and localise the patterns of brain activity identified in 

functional neuroimaging experiments. Ironically, in his original landmark monograph (Garey 1999), 

Brodmann himself concludes:  
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“One thing must be stressed quite firmly: henceforth functional localisation of the cerebral 

cortex without the lead of anatomy is utterly impossible in man as animals…anyone wishing 

to undertake physiological localisation studies will have to base his research on the results of 

histological localisation”.   

 

Although functional Imaging techniques have consolidated the concept of functional localisation; the 

richness of the data provided has also opened new avenues into exploring the integration of 

function between distinct brain regions (Smith 2012). Even at rest, specific and reproducible 

patterns of spontaneous but highly correlated fluctuations in the fMRI signal are seen between 

distinct brain regions (Biswal et al. 1995, Smith et al. 2010). Characterising brain function has 

therefore proved to be a far more complex challenge than localisation of function alone; as an 

individual brain region may participate in several functions, with a given single function often 

requiring the co-ordinated activity of several regions which are distributed into specific topologically 

efficient “networks” throughout the brain (Bullmore & Sporns 2012).  

 

Techniques such as fMRI therefore offer the clear potential to provide a new and vital dimension to 

our understanding of early human brain development; not only by allowing the characterisation of 

responses to external stimulation, but also by providing a wealth of new knowledge about the 

development of whole-brain neural integration and the dynamic properties of immature brain 

function. In the twenty years since it was first described however, fMRI has rarely been used to 

study human neonatal subjects, due to a history of inconsistent results and fundamental challenges 

with respect to both the acquisition and analysis of data. To put these difficulties in context, in this 

chapter of the thesis, I will outline briefly the basic principles of MR imaging, and specifically those 

which underlie fMRI data acquisition and the underlying physiology. I will then review in more detail 

the fundamentals of fMRI experimental methodology and analysis.     
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2.1. Basic principles of MRI 

All of Magnetic Resonance Imaging is based on core principles about the magnetic properties of 

atomic nuclei, which were independently described by the seminal work of physicists and Nobel 

laureates Edward Purcell and Felix Bloch in 1946 (reviewed in Buxton 2009). While techniques based 

on this work were then used throughout the twentieth century as a powerful tool for analytical 

chemistry, it was then the landmark work of Nobel laureates Paul Lauterbur (1973) and Peter 

Mansfield (1977) which led to the application of the technique as an imaging modality, and 

ultimately to MRI’s current status as an established tool in both clinical and scientific work.  

 

2.1.1. Nuclear Magnetic Resonance 

All matter is composed of atoms, which contain a small densely packed nucleus of neutrons and 

protons, and a surrounding electron cloud. Underlying the principles of Nuclear Magnetic Resonance 

(NMR) are two fundamental properties of atoms (Westbrook & Roth 2005, Buxton 2009, McRobbie 

et al. 2010): 

 

Spin: Protons, neutrons and electrons possess an intrinsic angular momentum (or spin). The 

magnitude of spin cannot be changed, although the axis (the direction) of spin can be altered. In a 

nucleus containing an even number of protons (and neutrons) there is no net spin, as particles with 

oppositely orientated spins are paired together and therefore “balanced” out. In contrast, a nucleus 

containing an odd number of protons and neutrons will be unbalanced, and therefore has a net spin. 

The primary focus of the underlying physics of MRI is the hydrogen ion, as it contains a single 

unbalanced proton in its nucleus and therefore has a net spin; and most importantly as it is by far 

the most abundant atom in the human body (Westbrook & Roth 2005, McRobbie et al. 2010).  

 

Magnetic Dipole Moment and Precession: The spin motion of an unbalanced proton generates an 

electric current, which causes the nucleus to behave like a bar magnet with a north and south axis (a 
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dipole), parallel to the spin axis. As a result, when placed in an external magnetic field (typically 

referred to as the B0 field), a torque is exerted on the proton as the dipole is rotated into alignment 

with the field. Due to its intrinsic angular momentum, the spin axis initially wobbles in a gyroscopic 

fashion or “precesses” around the field axis, rather than immediately aligning to it (Westbrook & 

Roth 2005, McRobbie et al. 2010).               

 

The frequency of precession (ω0) (commonly known as the Larmor frequency) is directly 

proportional to the strength of the B0 field and is defined by the Larmor equation: 

 

 ω0 = γB0         [2.1] 

 

where γ is a gyromagnetic ratio specific to different atomic nuclei. While initially the dipole axis 

precesses around the B0 field, over time it will gradually and eventually align, with the time constant 

describing this “relaxation” process designated T1 (Buxton 2009, Deoni 2010). Parallel alignment 

with the B0 field represents the principle of energy equilibration: as in this situation it represents the 

lowest energy state the dipole can achieve (with opposite alignment therefore representing the 

highest). The process of changing dipole orientation must therefore dissipate energy, which is 

typically converted to electromagnetic energy and emitted as a photon. The time taken for energy 

equilibration is dependent on the coupling of the dipole orientation to the random thermal motion 

of the molecules; in water, this coupling is weak and therefore time constant T1 is long (Buxton 

2009).   

 

In actual practice, MR techniques do not assess the properties of a single nucleus, rather a collection 

of nuclei within a body of tissue or fluid. At room temperature, a group of nuclei within a B0 field, 

will contain a slight majority of “low-energy” state dipoles aligned to the field, and slightly less “high-

energy” anti-parallel dipoles. Thus, within this group, there is a weak net magnetisation (M) at 
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equilibrium aligned to the B0 field. While the magnitude of M is too weak for accurate measurement 

under normal conditions, perturbing the equilibrium state and observing the resultant changes does 

allow measurement, and it is this principle which provides the basis of MR signal generation (Huettel 

et al. 2004, Buxton 2009). This perturbation or “excitation” is achieved by the application of an 

external radio-frequency current generated in a coil, which produces a weak perpendicular 

oscillatory magnetic field (B1), typically referred to as the RF pulse. To have this effect, the oscillatory 

frequency of the RF pulse must exactly match the precessional Larmor frequency of the studied 

atomic nuceli (usually hydrogen) (Westbrook & Roth 2005).    

 

The basic NMR experiment (see figure 2.1) consists of 2 fundamental phases (Buxton et al. 2009): 

 

1. The transmit phase: If a sample is placed within a constant B0 field, the dipoles within it 

reach a state of equilibrium magnetisation which is weakly aligned to the field. A coil placed 

around the sample (with an axis perpendicular to B0) can then be used to apply an excitation 

RF pulse, which causes an increase in high-energy state dipoles. The net effect of this 

increase is that M is “tipped” away from alignment with B0, and instead precesses around 

the axis of B0. The angle of this precession (termed the flip angle (α)) can be increased by 

increasing the amplitude or duration of B1.    

 

2. The receive phase: The precessing macroscopic magnetisation induced in the transmit phase 

creates a changing magnetic field, which induces an electric current in the coil in the receive 

phase. The induced signal (described as free induction decay (FID)) decreases over time as 

the individual dipole spins progressively move out of phase with another, with the net effect 

that the transverse component of M gradually decays. This decay process is exponential, 

with time constant T2. Measurement of the induced electric current is the fundamental 

basis of all MR techniques.   
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Figure 2.1: The Basic NMR experiment. A sample (grey circle) is placed inside a large static magnetic field (the 

B0 field); the hydrogen ion dipoles within the sample align to the axis of the field, producing a net 

magnetisation (M) parallel to B0. (i) In the transmit phase: a radio-frequency oscillatory current in the coil (the 

RF pulse) is applied. (ii) In the receive phase: as a result of the RF pulse, M has been tipped over and now 

precesses around the axis of B0. The transverse component of precessing magnetisation induces an oscillatory 

current in the coil (the NMR signal) which decays as the spins of individual hydrogen dipoles progressively 

dephase (known as free induction decay (FID)). (Figure adapted from Buxton 2009).    

 

2.1.2. Basics of Image contrast 

Although MRI typically studies the magnetic properties of the hydrogen nucleus, the values of the 

time constants T1 and T2 vary greatly between different tissue types, and this forms the basis of 

image contrast in MRI (Westbrook & Roth 2005, McRobbie et al. 2010). The variations arise from 

differences in molecular motion, interaction, and energy exchange (Deoni 2010). T1 is also referred 

to as “spin-lattice” relaxation time, as the process of longitudinal recovery involves the exchange of 

energy with the surrounding tissue (which is collectively referred to as the lattice) (McRobbie et al. 

2010). Differences in T2 (or “spin-spin” relaxation time) arise from interactions between the 

fluctuating magnetic fields of other nuclei, in addition to the main effects of the B0 field (Deoni 2010, 
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McRobbie et al. 2010). These interactions lead to more rapid spin dephasing, as the Larmor equation 

[2.1] states that the precessional frequency is the product of a constant (the gyromagnetic ratio) and 

the external magnetic field. In pure water, the second hydrogen nucleus within the same water 

molecule (H20) is the principle source of the additional fluctuating field. In biological systems, the 

hydrogen ions in water are generally bound or coexist with other much larger molecules such as 

polysaccharides and proteins, which have hydration layers of surface bound water molecules (and 

their constituent protons). Free liquids (such as CSF) have a long T2, because random thermal 

motion within the liquid means that the protons are subjected to a relatively homogeneous local 

field, as the local interactive field rapidly fluctuates and largely averages out during the motion of 

the unbound protons. In contrast, when bound to a large macromolecule (such as is seen in 

myelinated white matter), the protons experience far slower fluctuations in field, leading to an 

inhomogeneous magnetic field and more rapid dephasing (and a resultant shorter T2). In biological 

systems, T1 is invariably much longer than T2 across tissue types (figure 2.2).  

 

  

Figure 2.2: The value of time constants T1 and T2 varies greatly between tissues, and is the basis of tissue 

contrast in MRI. (i): T1 is defined as the time taken for the longitudinal magnetisation (Mz) to recover to 63% 

of its equilibrium value, and is considerably longer for fluid (such as CSF) in comparison to fat. (ii): T2 is defined 

as the time taken for 63% of the transverse magnetisation to decay due to spin dephasing, and is shorter when 

protons are bound to macromolecules such as fat. (Axes are not to scale; values are derived from McRobbie et 

al. 2010).     



71 
 

Tissue contrast is therefore generated by delaying measurement of the NMR signal, so that 

differences in T1 and T2 time can be exploited (Westbrook & Roth 2005, Buxton 2009, McRobbie et 

al. 2010). By applying further RF pulses to the sample before the full relaxation of M to the 

longitudinal axis, the tissue differences can be further exploited. The time between each RF pulse is 

referred to as the repetition time (TR). The contrast generated in the simplest possible MRI pulse 

sequence (the gradient recalled echo (GRE) sequence) depends only on the TR and α, and the time 

the FID signal is measured is defined as the centre of data acquisition (TE) (Buxton 2009). In actual 

practice, measuring signal by FID signal alone is rather inefficient and particularly susceptible to both 

external and internal sources of magnetic field inhomogeneity; and therefore clinical images are 

instead usually acquired using spin echo (SE) sequences, in which further (typically 180o) RF pulses 

are applied to refocus the rapidly delaying signal at specific echo times (by convention also 

designated TE) (Buxton 2009).  

 

For a standard T1-weighted image, both the TR and TE are typically short to enhance the contrast 

differences (figure 2.2(i)): with fluid (ie: CSF) appearing dark and fat (ie: myelin) appearing bright 

(Westbrook & Roth 2005, McRobbie et al. 2010). The converse applies for T2-weighting, where both 

a long TR and TE are required to maximise the contrast (figure 2.2(ii)): and therefore the relatively 

unbound protons in slowly dephasing fluid appear bright, while the rapidly dephasing tissue (such as 

fat) appear dark (Westbrook & Roth 2005, McRobbie et al. 2010).       

 

As mentioned previously, the innate flexibility and sensitivity of the technique based on the 

aforementioned principles of NMR, has led to the design and application of a wide variety of MRI 

sequences capable of measuring physiological parameters in addition to visualising anatomy. 

Interestingly, the physical effects which underlie these techniques were historically considered only 

to be sources of artefact in conventional anatomical MR imaging; but through understanding the 

underlying cause and taking advantage of the effect, it has been possible to develop novel and 
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powerful MRI tools (Buxton 2009). An example of this principle is utilising the differences in 

magnetisation and phase offset which occur within a slice due to the rapid inflow of blood during 

each TR interval, to specifically visualise the large vessel vascular tree (MR angiography) and 

quantitatively measure blood flow (Phase Contrast Angiography (PCA)) (Schellinger et al. 2007, 

Vernooij et al. 2007). The focus of this thesis: fMRI, similarly utilises the transient changes in local 

field inhomogeneity generated by deoxygenated haemoglobin to indirectly measure functional brain 

activity.       

   

2.1.3. Image formation 

To create an image, the signal must be spatially localised, and this is achieved by manipulating the 

local resonant frequency in different spatial locations by applying magnetic field gradients 

(Westbrook & Roth 2005, Buxton 2009, McRobbie et al. 2010). These gradients are produced by 

three gradient coils which each produce magnetic fields which vary locally in a linear manner along 

three orthogonal directions (x,y,z). Thus, when a field gradient is switched on, predictable phase 

offsets in spin are produced (known as phase dispersion) at different spatial locations along the 

gradient “slope” (Westbrook & Roth 2005). The three directions of MRI spatial encoding (x,y,z) are 

termed frequency encoding, phase encoding, and slice selection respectively (Westbrook & Roth 

2005, Buxton 2009, McRobbie et al. 2010). By altering the resonant frequency along the z-axis, the 

slice selection gradient limits the effect of the RF pulse to a single slice in which the bandwidth is 

appropriate for excitation. Within the selected slice, the frequency encoding gradient in the x-

direction generates a range of frequencies which are represented in the sum sampled signal 

acquired during the data acquisition window. Phase encoding occurs in “steps” in which the pulse 

sequence is effectively repeated at each stage of the linear y-axis gradient, and therefore represents 

the rate of local phase change between data acquisition windows. The acquired data is in the spatial-

frequency domain (known as k-space), with each data point (or voxel) containing frequency 

information about the entire acquired data matrix (Buxton 2009). For an image to be generated, a 
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two-dimensional Fourier transform is applied, which can then represent the distribution of different 

frequency amplitudes at each location in space (Westbrook & Roth 2005, Buxton 2009, McRobbie et 

al. 2010). The final image is therefore a matrix of pixels which are each associated with a volume of 

data (known as voxels), with the final resolution of the image dictated by the measured range of the 

frequencies in the initial k-space matrix (Buxton 2009).        

       

2.2. fMRI 

While enormous strides in the development of MRI techniques during the 1980s led to faster 

acquisition times and higher image quality, it was not until 1991 that the feasibility of visualising 

functional brain activity with MRI techniques was first described (Huettel et al. 2004, Buxton 2009). 

In this first study, Belliveau and colleagues demonstrated that it was possible to measure local 

increases in blood volume in the primary visual areas, following the injection of a ferromagnetic 

contrast agent (Magnevist) and a photic stimulus (Belliveau et al. 1991). While this first study 

established the possibility of functional brain mapping with MRI, it was in 1992 that the first fMRI 

experiments as used in its current form, were then reported in three independent experiments 

conducted by Seiji Ogawa, Kenneth Kwong, and Peter Bandettini (Bandettini et al. 1992, Kwong et al. 

1992, Ogawa et al. 1992). Although a small number of investigators have reported alternative 

sources of image contrast for fMRI, the work described in this thesis and by far the most commonly 

used method is that first described in 1990 by Ogawa and colleagues at the AT&T Bell laboratories 

(NJ, USA) known as Blood Oxygen Level Dependent (BOLD) contrast (Ogawa et al. 1990a,b,c, Jasanoff 

2007, Le Bihan et al. 2007, Kim & Ogawa 2012). Over the last 20 years, BOLD contrast fMRI has 

become the functional imaging modality of choice for the mapping, measurement and 

characterisation of activity in the human brain, largely owing to its non-invasive nature (without the 

requirement of an exogenous contrast agent) and attractive temporal and spatial characteristics 

(figure 2.3) (Kim & Ogawa 2012).   
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Figure 2.3: In comparison to other functional brain imaging techniques, Blood Oxygen Level Dependent 

(BOLD) contrast fMRI offers an attractive combination of relatively good temporal and spatial resolution, in 

addition to being non-invasive. (AEBR: auditory evoked brainstem responses; MEG: 

magnetoencephalography; NIRS: near-infrared spectroscopy; PET: positron emission tomography; SSEP: 

somatosensory evoked potentials; VEP: visual evoked potentials) (figure adapted from Cohen and Bookheimer 

1994).  

 

2.2.1. T2* effects and BOLD contrast  

In biological tissue, if a typical NMR experiment is performed as described in section 2.1.1 and the 

FID signal is measured after a delay, it does not (as expected) decay exponentially at the rate 

dictated by the tissue-specific T2 (Buxton 2009). This is because the signal decreases at a faster rate 

than predicted due to static sources of local magnetic field inhomogeneity (in addition to fluctuating 

or random spin-spin interactions), with the name given to describe this apparent transverse 

relaxation time, T2* (Westbrook & Roth 2005, Buxton 2009, McRobbie et al. 2010). The effect arises 

as static field inhomogeneity leads to a range of precessional frequencies within the collection of 

studied protons, with the resultant loss of phase coherence “interfering” with and leading to a more 

rapid loss of net magnetisation (Buxton 2009). A particular source of the image distortion which 

results from the T2* effect are paramagnetic agents (those are positively susceptible to an external 
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magnetic field), in particular air pockets (sinuses and bowel), dense bone, and ferromagnetic blood-

breakdown products (McRobbie et al. 2010). A T2* value of an imaged tissue therefore represents 

this apparent rate of exponential decay and can be derived from the equation: 

 

I(t) = I(t=0).e
-t/T2*            [2.2] 

 

where I is the signal intensity measured at a specific time point (t).  

 

Exploiting the magnetic susceptibility and T2* effects of a paramagnetic substance is the basis of 

contrast agents such as gadolinium, where a (usually intra-vascular) susceptibility difference is 

induced via the injection of the agent, which can therefore be exploited to enhance the visualisation 

of vascular-rich areas (Westbrook & Roth 2005). This same concept underlies BOLD contrast fMRI, as 

the magnetic properties of Haemoglobin (Hb) are known to change depending on its oxygen binding 

state, with deoxygenated Hb (d-Hb) containing unpaired electrons which thus render it 

paramagnetic (Thulborn et al. 1982, Ogawa et al. 1990a,b,c). In their seminal studies of 1990, Ogawa 

and colleagues elegantly demonstrated this effect in the in-vivo rat brain at 7-Tesla. By altering the 

concentration of inhaled oxygen and therefore the degree of blood oxygenation, marked changes in 

signal were observed in the large vessels of the brain using a simple GRE sequence; an effect they 

then termed BOLD contrast (Ogawa et al. 1990a,c). The finding that further changes in BOLD 

contrast could be induced by insulin-provoked hypoglycaemia and halothane anaesthesia, 

demonstrated that the technique was sensitive enough not only to identify transient changes in 

brain physiology, but also crucially suggested that it could be used as an intrinsic contrast agent for 

imaging brain activity (Ogawa et al. 1990b).   

 

While the concept of paramagnetic d-Hb leading to more rapid proton spin dephasing and therefore 

a decrease in BOLD contrast has long been accepted; biophysical and anatomical factors render a 
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direct and precise modelling of the relationship extremely difficult (Buxton 2009). At increasing B0 

field strengths magnetic susceptibility increases, and consequently T2* values are seen to decrease 

in all tissue types with associated improvements in both signal-to-noise ratio (SNR) and tissue 

contrast (Krőger et al. 2001, Peters et al, 2007, Harmer et al. 2012). In an acquired voxel, there may 

be blood contained within either arteries, capillaries and/or veins, all of which may be of varying 

orientation and calibre. Although the intravascular compartment represents just 4% of the total 

cerebral tissue volume, at lower field strengths (1.5 T) a substantial fraction of the sampled changes 

in BOLD signal are intravascular in origin (Krűger et al. 2001, Buxton 2009). The majority of the 

contrast is derived from the venous side of the vasculature; as the vessels are larger in diameter, 

have the largest increase in volume during acute increases in blood flow (due to passive dilatation of 

the vessel), and suffer the largest shifts in oxygenation (Buxton et al. 1998, 2004). In addition, due to 

effects of diffusion on the dispersion of spins in the extravascular space, the effects of shifts in 

oxygenation on the observed BOLD signal are more significant in large vessels like veins than in the 

smaller capillaries (Ogawa et al. 1993). With increasing B0 field strength, the proportionate 

contribution of the intra- and extra-vascular compartments to the BOLD signal switches, and an 

increasing proportion of the contrast is also derived from the capillary space (Silvennoinen et al. 

2003, Harmer et al. 2012).   

 

2.2.2. Neurovascular coupling  

The terms “neural activity” and “neuronal signalling” are often used to collectively describe the 

membrane electrical field potential changes observed with electrophysiological techniques 

(Logothetis & Pfeuffer 2004). Underlying the electrical changes is a complex series of physiological 

processes which serve to initially generate negative free energy changes by moving the 

thermodynamic system (maintained by intracellular and extracellular ion concentrations) closer to 

equilibrium (Attwell & Iadecola 2002, Attwell & Gibb 2005, Buxton 2009). In contrast, the 

subsequent restoration of the ion gradients increases the free energy of the system and is therefore 
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a highly metabolic and time limiting process; involving the active pumping of Na+ and Ca2+ ions 

against their natural drift, and the repackaging and processing of synaptic neurotransmitters by 

astrocytes (Attwell & Iadecola 2002, Attwell & Gibb 2005). This energy is provided through the 

consumption of adenosine triphosphate (ATP), the levels of which are maintained through the 

provision of glucose and oxygen to the mitochondria for oxidative phosphorylation (Buxton 2009). 

The majority of oxygen (98%) is carried in red blood cells bound to haemoglobin, on which it is 

transported throughout the body. This knowledge forms the physiological basis of the signals 

measured by fMRI and PET techniques, as the provision of the metabolic substrates required for 

neural activity must come from an external source, and is assumed to be delivered via the local 

vasculature (Attwell & Iadecola 2002, Logothetis & Pfeuffer 2004, Mangia et al. 2009, Cauli & Hamel 

2010, Kim & Ogawa 2012, Jones & Rabiner 2012).   

 

 

Figure 2.4: Neuronal signalling is accompanied by a “neurovascular coupling” cascade which culminates in a 

local increase in blood flow. (1) Arrival of an action potential in the presynaptic terminal leads to; (2) the 

release of neurotransmitters into the synaptic cleft and post-synaptic depolarisation via sodium (Na+) ion 

entry; (3) the neurotransmitter also binds to receptors on local astrocytes where it is repackaged; (4) but also 
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causes an increase in intracellular calcium ions (Ca
2+

); (5) this triggers the release of agents such as potassium 

ions (K
+
), prostaglandin E2 (PGE2), and epoxyeicosatrienoic acids (EETs); (6) local interneurons mediate the 

release of these agents from the astrocyte end-feet, but also release other agents such as nitric oxide (NO), 

and vasoactive intestinal polypeptide (VIP); (7) these vasodilating agents act on the smooth muscle of the local 

vasculature causing dilatation, and an increase in local blood flow. (figure reproduced and adapted from 

Buxton 2009, Cauli & Hamel 2010).   

 

The cumulative terminology for the physiological processes which mediate the vascular supply of 

glucose and oxygen required for neural activity, is neurovascular coupling (figure 2.4). The astrocyte 

has been found to a vital part of the “neurovascular unit”, in particular through changes in 

intracellular Ca2+; although animal studies have also suggested that it may act as an early source of 

lactate which may be initially used as a source of energy (Lauritzen 2005, Carmignoto & Gomez-

Gonzalo 2009, Mangia et al. 2009, Attwell et al. 2010, Cauli & Hamel 2010, McCaslin et al. 2011). 

Increases in astrocytic intracellular Ca2+ lead to the release of vasoactive messengers, in particular 

potassium ions (K+) and derivatives of arichidonic acid such as prostaglandin E2 (PGE2) and 

epoxyeicosatrienoic acids (EETs) (Lauritzen 2005, Cauli & Hamel 2010). The release of these 

substances is mediated partly through local interneurons which can also release PGE2, in addition to 

other vasoactive substances including nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) 

(Lauritzen 2005, Cauli & Hamel 2010). The net result of this signalling cascade is that over 

approximately 5 seconds in the adult brain, the smooth muscle of the adjacent vasculature relaxes, 

leading to an increase in local blood flow, and provision of the required glucose and oxygen (Buxton 

2009). 

 

Of importance to functional imaging, the main consequence of this neurovascular coupling cascade 

is a “functional hyperaemia” whereby the resultant increases in local cerebral blood flow (CBF) and 

slightly smaller increases in local cerebral blood volume (CBV) are proportionately much larger than 

the rise in metabolism, leading to a consequent oversupply of oxygenated Hb (Hb-O2) (Fox & Raichle 
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1986, Buxton et al. 1998, 2004, Buxton 2009). This activity dependent local increase in diamagnetic 

Hb-O2 (and proportionate decrease in paramagnetic d-Hb) was first reported as a local increase in 

BOLD contrast in human subjects in 1992, in response to a visual stimulus (Kwong et al. 1992, Ogawa 

et al. 1992) and a simple motor task (Kwong et al. 1992, Bandettini et al. 1992).   

 

2.2.3. Linking electrical activity to fMRI BOLD contrast 

By measuring the haemodynamic end event of the neurovascular coupling cascade, BOLD contrast is 

therefore clearly an indirect measure of neural activity (Logothetis 2008). While more direct 

measures of electrical activity such as sensory evoked potentials and single unit recordings typically 

identify responses on the order of hundreds of milliseconds, the haemodynamic changes of fMRI 

take place over several seconds (Menon & Goodyear 2001, Logothetis & Pfeuffer 2004, Logothetis 

2008). While it is tempting to believe that activity dependent increases in BOLD contrast are directly 

associated with an increase in the spiking output of task-specific neurons; it is more likely that 

changes in contrast are representative of the average metabolic requirements for a population of 

neurons, encompassing changes in both excitatory and inhibitory conductance, and both 

feedforward and feedback processing (Logothetis 2008, Lee et al. 2010). In keeping with this 

assertion, simultaneous BOLD contrast measurement and intra-cortical electrophysiology in the 

visual cortex of monkeys has found that local-field potentials (LFPs) were a better predictor of 

changes in BOLD signal than either single or multi-unit spiking activity (Logothetis et al. 2001). LFPs 

are thought to be representative of relatively slow neural events which reflect the combined activity 

of a neural population; including the weighted average of dendro-somatic synaptic signalling, spike 

after-potentials, and voltage-dependent membrane oscillations (Logothetis & Pfeuffer 2004, 

Logethetis 2008). Further compelling evidence linking neural activity and increases in BOLD contrast 

has also been provided by Lee and colleagues, who used optogenetic techniques to demonstrate a 

correlation in cell-specific responses and associated BOLD signal increases in connected downstream 

axonal targets (Lee et al. 2010). 
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2.2.4. Modelling the response to stimulation 

While the first fMRI experiments sought to identify temporal changes in the BOLD contrast in 

sensory areas which had been selected a-priori on the basis of the stimulus type (for example the 

primary visual areas in the occipital lobe for a photic stimulus (Ogawa et al. 1992)), such an approach 

did not exploit a powerful aspect of the technique in the ability to image the whole brain. An 

important feature of the measured BOLD response to stimulation which makes this possible, is that 

it has been found to be highly reproducible within the same subject and to a specific stimulus type 

(Aguirre et al. 1998b, Miezin et al. 2000, Handwerker et al. 2004, 2012). Although subtle but 

significant variations are seen between brain regions and subjects, fundamental to fMRI analysis is 

the assumption that the BOLD impulse response is largely stable and retains a characteristic 

morphology across experiments (Friston et al. 1994a, 1995b, Hoge & Pike 2001, Handwerker et al. 

2012). While a complete understanding of the physiological and biophysical origins of the features of 

the response function have proved elusive, an appreciation is vital so that quantitative aspects of the 

sampled BOLD signal can be put into perspective, and detailed modelling of the signal can be 

performed for accurate data analysis (Hoge & Pike 2001, Buxton et al. 2004). The most 

comprehensive biophysical models have typically described the BOLD response in terms of the 

neural activity driving dynamic changes in three physiological parameters: local CBF, CBV, and the 

cerebral metabolic rate of oxygen (CMRO2) (Buxton 1998, Mandeville 1998, Buxton 2004).       

  

2.2.4.1. The Haemodynamic Response Function (HRF) 

As fMRI experiments are providing a measure of the local changes in oxygen bound Hb within the 

local vasculature, the observed transient and delayed changes in BOLD contrast are commonly 

referred to as the “haemodynamic response” (Hoge & Pike 2001). Following a brief period of neural 

activity, this localised response follows a distinct and reproducible temporal course, which has been 

characterised and termed the haemodynamic response function (HRF) (figure2.5) (Friston 1994a, 

Glover 1999, Hoge & Pike 2001).   
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Figure 2.5: The canonical HRF waveform. Following a brief period of neural activity, the sampled BOLD signal 

is seen to change in a characteristic manner. There is a brief period (approximately 2 seconds) in which the 

signal is not seen to rise (period m1), and during which a brief small amplitude decrease in signal may be seen 

(the “initial dip”). As the initial dip is typically very brief, is of a small amplitude, and is not consistently seen 

(particularly at lower B0 field strengths), it is not usually included (as here) in the HRF model. The peak of the 

impulse response (the “positive peak”) is modelled to have a lag time of approximately 5 seconds (m1+m2), 

with amplitude (h). The signal is then seen to drop below baseline (“the negative undershoot”) approximately 

10-20 seconds after stimulation (m1+m2+m3) before a return to baseline (at the end of time period m4). 

(figure reproduced and adapted from Glover 1999, Woolrich et al. 2004).    

 

The canonical HRF can be divided into three distinct epochs (figure 2.5): 

 

1. The time to onset and initial dip: A brief delay of approximately 2 seconds following the 

stimulus is seen before the onset of the rise in BOLD contrast is initiated. A low amplitude 

“initial dip” (a brief decrease) in BOLD contrast has been reported during this short period, 

although it is not consistently identified in fMRI studies across different species and stimulus 
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types (Ernst & Henning 1994, Hu & Yacoub 2012). This initial dip is more reliably seen and 

appears to be of larger amplitude at higher B0 field strengths (3-Tesla and above) and with 

increased stimulus intensity (Ernst & Henning 1994, Hu et al. 1997, Yacoub & Hu 2001, 

Buxton et al. 2004, Yeşilyurt et al. 2008, Hu & Yacoub 2012). It has been postulated that this 

period may best localise the area of neural activity as it may represent an immediate faster 

rise in local metabolism which occurs before the larger but more spatially dispersed increase 

in blood flow (Malonek & Grinvald 1996, Buxton et al. 2004, Hu & Yacoub 2012). In keeping 

with this are the early increases in d-Hb seen during the equivalent early post-stimulus time 

period in the cat brain with optical techniques (Malonek & Grinvald 1996).  

    

2. The positive peak: The local oversupply of Hb-O2 associated with task induced hyperaemia 

leads to a robust increase in BOLD contrast with a peak in signal seen approximately 5-7 

seconds (range in reported studies 4-10 seconds) after stimulus onset (Friston et al. 1994a, 

1995b, Buxton et al. 1998, 2004, Glover 1999, Handwerker et al. 2004, Yeşilyurt et al. 2008). 

Although subtle differences in both the lag time and amplitude of the peak response are 

observed between different subject populations and brain regions, the amplitude is typically 

measured as approximately 2-3% above the baseline signal level (Friston et al. 1995b, Glover 

1999, Handwerker et al. 2004). A reliable peak in signal has been described following stimuli 

as brief as 5 milliseconds, with the amplitude of the response rising with both increasing 

stimulus duration and intensity (Yeşilyurt et al. 2008, Hirano et al. 2011). The effect has been 

elegantly shown using depth-resolved optical imaging and in-vivo two-photon microscopy to 

be predominately caused by increases in local CBV following rapid increases in CBF resulting 

from local arteriolar dilation (Hillman et al. 2007).  

 

3. The post-stimulus negative undershoot: Approximately 10-20 seconds after stimulus 

cessation, the BOLD response is seen to decrease and drop again below baseline for a 
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prolonged period of up to 60 seconds (Frahm et al. 1996, Buxton et al. 1998,2004, 

Mandeville et al. 1998, Chen & Pike 2009b, van Zijl et al. 2012). While this decrease in BOLD 

contrast is likely to relate to a rise in local d-Hb, the origin of this change remains 

controversial, but is generally postulated to arise from 3 possible sources; (i) a transient 

decoupling between the CBF (which has returned to baseline) and an ongoing increased 

CMRO2 resulting in an increase in the oxygen extraction fraction (Frahm et al. 1996, 2008, 

Dechent et al. 2011), (ii) a temporal mismatch between the rapid changes in CBF and the 

slower prolonged (predominately venous) CBV response due to underlying differences in 

vessel wall compliance (Buxton et al. 1998, 2004, Mandeville et al. 1998), or  (iii) an 

undershoot (brief decrease) in local CBF following the rapid increase associated with the 

positive peak (Chen and Pike 2009a, 2009b).  

 

Of importance to fMRI methodology and data analysis, the HRF has been found to have specific and 

predictable characteristics which are largely consistent across subject groups. One important 

assumption common to fMRI experiments and analysis techniques is that overlapping HRFs will sum 

in a roughly linear fashion, such that the BOLD response to a prolonged stimulus can be predicted in 

a relatively simple manner (Friston et al. 1994a, Boynton et al. 1996, Dale & Buckner 1997). The 

supposition that a linear transform model can relate the average neural activity to the BOLD 

response is intrinsically attractive, as the direct relationship between the stimulus and the induced 

neural response is likely to be highly non-linear (Boynton et al. 1996). In keeping with this, Boynton 

and colleagues also found that both the magnitude and duration of the neural activity appears to be 

independently related to the respective parameters of the resultant BOLD response (Boynton et al. 

1996, Donaldson & Buckner 2001). In addition to simplifying fMRI data analysis (see section 2.3.4.), 

these traits allow great flexibility in the design of stimulation patterns for fMRI studies (Donaldson & 

Buckner 2001). While these assumptions are largely accepted and now commonly applied in the 

fMRI field, recent biophysical models and fMRI studies using short stimulus durations (event-related 
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experimental paradigms, see section 2.3.3) have suggested that the BOLD response is not entirely 

linear in character, particularly at longer durations when the response would be generally over-

predicted in amplitude (Buxton et al. 1998, Friston et al. 1998b, Mandeville et al. 1998, Yeşilyurt et 

al. 2008, Hirano et al. 2011).       

 

2.2.4.2. Biophysical models of the BOLD haemodynamic response 

The description of functional hyperaemia in the seminal work of Fox and Raichle (1986) highlighted 

the importance of the large increases in local CBF associated with neural activity, and led to early 

interpretations of the BOLD haemodynamic response to relate solely to changes in CBF (Buxton 

2012). However, while this assumption could relate the positive peak of the haemodynamic 

response to a marked increase in local CBF, it is unable to explain the other features of the HRF, 

notably the initial dip and post-stimulus negative undershoot (Buxton et al. 1998, Mandeville et al. 

1999). By historical convention, normalised CBV (v(f)) was previously thought to be related to the 

normalised CBF (f) in a steady-state relationship under a power law (with an exponent δ=0.38) 

proposed by Grubb and colleagues (Grubb et al. 1974):  

 

v(f) = f δ             [2.3] 

 

While this relationship appears valid at rest, a key study by Mandeville and colleagues demonstrated 

in the rat brain, that the Grubb relationship is not valid during the short time period that follows 

stimulus-induced brain activity, as the local CBV recovery to baseline is significantly delayed in 

comparison to the CBF (Mandeville et al. 1998). These findings led to the first widely accepted and 

comprehensive biophysical model of the BOLD contrast response described by Buxton and 

colleagues, termed the “balloon model” (Buxton et al. 1998). Under this model, the BOLD effect was 

related to temporal changes in d-Hb and the CBV, with an additional effect of the oxygen extraction 

fraction. A fundamental concept of the model was the relatively slow time course of CBV change, 
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which was proposed to be analogous to the expansion and subsequent slower contraction of an 

inflating and deflating balloon (Buxton et al. 1998). Such behaviour can be logically explained by the 

relative differences in intra-luminal musculature and vessel compliance which are inherent to the 

arteriole and venous sides of the local circulation: with active changes in the arteriole diameter 

responsible for rapid changes in CBF, and the resultant passive stretching and dilation of the venous 

side responsible for the delayed increase in CBV (Buxton et al. 1998, 2004, 2012). These concepts 

were also essential to the “Windkessel” model independently described by Mandeville and 

colleagues (1999).               

 

In recent years, the development of novel quantitative MR techniques has allowed the direct 

measurement of some of these specific physiological parameters, and has allowed investigators to 

probe the concepts proposed in the original balloon model (figure 2.6) (reviewed in Buxton 2012). 

Arterial Spin Labelling (ASL) in particular provides a direct measurement of local changes in CBF, and 

therefore allows a non-invasive means to formally assess the relationship with the BOLD response 

and indirectly calculate the CMRO2 (Hoge 2012). These studies have challenged the long-held belief 

that CMRO2 is tightly coupled to CBF, and have found the relationship to be highly variable, with 

neural factors driving both CMRO2 and CBF levels in a parallel (but independent) way rather than 

metabolism alone (Griffeth & Buxton 2011, Buxton 2012). In addition, there is mounting evidence 

that the physiology underlying the post-stimulus undershoot does not consist solely of slow CBV 

recovery, but is likely to be a multi-factorial process; consisting also of an additional transient 

undershoot in CBF (Chen & Pike 2009a,b), and/or a prolonged local elevation in CMRO2 which 

outlasts the stimulus-induced increases in CBF (Frahm et al, 2008, Dechent et al. 2011, Hua et al. 

2011). Furthermore, although direct in-vivo visualisation of the vasculature with 2-photon 

microscopy has confirmed that active dilation of the arteriole compartment is responsible for the 

rapid rise in CBF and the positive peak of the HRF, a “ballooning” effect was not observed in the 

venous compartment (Hillman et al. 2007). An additional complicating factor is that improvements in 
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the spatial resolution of fMRI have also suggested that there are depth-specific differences in the 

BOLD haemodynamic response, indicating that there are cortical-layer specific differences in 

neurovascular coupling (or an over-reliance on the venous compartment in the generation of BOLD 

contrast) which therefore further complicates attempts to create a comprehensive descriptive 

model (Jin et al. 2008, Siero et al. 2011, Pimental et al. 2012).     

      

 

 

Figure 2.6: The modified balloon model proposed by Buxton (1998, 2012). The initial balloon model described 

the haemodynamic response as a deterministic function of dynamic changes in local cerebral blood flow (CBF). 

Work since that time has suggested that neural activity drives both the CBF and the cerebral metabolic rate of 

oxygen (CMRO2). The key components of the model are: (1) A slow and delayed recovery of cerebral blood 

volume (CBV) governed principally by the passive dilation of the venous system (the “balloon” effect); (2) A 

model describing the dynamic change in deoxygenated-Hb (Deoxy-Hb) with respect to CBF, CBV and CMRO2; 

(3) A model for the conversion of changes in and CBV and Deoxy-Hb into the final observed BOLD response. 

(figure reproduced and adapted from Buxton 1998, 2012).  

 

 

2.2.4.3. Induced changes in the BOLD response 

While the HRF has been found to be generally reproducible across subjects under normal 

physiological conditions, further clues as to the underlying physiology have been provided through 
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investigating the effects of induced changes in cerebro-vascular dynamics and under pathological 

conditions. Caffeine is known to act as a potent vasoconstrictor, with intake leading to a significant 

reduction in baseline (and global) CBF. This effect has been shown to be associated with an increase 

in the temporal dynamics of the CBF response, with the resultant effect that the BOLD response is 

seen to evolve more rapidly; with a loss of the initial dip (and a decrease in the time to onset), an 

increase in the positive peak amplitude, and a significant shortening in the time taken to reach the 

positive peak (figure 2.7(i)) (Liu et al. 2004, Behzadi & Liu 2006, Perthen et al. 2008, Chen & Parrish 

2009). In contrast, carbon dioxide (CO2) is known to act as a potent cerebral vasodilator and 

therefore induced hypercapnia (an increase in the partial pressure of CO2 in the blood) has been 

shown to increase baseline CBF (and to a lesser extent CBV) with no associated change in the CMRO2 

(Chen & Pike 2010a,b). These changes result in the converse effect to caffeine; an increase in the 

baseline BOLD signal contrast with a decrease in the positive peak amplitude and lengthening of the 

time to peak (figure 2.7(ii)) (Cohen et al. 2002).  

 

 

 

Figure 2.7: Changes in the BOLD haemodynamic response can be induced by agents which alter baseline 

cerebral blood flow (CBF). (i): Caffeine lowers baseline CBF, and results in faster and higher amplitude BOLD 

responses to a brief stimulus (occurring during the time period marked with a horizontal black bar). Of interest, 

caffeine also causes a loss of the initial dip (arrowed) and a decrease in the post-stimulus undershoot 

amplitude  (figure reproduced from Liu et al. 2004); (ii): In contrast, hypercapnic conditions (raised CO2) results 
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in a higher baseline CBF, and the converse effect, with slower and lower amplitude BOLD responses (figure 

reproduced from Cohen et al. 2002).  

 

While it is tempting to widely apply fMRI techniques to infer the functional effects of intra-cerebral 

pathology, the previously described physiological effects on the BOLD response suggest that the 

results must be treated with caution: as it remains unclear whether any identified differences are a 

true effect of the pathology directly on neural activity, or may represent indirect alterations to the 

associated neurovascular coupling and/or vascular dynamics (D’Esposito et al. 2003, Buxton 2009). If 

the pathology is purely vascular in origin, (such as unilateral occlusive cerebrovascular disease), a 

predictable delay and reduction in amplitude of the BOLD response is seen in the abnormal side 

(Carusone et al. 2002). However, in patients with assumed unilateral microvascular disease 

(diagnosed by the presence of lacunar infarction), a similar delay and reduction in response was seen 

even in the unaffected hemisphere, in keeping with a more diffuse underlying pattern of vascular 

pathology (Pineiro et al. 2002). Furthermore, the effects of vascular pathology may lead to such a 

marked reduction in CBF that the temporal SNR (tSNR) of the fMRI experiment becomes insufficient 

to identify any BOLD response at all (Bonakdarpour et al. 2007). During epileptic discharges, the HRF 

is seen to differ markedly from the canonical response, although neurovascular coupling appears to 

be preserved even during the pathological events (Hamandi et al. 2008, Masterton et al. 2010). 

Through presumed decreases in vascular compliance and reactivity, old age has been found to also 

be associated with a decrease in SNR, the spatial extent of the activation, the amplitude of 

responses, and an altered timecourse with a delayed recovery to baseline (D’Esposito et al. 2003, 

Richter & Richter 2003).      
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2.3. fMRI methodology 

The aforementioned principles of BOLD contrast and the haemodynamic response to stimulation 

therefore form the essential foundations of fMRI, upon which experiments can be designed, data 

analysed, and patterns of activation identified. An important consideration is that as a result of these 

factors, the temporal resolution of the technique is always likely to be largely restricted by the 

technical and physical limitations of MR signal generation and acquisition, and the timescale of the 

physiology underlying the haemodynamic response (Donaldson & Buckner 2001). Regardless, other 

key factors still allow for great flexibility in fMRI study design; including high sensitivity to even 

extremely brief patterns of stimulation, the relatively predictable and linear behaviour of the 

haemodynamic response, and the spatial specificity offered by the acquisition of whole-brain images 

(Boynton et al. 1996, Friston et al. 1998a, Matthews 2001, Yeşilyurt et al. 2008, Hirano et al. 2011). 

 

While a major advantage of fMRI is that data is acquired for the whole brain and sampled at 

relatively frequent time intervals, this necessarily renders data analysis a highly statistical process as 

a result of the enormous amount of data generated and the high degree of noise inherent to the 

technique (Friston et al. 1994a, Huettel et al. 2004, Buxton 2009, Monti 2011). Central to the 

framework of analysis is a number of key assumptions about the nature of the data (including those 

mentioned previously), with conformity to these principles preserved through several pre-processing 

steps which are generally considered to now be standard to the analysis (Friston et al. 1994a, Smith 

et al. 2004, Monti 2011). These steps in addition to further statistical correction techniques, are vital 

to avoid potential sources of bias common to the data (Smith 2001, Monti 2011).  

 

A number of open-source fMRI processing packages have been developed and refined over the last 

20 years, and are widely applied across the neuroscience community for data analysis, the most 

common of these being SPM, AFNI, BrainVoyager and FSL (Ashburner 2012, Cox 2012, Goebel 2012, 

Jenkinson et al. 2012). The work of this thesis was predominately carried out with tools within 
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FMRIB’s software library (FSL) (http://www.fmrib.ox.ac.uk/fsl/); and therefore unless otherwise 

stated, the described methods are as implemented therein (Smith et al. 2004).    

 

2.3.1. Image acquisition 

The basis of BOLD fMRI is therefore that temporal differences in image contrast are induced by 

changes in an endogenous contrast agent (d-Hb), and that these changes can be accurately localised 

to an area of “functional” activity (Ogawa 1990b). This means that relatively rapid image acquisition 

is highly desirable, thereby allowing the study of dynamic changes in the signal throughout the brain, 

and to minimise possible artefacts induced by subject motion during the study period (Bandettini 

2001, Huettel et al. 2004, Buxton 2009). Thus, the ideal image acquisition sequence for fMRI would 

be capable of sampling data quickly, offer a high SNR so that tissue dependent differences in 

contrast can be identified, and collect images of high spatial resolution so the activation can be well 

localised to a defined region of anatomy (Bandettini 2001, Buxton 2009). Unfortunately in practice, 

due to the very nature of MR imaging, the steps necessary to optimise each of these aspects are in 

direct conflict with one another, making this goal generally unachievable (Westbrook & Roth 2005, 

McRobbie et al. 2010). The SNR of 2-Dimensional (2D) MR image is defined by the following 

equation, where K is a constant largely dependent on the strength of the main B0 field; the term 

“measurements” represents the number of signal components used in the Fourier reconstruction of 

a voxel (and is therefore proportionate to voxel size and the number of excitations); and 

“bandwidth” refers to the range of frequencies used to sample the MR signal (and is inversely 

proportional to the sampling time and therefore TR) (Elster 1994): 

 

 SNR = K * (voxel size) * (√measurements) / (√bandwidth)  [2.4] 

 

Given this relationship, to maintain SNR at faster image acquisition times, it is clear that the spatial 

resolution must be sacrificed (figure 2.8) (Elster 1994, Westbrook and Roth 2005). 
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Figure 2.8: Echo-Planar Imaging (EPI) sequences are commonly used to acquire fMRI data of good temporal 

resolution, but relatively poor spatial resolution. On the top row are images in the coronal, sagittal, and axial 

planes with an EPI sequence of spatial resolution (voxel volume: 55.75mm
3
), with a whole brain image 

acquired every 1.5 seconds. In comparison, the equivalent T2-weighted images of the same subject (bottom 

row) show greater tissue contrast and spatial resolution (6.125mm
3
), but the whole image has been acquired 

over 2 minutes 17 seconds.  

 

In the most basic MRI sequence (as described in 2.1), the collection of data corresponding to each 

step in the phase encoding direction will follow a new RF excitation pulse, and therefore the 

acquisition of an entire image may take several minutes (depending on the acquired matrix size in 

the y-direction and the  TR) (Buxton 2009). In a typical fMRI study, it is desirable to acquire a whole 

brain image every few seconds, and therefore this approach is clearly insufficient. The most 

commonly used solution to this problem is to use Echo-Planar Imaging (EPI) sequences, as first 

described in the seminal work of Peter Mansfield (1977). The basic theory of the EPI sequence is that 

rapid switching of the gradients can generate a “train” of gradient echoes, such that the entire 

phase-encoding measurements of the image can be done following a single excitation pulse (and 

therefore are often referred to as “single-shot” techniques)  (Mansfield 1977). The switching of the 
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gradients means that the k-space sampling trajectory scans in alternating directions from one phase-

encode line to the next (known as a “Cartesian” trajectory) (Mansfield 1977, Westbrook & Roth 2005, 

McRobbie et al. 2010).   

 

In addition to dramatically increasing the data sampling rate, a further major advantage of an EPI 

sequence is that each image is representative of a brief “frozen” epoch in time, therefore greatly 

reducing image artefacts which can arise in anatomical images due to physiological motion (such as 

pulsatile vessel flow, swallowing, and large respiratory movements) (Bandettini 2001, Buxton 2009). 

However, by nature of the EPI sequence itself, the images are predisposed to other specific artefacts, 

some of which can be potentially severe and lead to bias or data loss. These include: “Nyquist 

ghosting” (where the alternating directions of k-space sampling lead to a weak image of the brain 

shifted by half an image frame and wrapped around to the other side in the phase-encoding 

direction); areas of marked low signal or “signal drop-out” (which arise due to intrinsic field 

gradients generated in areas where there is a marked difference in magnetic susceptibility between 

adjacent tissues, such as between an air-filled sinus and the neighbouring brain); and distortions due 

to “off-resonance effects” (as phase offsets caused by subtle alterations in the frequency of 

precession arising from differences in the chemical binding of the hydrogen nuclei cannot be “reset” 

as there is only a single RF pulse) (Jezzard & Clare 1999, Westbrook & Roth 2005, Buxton 2009, 

McRobbie et al. 2010).         

 

To maximise T2* effects (and therefore BOLD contrast), a simple GRE EPI sequence is commonly 

used for fMRI data acquisition as described in the very first studies described by Ogawa and 

colleagues (Ogawa et al. 1990a,b,c, 1992, Bandettini 2001, Buxton 2009, Harmer et al. 2012). The 

traditional GRE EPI sequence is generally considered to be sensitive to BOLD contrast due to changes 

in magnetic susceptibility in all of the vascular compartments, but in particular the large venous 

compartment (Ogawa et al. 1993, Bandettini 2001, Silvennoinen et al. 2003, Buxton 2009). In 
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comparison, it is postulated that less commonly used SE EPI sequences may be more specific to the 

area of neural activity as they may be detecting signal changes in the smaller vessels (and 

particularly capillaries), as static dephasing of the signal around the large vessels will in theory be 

refocused by the 180o pulse (Bandettini et al. 1994, Bandettini 2001, Harmer et al. 2012). However, 

SE EPI sequences are significantly less sensitive to BOLD contrast, and therefore imaging at very high 

field strength (7 Tesla and above) has been necessary to detect significant differences in the 

activation pattern between the two sequences (Harmer et al. 2012).         

 

2.3.2. Data pre-processing 

An fMRI data set therefore comprises a series of BOLD contrast weighted whole brain images, which 

have been sampled at a rate defined by the sequence TR. By convention, the 3D image acquired at a 

single time point is referred to as a volume (Friston et al. 1994a). For a given spatial location (for 

example a single voxel) the dynamic changes in the measured BOLD contrast signal through the 

entire data acquisition period can be best represented as a signal timeseries (Friston et al. 1994a, 

Monti 2011). By thinking of the data in this way, it is possible to understand the principles which 

underlie data pre-processing, and explain how fMRI data is amenable to statistical analysis and 

modelling. 

 

Data pre-processing represents a series of essential steps performed prior to the analysis proper 

which serve to prepare the raw data for statistical analysis by reducing noise and removing clear 

sources of potential bias (Friston et al. 1994a, Smith 2001b, Monti 2011). The importance of 

reducing noise is emphasised when it is considered that in a typical fMRI experiment, the induced 

change in BOLD contrast may be just 0.5-5% above baseline level, while fluctuations due to noise 

alone may be as much as 0.5-1% (Donaldson & Buckner 2001, Smith 2001b). The steps outlined in 

this section are those as performed in the work of this thesis, and as implemented largely by default 

in FSL. The attached text is purposely explanatory, and other than where directly relevant to this 
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thesis, intentionally does not discuss the relative merits or drawbacks of techniques implemented in 

other fMRI analysis software packages.  

 

2.3.2.1. Slice acquisition time correction 

Although a single data volume is assumed to be representative of the sampled BOLD signal at a 

particular timepoint, the image is actually acquired one slice at a time throughout the specified TR 

interval (Smith 2001b, Huettel 2004). Thus if an image is acquired from the bottom slice upwards 

using a sequence TR of 3 seconds, the BOLD signal at the top of the brain is measured close to 3 

seconds after that measured at the base of the brain. If uncorrected, this effect can have a marked 

effect on the later analysis which assumes that all of the data within a volume is acquired at the 

same instant in time (in FSL this is assumed to be halfway through the TR interval) (Smith 2001b). 

This correction is typically achieved in practice by phase shifting the signal timeseries in all of the 

voxels within a slice using temporal interpolation (Huettel et al 2004). In FSL, this shift is done using 

Hanning-windowed sinc interpolation (Smith 2001b). By nature of the techniques, the interpolation 

will always be more effective for data collected at short TRs, although the need for it to be 

performed is more pressing for data collected at longer TRs (Huettel et al. 2004).           

 

2.3.2.2. Motion correction 

If it is considered that a key premise of fMRI analysis is that a given BOLD signal timeseries is derived 

from a single spatial location, then it is apparent that head motion represents a very important 

possible confound and source of potential bias (Brammer 2001, Huettel et al. 2004). This effect is 

particularly profound in areas with high-contrast boundaries such as is seen around the cortex on 

the surface of the brain, where even a small movement may lead to signal being derived from an 

entirely different source (such as CSF) during the course of timeseries acquisition (figure 2.9). The 

significance of motion as a confound for the technique as a whole, was highlighted in an early study 

by Hajnal and colleagues, where it was demonstrated that even tiny amounts of movement 
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(particularly those correlated with the timing of the stimulus) can lead to significant changes in local 

signal intensity which may be interpreted falsely as neural activity (Hajnal et al. 1994).   

 

 

Figure 2.9: Head motion can have a marked confounding effect on fMRI data. In the above example data, a 

subtle rotation of the subject’s head (shown in the axial plane, top row) can be seen during this selected 

portion of the data. On closer view, this movement can be seen to have a profound effect on the measured 

BOLD signal in voxels on the edge of the brain (middle row, contained within the red box). In the cross-haired 

voxel, this effect causes a marked drop in BOLD contrast during the corresponding the time period, which is 

sustained even after the movement itself has finished (bottom row, between the green dashed lines).  

 

A crude initial screen of the raw images are often done immediately after acquisition and large 

amounts of head motion can be visualised by watching a video-loop of the data, which may suggest 

that data should be discarded prior to further analysis (Brammer 2001). For the purposes of motion 

correction, the head is considered to be a rigid body (ie: while there may be changes in position and 

orientation during the acquisition period, it is assumed there are no changes in shape) (Friston et al. 

1995a, 1996, Brammer 2001, Jenkinson et al. 2002, Huettel et al. 2004). Within the FSL environment, 

this process is carried out with MCFLIRT (Motion Correction using FMRIB’s Linear Image Registration 

Tool) (Jenkinson et al. 2002). Each individual brain image volume is aligned or “co-registered” by 

computing the image transformation (usually 6 parameters: 3 translation estimates (in the x,y,z 

directions) and 3 rotation estimates (around the x,y,z axes)) required to match it to a specified 
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“template” or “target” image (in FSL this is automatically selected as the middle volume of the data 

acquisition) (Friston et al. 1995a, Brammer 2001, Jenkinson et al. 2002). This process also has the 

advantage of providing quantitative measures of head displacement in the 6 specified parameters, 

which can also be used to accurately identify the timing of movements to guide removal of 

corrupted periods of data, and to recognise possible bias when comparing results between groups 

(Brammer 2001, Jenkinson et al. 2002).  

 

Although this process of rigid-body realignment correction will therefore produce fMRI data 

consisting of volumes which should be spatially identical to one another, significant (and more 

complex) residual effects still remain in the data (Friston et al. 1996, Brammer 2001, Muresan et al. 

2005). Even small displacements can have profound effects on the measured BOLD signal intensity, 

particularly if they occur “through-plane” (ie: movement which causes an area to be displaced in and 

out of an acquired slice) (figure 2.9) (Friston et al. 1996, Muresan et al. 2005). These effects have 

been termed “spin-history” artefacts, and occur as a result of the change in position within the 

external magnetic field disrupting the tissue’s steady-state magnetisation, thereby modifying the 

measured signal (Friston et al. 1996). Furthermore, until a new state is reached, the altered signal 

intensity will propagate into the subsequent acquired volumes, regardless if no further displacement 

occurs in that period (Friston et al. 1996, Muresan et al. 2005). Although various methods of direct 

spin-history artefact correction have been proposed, this is not done within FSL as the relationship 

between movement and signal intensity is highly complex, with a single pattern of movement 

resulting in vastly different (and unpredictable) patterns of signal change across the brain (Friston et 

al. 1996, Brammer 2001, Jenkinson et al. 2001, Beckmann & Smith 2004).    

 

The estimated displacement vectors derived from the rigid-body realignment can be used as 

confound variables in the later data analysis, based on the assumption that abhorrent changes in the 

image intensity will be linearly related to the measured head motion and therefore can be regressed 
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out (Brammer 2001). This method is limited in its effectiveness, as there areas in the brain which 

move independently under normal conditions (such as areas with physiological pulsation) and 

therefore violate the rigid body assumption, and due to the profoundly non-linear relationship 

between head motion and BOLD contrast (Brammer 2001, Beckmann et al. 2004). An alternative and 

perhaps preferable method is to use a blind source separation technique such as Independent 

Component Analysis (ICA) to identify and filter out patterns of structured noise within the signal 

(such as in areas containing pulsating arteries, and changes related to patterns of head motion) (see 

section 2.3.4.3) (Beckmann et al. 2004).     

 

2.3.2.3. Distortion correction 

As described previously (section 2.3.1) images acquired with an EPI sequence are particularly 

predisposed to particular forms of geometric distortion, especially those due to magnetic field 

inhomogeneity induced by differences in susceptibility in adjacent tissues (Jezzard & Clare 1999, 

Westbrook & Roth 2005, Buxton 2009, McRobbie et al. 2010). This inhomogeneity can be 

characterised and a B0 “field map” created by calculating the difference in signal phase between two 

images which have been acquired at different echo times (Jezzard & Balaban 1995). This field map 

can then be used to “unwarp” the fMRI data by applying cost-function masking thereby ignoring 

areas of high signal loss (Jezzard & Balaban 1995). In the adult brain, signal drop-out is common in 

the inferior frontal and temporal areas due to the presence of large air-filled sinuses adjacent to the 

brain (Jezzard & Clare 1999, Buxton 2009). In the preterm and term neonate, these areas of signal 

drop-out are not significant as the sphenoidal and frontal sinuses are not yet pneumatised, and 

therefore this step was not felt to be necessary for the data described in this thesis (Abidelli et al. 

2011).  
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2.3.2.4. Intensity normalisation 

Large scale changes in the global signal intensity of the brain can be corrected by “intensity 

normalisation”, whereby the BOLD signal in each volume is effectively “normalised” to have the 

same mean intensity (Friston et al. 1994a, Smith 2001b). This is done by calculating the mean 

intensity of each separate volume, and then rescaling the data such that each individual volume has 

a mean intensity instead defined by a preset constant (Friston et al. 1994a). This step is carried out 

routinely in the widely used Statistical Parametric Mapping fMRI analysis package (SPM, 

http://www.fil.ion.ucl.ac.uk/spm/), but is not automatically done in FSL, and was not performed in 

the work of the thesis, as it has been shown to potentially lead to false patterns of functional 

“deactivation”. This effect occurs because stimulus induced activation may cause large increases in 

signal intensity, which therefore raise the overall volume mean, forcing the signal in other “non-

activated” areas of the brain to be negatively correlated with the stimulus (Aguirre et al. 1998a, 

Smith 2001b). Large scale drifts in the data are instead corrected by high-pass temporal filtering 

(section 2.3.2.6), and scaling is performed by a single factor (“grand mean scaling”) to effectively 

normalise the data and allow intra and inter-subject comparison (Smith 2001b).   

 

2.3.2.5. Spatial filtering 

A low pass spatial filter is typically applied to fMRI data, with the net consequence the images are 

effectively “blurred” prior to further analysis (Smith 2001b, Huettel et al. 2004). While it initially 

appears counter-intuitive to actively reduce the spatial resolution of the data, this process serves 

two important functions: firstly to increase the SNR of the data (as although SNR is inherently low in 

fMRI data, it is spatially correlated across distinct areas due to the patterns of functional localisation 

and vascular supply in the brain), and secondly to reduce false positive rates due to the large 

number of data points generating multiple comparison statistical problems in the later analysis 

(Friston et al. 1994b, Huettel et al. 2004). Spatial smoothing is therefore only worthwhile if the 

eventual cluster of identified activity is predicted to be larger than the extent of the smoothing. This 
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process is achieved in FSL by convolution of each data volume with Gaussian process filters, the 

width of which determines the extent of blurring to be carried out (Smith et al. 2001).   

 

2.3.2.6. Temporal filtering 

Temporal filtering is then carried out on the BOLD signal timeseries of each individual voxel following 

the previously described stages of pre-processing. This can be done at both the high and low ends of 

the frequency spectrum to remove unwanted timeseries artefacts which are unquestionably not 

related to the experimental signal of interest (Friston et al. 1994a, Smith 2001b, Huettel et al. 2004). 

High-pass filtering is used to remove low frequency drifts in the data, such as those caused by 

“scanner drift” (due to gradual changes in the scanner magnetic field during the acquisition), slow 

movements of the subject’s head, and aliased physiological effects (such as subject breathing) 

(Friston et al. 1994a, Smith 2001b). Low-pass filtering can also be used to remove high frequency 

noise (such as that caused by vascular pulsation), but has a potential downside in that the power of 

the later analysis may be reduced due to an effective “smoothing” of the timeseries response (and in 

particular a dampening of high amplitude rapid responses) (Smith 2001b). In FSL, high pass filtering 

is applied automatically to data; but low pass filtering is not, so as not to reduce the strength of the 

signal of interest.     

  

2.3.3. Study design 

In a prototype fMRI experiment, the optimal stimulation paradigm would induce robust and 

repeatable BOLD contrast changes in discrete areas of the brain, and at a frequency which can be 

easily distinguished from artefactual signal changes (Bandettini et al. 1993, Friston et al. 1994a, 

Donaldson & Buckner 2001, Henson 2003). In general, it is assumed that a brief stimulus will induce 

a BOLD signal response which is identical to the canonical HRF (Friston et al. 1994a). A further key 

assumption is that the characteristics of the measured BOLD responses will be highly predictable in 

nature, in particular with overlapping haemodynamic responses summing in a roughly linear fashion 
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(see section 2.2.4.1) (Boynton et al. 1996, Dale & Buckner 1997). It is therefore possible to model a 

predicted BOLD response for a given experiment by convolution of the known HRF with a simple 

model which describes the experimental design in terms of the timing of stimulation or task (Friston 

et al. 1994a).  

 

In general, fMRI experimental paradigms can be classified into two forms: (figure 2.10) (Donaldson & 

Buckner 2001, Henson 2003, Huettel et al. 2004, Amaro & Barker 2006, Monti 2011):  

 

Block Paradigms: consist of “blocks” of constant stimulation or task which are interspersed with 

blocks of rest, with several repetitions of this cycle repeated during the experiment (figure 2.10(a)) 

(Bandettini et al. 1993, Donaldson & Buckner 2001, Henson 2003). The prolonged nature of the 

activity block means that this form of design is generally unsuitable for studying stimuli which the 

subject may habituate to, and tasks in which predictability must be avoided such as those which 

require higher cognitive functioning (Poellinger et al. 2001, Donaldson & Buckner 2001, Huettel et al. 

2004, Amaro & Barker 2006). 

 

Event-related Paradigms: consist of individual brief “events” of stimulation or task, with either a 

constant or random rest period between events (Buckner et al. 1996, Dale 1999, Bandettini & Cox 

2000, Donaldson & Buckner 2001, Henson 2003). This takes advantage of fMRI’s relatively good 

temporal resolution, with the further advantage that time-locking and averaging of the signal will 

allow the accurate quantification of haemodynamic responses and characterisation of the HRF 

(figure 2.10(b)) (Buckner et al. 1996, Friston et al. 1998a, Dale & Buckner 1997, Buxton et al. 2004). 

Moreover, several different forms of event can be randomised into a single experimental design, 

allowing studies of simultaneous sensory processing and integration, which also avoids the problems 

of prediction in studies of cognitive processing (figure 2.10(c)) (Dale & Buckner 1997, Donaldson & 

Buckner 2001, Amaro & Barker 2006).   
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The choice of paradigm therefore depends on the aims of the study; with block designs most suited 

for detecting patterns of activation (due to the large amplitude responses), and event-related 

designs most suited for estimating the haemodynamic response (Dale 1999, Buxton 2009). A block 

design is comparatively insensitive to the shape of the HRF, as the plateau of the response is 

dependent on the area under the HRF curve, while the shape affects only the transitional rest 

periods (Buxton 2009). In contrast, in an event-related design, although individual responses may 

appear to vary greatly during data acquisition (assuming that noise is random), time-locked 

averaging within a cluster of activated voxels can systematically characterise both the shape and 

amplitude of the haemodynamic response, analogous to the theory behind evoked 

electrophysiological responses (Buckner et al. 1996, Dale & Buckner 1997, Miezin et al. 2000). An 

important drawback is that the sensitivity and efficiency of such an event-related design can be 

relatively poor (due to the infrequent pattern of stimulation and low amplitude response) 

particularly if a regular and large inter-stimulus interval (ISI) is used, although simulations have 

suggested that both factors can be maximised at an ISI of 12-15 seconds (Dale 1999, Bandettini & 

Cox 2000, Miezin et al. 2000). A further strategy is to randomise the stimulation pattern which will 

both increase efficiency by allowing a greater number of events, and theoretically increase the 

sensitivity due to the additive effects of overlapping responses (figure 2.10(c)) (Dale & Buckner 1997). 

Another alternative and an extremely powerful approach is to “jitter” the presentation timing 

throughout different timepoints within the TR interval, so that a composite haemodynamic response 

can be reconstructed from the time-locked data (Miezin et al. 2000, Donaldson & Buckner 2001, 

Henson 2003).   
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Figure 2.10: fMRI experimental design and efficiency: (a): In the block design, periods of constant or repetitive 

stimulation (black bars represent timing of stimulus) are presented, with robust large amplitude responses as a 

result of linear summation of successive HRFs (blue represents theoretical BOLD signal timeseries); (b): In an 

event-related design, individual events are presented intermittently in this case with a constant inter-stimulus 

interval (ISI). Responses are therefore identical to a single HRF; (c): Stimulus presentation can also be 

randomised (including with different stimulus types), with overlapping HRFs assumed to sum in a linear fashion, 

thus increasing both sensitivity and efficiency in comparison to a simple event-related design with a constant 

ISI.  

 

2.3.4. Principles of data analysis  

Taking the basic principles outlined in the previous sections, an fMRI data set can therefore be 

thought of as a set of cuboid elements (voxels) of a pre-specified size, each of which has an 

associated BOLD signal timeseries containing as many timepoints as volumes and of a sampling 

frequency as specified in the fMRI acquisition sequence (Friston et al. 1994a, Monti 2011). It is 

further assumed that neural activity will be associated with a local increase in BOLD signal following 

a temporal delay of approximately 5-8 seconds (Bandettini et al. 1993). In the first fMRI studies, 

patterns of functional activation were identified by the simple subtraction of the images acquired 

during rest from those during stimulation, in a manner identical to that used in PET data analysis 
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(Belliveau et al. 1991, Bandettini et al. 1992, Kwong et al. 1992, Ogawa et al. 1992). In 1995, Friston 

and colleagues first introduced the idea of taking advantage of the known and reproducible 

properties of the BOLD response by using a General Linear Model (GLM) framework to perform a 

statistically robust analysis (Friston et al. 1995b,c). Although alternative methods of analysis have 

been proposed (in particular those which are free from the possible constraints of a model), the 

simplicity and flexibility of the GLM makes it intrinsically attractive, and it remains as the basic 

framework on which nearly all task-driven fMRI data analysis is still performed (Monti 2011, Poline & 

Brett 2012).      

 

2.3.4.1. The General Linear Model (GLM) 

The GLM assumes that the measured data can be explained by a model which is formed by the linear 

sum of weighted known data (Poline & Brett 2012). As the timeseries of each voxel is analysed 

independently, the standard GLM is a “univariate” analysis; although the later statistical inference 

steps are typically “multivariate” to identify biologically plausible clusters of activated voxels (Smith 

2001a). Therefore for a single voxel timeseries y(t), the standard GLM is expressed as: 

 

y(t) = β1*x(t) + c + ε         [2.5]     

 

where x(t) is the predicted response (formed from a convolution of the design paradigm and the HRF 

as described in section 2.3.3), c is a constant representing the baseline BOLD signal, ε is the error in 

the model fit, and β1 is a “parameter estimate” which scales the design x(t) to the actual observed 

response y(t) (Friston et al. 1995b,c). This simple formulation can be easily extended to incorporate 

experimental designs which consist of two or more types of stimuli, by simply summing in extra 

design models (x1…xn) and their associated parameter estimates (β1…. Βn) (Friston et al. 1995c, 1998, 

Smith 2001a):  
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y(t) = β1*x1(t) + β2*x2(t) + …..+ βn*xn(t) +  c + ε       [2.6] 

 

This approach also allows nuisance variables (such as the estimated head motion parameters as 

described in section 2.3.2) to be included into the model as confound regressors (Smith 2001a). The 

GLM is usually formulated in matrix notation, which allows all of the parameter estimates to be 

grouped into a single vector β, and all of the explanatory models to be grouped into a single matrix  

X (often termed the “design matrix”, where each column represents an individual model) (Friston et 

al. 1995c, Smith 2001a). The aim of this first stage of analysis is therefore to identify if the unknown 

parameter β differs significantly from zero, and in doing do effectively determine the degree to 

which the predicted response X can explain the variance in the actual response Y (Monti 2011). This 

is typically solved using a simple linear regression method which aims to minimise the residuals in 

the fit such as Ordinary Least Squares (OLS) (Woolrich et al. 2001). It is generally assumed that ε is 

uniformly normally distributed, and is independent to the design matrix (Woolrich et al. 2001).  

 

The calculated parameter estimate is then converted to a more meaningful statistical value, by 

compared it to the uncertainty in the estimation (Smith 2001a). In FSL, this is done by first dividing 

the estimated β by its standard error (SE) (calculated from the residual noise after model fitting) to 

generate a t-statistic, which is then further converted to a normally distributed z-statistic (Smith 

2001a, Woolrich et al. 2001). An important effect at this stage in the analysis is timeseries 

autocorrelation, due to unaccounted correlated patterns of intrinsic noise (such as those related to 

residual motion artefact, vessel pulsation, breathing movement, MR hardware related) which violate 

the assumptions of the GLM, and lead to biased estimates of error variance (Worsely & Friston 1995, 

Bullmore et al. 1996, Woolrich et al. 2001). In FILM (FMRIB’s Improved Linear Model) this is avoided 

by performing “pre-whitening” on the data; whereby the autocorrelation is estimated and corrected 

using a regularised non-parametric algorithm prior to calculating the model parameters (Woolrich et 

al. 2001). 
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A statistical map of the brain is thus produced from the GLM, with an individual statistical value for 

each voxel of the brain derived from the GLM analysis of the individual timeseries (Friston 1994a, 

Smith 2001a). To identify “activated” regions of the brain, a further statistical inference or 

“thresholding” step is then required to classify voxels at a given level of significance (Friston 1994a). 

The potential for false positive classification (due to the enormous number of voxels in a brain 

image) is avoided by performing a correction for multiple comparisons; and as “real” patterns of 

activity are assumed to occur over a group of voxels, by taking into account the spatial extent of 

contiguous clusters of activation (in FSL this is done using gaussian random field theory) (Smith et al. 

2001a, 2004, Genovese et al. 2002, Nichols & Hayasaka 2003). A consideration (and potential source 

of bias) at this final stage of the analysis is the relatively arbitrary nature of thresholding, as a 

suitable level of significance must be selected by the investigator (Genovese et al. 2002, Smith & 

Nichols 2009, Nichols 2012).       

 

2.3.4.2. Higher level group analysis 

An important attribute of fMRI is that once normalised, the data is amenable to the combined 

analysis of multiple data sets of repeated sessions within the same subject or across different 

subjects (Holmes & Friston 1998, Smith 2001a). Not only can this potentially increase the overall 

sensitivity of an experiment (as noise is assumed to be random and will not be consistent between 

sessions or subjects), but also importantly allows the formal statistical comparison of responses to 

different stimuli or tasks, and between different populations of subjects (Holmes & Friston 1998). A 

group analysis is typically referred to as a “higher-level” analysis, as it is often performed on the 

statistical maps derived from the analysis of individual subject data sets (which are therefore also 

termed “lower-level” analyses). For functional data sets to be combined across a population of 

subjects, they must first be spatially normalised by alignment to a common image space which 

compensates for individual differences in brain anatomy and orientation (Jenkinson 2001, Brett et al. 
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2002). In adult study populations, this process of registration to a “standard reference space” is 

commonly done to a widely available resource such as the MNI152 brain (Montreal Neurological 

Institute 152 brain), onto which a number of labelled brain atlases can be applied (Mazziota et al. 

2001, Jenkinson 2001).  

 

Higher level analyses on spatially normalised data can be generally classified into three groups, with 

the choice of analysis dependent on the study populations and the specific study question (Nichols & 

Holmes 2002, Mumford & Nichols 2006, Mumford & Poldrack 2007): 

 

Fixed-effects: In this form of analysis, it is assumed that the average response within each subject is 

equal, with the variance derived from errors within a session (Friston & Holmes 1998, Mumford & 

Nichols 2006). A fixed-effects analysis is therefore sensitive to the activation pattern only within the 

studied group, but the findings are not representative of the wider population from which the group 

was drawn, as cross-session and cross-subject variance is not taken into account in the modelling 

(Mumford & Nichols 2006).  

 

Mixed-effects: An alternative which allows the analysis results to be interpreted as representative of 

the wider population, is to include both the within session variance (the fixed-effects) and the cross 

session variance (the random-effects) into the higher level analysis model (Beckmann et al. 2003, 

Mumford & Nichols 2006, Mumford & Poldrack 2007). A drawback to this approach is that it is 

intuitively more conservative at identifying group patterns of activation, and is unsuitable for small 

groups of subjects where cross session variance may be overstated (Mumford & Poldrack 2007).    

 

Permutation methods: While the first two approaches follow on from the framework of the GLM 

and assume that the data is drawn from a parametrically distributed population, a further approach 

is to use a permutation test which makes no assumptions about the data (and noise) distributions 
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(Nichols & Holmes 2002). This conceptually simple approach has been shown to outperform some of 

the more traditional parametric methods, and is particularly suitable in situations where a non-

standard approach is required (such as TBSS, where the white matter tracts studied may be highly 

irregular and variable in shape) (Hayasaka & Nichols 2004, Smith et al. 2006).  

 

2.3.4.3. Independent Component Analysis (ICA) 

An entirely distinct approach to traditional GLM based analysis methods is to use a multivariate and 

model-free technique such as Independent Component Analysis (ICA). The principles of the 

technique originate in classical signal processing, whereby it is assumed that measured data is 

generated from a mixture of underlying independent signals of interest via a complicated process.  It 

is clearly apparent how this premise is applicable to fMRI data, particularly given the large variety of 

potential sources of noise (McKeown et al. 1998, Beckmann & Smith 2004, Beckmann 2012). In FSL, 

a probabilistic ICA model is implemented in MELODIC (Multivariate Exploratory Linear Optimised 

Decomposition into Independent Components) (Beckmann & Smith 2004). Here, the entire data set 

is thought of as a single 2D matrix of space (with each voxel representing a different column) and 

time (with each row representing a different timepoint or volume of data). This matrix can then be 

decomposed into two new matrices, one in which the timecourse of a component is represented in 

different columns; and the other in which the spatial representation of each component is 

represented in rows (Beckmann & Smith 2004). In FSL, the vital extra steps of noise variance 

normalisation and statistical inference are implemented by the addition of probabilistic principal 

component analysis and thresholding with Gaussian mixture modelling (Beckmann & Smith 2004).  

 

The resulting spatial components may represent a map of stimulus related functional activity, task-

unrelated intrinsic brain activity, or possible sources of artefact (Beckmann et al. 2004, 2005, 2012). 

In task-driven fMRI experiments, ICA techniques are of particular use to identify and remove 

artefactual signals, such as those likely to be related to intrinsic physiological factors (vessel 
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pulsation, respiratory movement) and head motion (see section 2.3.2.2) (Beckmann & Smith 2004). 

A further and particularly valuable application of ICA techniques is in the identification and study of 

resting state networks, where coherent patterns of low frequency correlated activity in fMRI data 

are seen even under conditions where no stimulus or task has been performed by the subject 

(Biswal et al. 1995, Beckmann et al. 2005).  

 

2.4. Summary 

By exploiting the changing magnetic properties of haemoglobin induced by its oxygen binding state, 

fMRI offers a non-invasive (but indirect) way of visualising and quantifying in-vivo brain activity. 

Following stimulation, neural activity initiates a cascade of neurovascular coupling which leads to a 

local vascular response, and an increase in the BOLD signal measured by a T2* weighted MRI 

sequence. In addition to avoiding the potentially harmful effects of ionising radiation, fMRI offers 

further advantages through the relatively good (and adaptable) temporal and spatial resolution 

which are inherent to MRI techniques. The measured BOLD signal response to stimulation is 

reproducible across sessions and subjects, with the canonical impulse response termed the 

haemodynamic response function (HRF). fMRI data analysis is a statistical process, which has been 

carefully refined in the last 20 years to account for possible sources of noise, and to avoid false 

positive results. This has the additional benefits of allowing both great flexibility to the technique in 

study design and extended analysis, and the combination of data sets to systematically identify 

within and between group patterns of brain activity.  
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Chapter 3 

3. fMRI studies of the newborn brain 

In the 20 years since Ogawa and colleagues first described BOLD contrast, the widespread 

application of fMRI techniques has begun to allow investigators to accurately map and characterise 

the functional organisation of the brain, and furthermore to probe more complex issues such as the 

underlying patterns of connectivity between different regions during particular tasks and at rest 

(Ogawa et al. 1990, Kim & Ogawa 2012). Coupled with its non-invasive nature and excellent safety 

profile, these attributes would seemingly make fMRI extremely suitable for studying the infant brain, 

and further suggest that it could hold the potential to add a vital new dimension to our 

understanding of the developing CNS (Seghier et al. 2006, Smyser et al. 2011). 

 

Despite this, there have only been a relatively small number of fMRI studies which have reported 

reliable functional responses in neonatal subjects to simple visual, auditory, and tactile stimuli 

(reviewed in Seghier et al. 2006, 2010). Notable among these studies are prominent differences in 

the study population (with infants of markedly different age and clinical characteristics included in a 

single group), the use of sedative medication, and the imaging sequence parameters. With this in 

mind, it is perhaps unsurprising that these studies have all reported inconsistent results, with the 

most prominent controversy relating to the amplitude of the functional responses, with early studies 

reporting (in contrast to the typical adult response) a localised decrease in BOLD signal (termed 

“negative BOLD”). 

 

In this chapter of the thesis, I will review the current literature of existing fMRI studies in early 

infancy. I will then attempt to identify some of the key questions and challenges which are likely to 

be pertinent for developing the technique and its successful application for studies of the vulnerable 

neonatal population.   
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3.1. Reported studies in the literature 

A PubMed search using the keywords “infant” “neonate” and “functional MRI” identifies only 22 

relevant studies in early infancy, with a further 9 studies of resting state fMRI connectivity alone 

(table 3.1). The first description of the use of BOLD contrast in a MRI study of unwell neonates was 

reported by Toft and colleagues in 1995, who described changes in BOLD contrast in response to an 

induced difference in the partial pressure of carbon dioxide (pCO2) following adjustment of the 

mechanical ventilation rate (Toft et al. 1995). While this study initially demonstrated the feasibility 

of measuring dynamic changes in BOLD contrast in neonates, it was then shortly afterwards in 1996 

that the first task-driven fMRI experiments in young infants were reported by Peter Born and 

colleagues, who used a simple visual stimulus to study BOLD responses in young infants in a series of 

studies over a range of ages from a few days to 4 years (Born et al. 1996, 1998, 2000, 2002b). Like 

these early studies, the majority of later studies have also utilised a visual stimulus (figure 3.1(a)), 

and slightly more than half of the studies (58%) have used a pharmacological sedative agent. 

Approximately one third of the reported studies identified predominately negative BOLD responses, 

with a further one third reporting positive responses, and the further third identifying either 

responses of both type or a shift in amplitude with increasing age (figure 3.1(b)).   
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Figure 3.1: (a) A total of 31 fMRI studies in early infancy have been reported in the literature. Of these, the 

largest proportion (44%) have utilised a visual stimulus, although an increasing number of recent studies have 

investigated functional connectivity at rest with no stimulus. (b) Prominent inconsistency is found in the 

amplitude of induced BOLD fMRI responses in early infancy. While approximately a third of studies report 

predominately negative and positive BOLD responses only, a further third has described an equal distribution. 

This includes 5 studies which suggest that the amplitude changes from positive to negative at 8 weeks of age 

post-term. 

(a) (b) 
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Study 

(Authors, 

year of 

publication) 

Stimulus 

type 

Study population 

size 

(number 

discarded); 

(Age, range) 

Sedation 

(type) 

MR sequence parameters  BOLD responses 

(identified, amplitude) 

B0 field 

strength 

(Tesla) 

Spatial 

resolution 

(x*y*z) mm 

TE 

(msec) 

TR 

(msec) 

Flip 

Angle 

(degrees) 

Length of 

sequence 

(minutes, 

seconds) 

Altman & 

Bernal, 2001 

Visual (31);  

Auditory (38) 

38 (2) 

(2months to 9 years 

old) 

MRI scan clinically 

indicated  

 

chloral 

hydrate 

(10/38) 

pheno-

barbitone 

(28/38) 

propofol 

(1/38) 

alprazolam 

(2/38)  

1.5 3.75*3.75* 

not written 

60 3750 60 3 min 7 sec Visual: 1/31 positive; 28/31 

negative;  2/31 no response 

 

Auditory: 26/38 positive; 0/38 

negative; 12/38 no response 

Anderson et 

al. 2001 

Auditory 14 (6) ex-preterm and 

control 

(33 to 47.5 wks PMA) 

None 1.5 3.125*3.125*

not written 

60 5000 Not written 12 min 5/14 positive 

9/14 negative 

0/14 no response 

Blasi et al. 

2011 

Auditory 

(language) 

21 controls 

(3 to 7 months) 

None 1.5 3.5*3.5*5 57 3000 90 16 min  21/21 positive 
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Born et al. 

1996 

 

Visual 7 

(6 weeks to 36 

months 

MRI scan clinically 

indicated  

Chloral 

hydrate 

(6/7) 

1.5 3.125*3.125*

4 

66 4000 Not written 6.5 min 6/7 negative 

1/7 not known 

Born et al. 

1998 

 

Visual 17 (5) 

(3 days to 48 months) 

Chloral 

hydrate 

(9/12) 

1.5 3.125*3.125*

4 

66 4000 Not written 6.5 min 1/12 positive 

10/12 negative 

1/12 no response 

Born et al. 

2000 

 

Visual 9 preterm (32-61wks); 

14 visual deficit (52-

338wks); 

8 others (54-179wks) 

Chloral 

hydate 

(5/9);  

(13/14);  

(6/8)  

1.5 1.5-.8*1.5-.8 

*4 

66 2500 90 4 min Preterm: 3/9 positive; 3/9 

negative; 3/9 no response 

Visual deficit: 1/14 positive; 13/14 

negative 

Others: 2/8 positive; 5/8 negative; 

1/8 no response 

Born et al. 

2002 

 

Visual 4 (1 visual deficit) 

(4-71 months) 

Chloral 

hydrate 

(4/4) 

1.5 1.8*1.8*4 66 2500 Not written 4 min 4/4 negative 

Dehaene-

Lambertz et 

al. 2002.  

Auditory 

(language) 

20 (10) control infants 

(2-3 months old) 

none 1.5 3.1*3.1*4 60 3333 Not written 3 min 20/20 positive 

 

Doria et al. 

2010 

Resting 

state 

62 (12) 

(29-43 weeks PMA) 

Chloral 

hydrate 

(30/74) 

3 2.5*2.5*3.25 45 1500 90 6 min 34 sec n/a 
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Erberich et 

al. 2003 

Somato-

sensory;  

Visual 

 

6 (1) 

(34-58 weeks PMA) 

MRI scan clinically 

indicated  

Chloral 

hydrate  

(7/7) 

1.5 3*3*3 40 3000 85 3 min 

(each hand) 

Somatosensory: 6/6 positive 

(coexistent 5/6 negative) 

Visual: 6/6 positive 

(coexistent 6/6 negative)  

Erberich et 

al. 2006 

Somato-

sensory 

24 (18) 

Ex-preterm (38-49 

weeks PMA); 

6 controls (3-9 

months) 

Chloral 

hydrate 

(50/50) 

1.5 2.8*2.8*3 60 3000 90 3 min (each 

hand) 

Positive and negative responses 

seen in all subjects: positive 

predominately seen in 

contralateral hemisphere 

Fransson et 

al. 2007 

Resting 

state 

12 ex-preterm infants 

(39+1 to 44+2 weeks 

PMA) 

Chloral 

hydrate 

(12/12) 

1.5 2.8*2.8*4.5 50 2000 80 10 min n/a 

Fransson et 

al.  

2009, 2011 

Resting 

state 

19 (2) control infants 

(39+2 to 41+5 weeks 

PMA) 

none 1.5 2.8*2.8*4.5 50 2000 80 10 min n/a 

Gao et al. 

2009 

Resting 

state 

20 neonates (24 +/- 

12 days); 24 1-year 

olds; 27 2-year olds 

None 3 4*4*4 32 2000 Not written 5 min n/a 

Gao et al. 

2011, 2012 

Resting 

state 

51 neonates (23 +/- 

12 days); 50 1-year 

olds; 46 2-year olds 

none 3 4*4*4 32 2000 Not written 5 min n/a 

Heep et al. 

2009 

Somato-

sensory 

5 (3) ex-preterm 

infants 

Chloral 

hydrate  

3 1.88*1.88 

*3.59 

35 2600 90 3 min 20 sec 1/5 positive 

4/5 negative 
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(38-39 weeks PMA) (8/8) 

Konishi et al. 

2002 

Visual 16 (<8weeks); 

 11 (8 to 22 weeks) 

MRI scan clinically 

indicated  

Pheno-

barbitone 

(27/27) 

1.5 3.4*3.4*6-7 50 3000 90 2 min 6 sec Lateral Geniculate Nucleus 

(LGN): 27/27 positive  

Primary visual cortex: <60 days 

positive, >60 days negative 

Lee et al. 

2012 

Visual 65 (19) preterm (30.5 

+/- 2.7 weeks PMA); 

23 (5) term (41.2 +/- 

2.6 weeks PMA) 

none 1.5 2.5*2.5*4 60/130 3000 90 3-3.5 min Preterm: 4/65 positive;  

61/65 no response 

Term: 19/26 positive; 

7/26 no response  

Lin et al. 

2008 

Resting 

state 

38 neonates (2-4 

weeks); 26 1-year 

olds; 21 2-year olds 

none 3 4*4*4 32 2000 Not written 5 min n/a 

Marcar et al. 

2004 

Visual 11 (<5-years old); 10 

(5-12 years old) 

Midazolam, 

Sevoflurane 

anesthesia 

2 2*4.1*5.5 58 2000 90 3 min 20 sec Both positive and negative 

responses (proportion not 

documented) 

Martin et al. 

1999 

Visual 58 (17); 8 neonate; 

14 infants (1 month to 

1-yr); 29 (1 to 6-yrs 

old); 7 (6 to 12-yrs 

old) 

 

Pheno-

barbitone 

(28/58); 

Chloral 

hydrate 

(12/58); 

halothane 

(9/58) 

2 1.7-.9*1.7-

.9*5 

40 100 20 8 min 0-4 months: 6/18 positive; 5/18 

negative; 7/18 no response 

4-40 months: 4/25 positive; 12/25 

negative; 9/25 no response 

40+ months: 13/25 positive; 8/25 

negative, 4/25 no response 
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Morita et al. 

2000 

Visual 8 (<60 days) 

8 (60-361 days) 

MRI scan clinically 

indicated 

Pheno-

barbitone 

(16/16) 

1.5 3.4*3.4*6-7 50 3000 90 2 min 6 sec LGN: 16/16 positive 

Primary visual cortex: <60 days 

positive; >60 days negative 

Muramoto et 

al. 2002 

Visual 20 (22): 

10 (<8 weeks); 10 (8-

32 weeks) 

MRI scan clinically 

indicated 

Pheno-

barbitone 

(20/20) 

1.5 1.72*1.72 *6 50 3000 90 5 min 6 sec <8 weeks positive 

>8 weeks negative 

Perani et al. 

2010 

Auditory 

(music 

perception) 

18 (3) control infants  

(0-3 days) 

none 1.5 3.75*3.75*3 40 3000 Not written 7 min 15/18 positive 

3/18 negative 

Perani et al. 

2011 

Auditory 

(language) 

15 control infants 

(0-3 days) 

none 3 2.81*2.81*3 40 3000 Not written 8 min 3 sec 15/15 positive 

Smyser et al. 

2010 

Resting 

state 

90 (8): 

10 (<30 weeks PMA); 

16 (30-34 weeks); 36 

(34-38 weeks); 28 

(38-42 weeks); 10 

term control 

none 3 2.4*2.4*2.4 28 2910 90 10 min n/a 

Seghier et al. 

2004 

Visual 1 

(50 weeks PMA) 

Chloral 

hydrate 

1.5 1.9*1.9*4 40 2000 80 4 min 

(repeated 3 

times) 

Negative responses, and “inverse 

gamma” impulse response in 

event-related experiment  
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Toft et al. 

1995 

 

Changes in 

pCO2 

5 clinically unwell 

infants 

(31+6 to 47 weeks 

PMA) 

All infants 

ventilated – 

anesthetic 

agent not 

documented 

1.5 0.8*1.6*3 

(single slice) 

60 82 40 21 to 29 min Hyperventilation associated with 

decreases in pCO2 and decreases 

in BOLD contrast 

Yamada et al. 

1997 

Visual 6 (<8 weeks); 

9 (8 to 54 weeks)   

MRI scan clinically 

indicated 

Pheno-

barbitone 

(15/15) 

1.5 1.7*1.7*5 

(5 slices) 

50 3000 90 5 min 6 sec <8 weeks positive 

>8 weeks negative 

Yamada et al. 

2000 

Visual 16 (<8weeks); 

 11 (8 to 22 weeks)  

MRI scan clinically 

indicated 

Pheno-

barbitone 

(27/27) 

1.5 1.7*1.7*5 

(5 slices) 

50 3000 90 5 min 6 sec <8 weeks positive 

>8 weeks negative 
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3.1.1. Visual Stimulation 

Including the first studies of Born and colleagues, there have been a total of fourteen fMRI studies using 

a visual stimulus in neonatal and young infant subjects. Of interest, it is also striking that the greatest 

variability in results also appears to be seen in these studies, with large differences reported between 

studies and in comparison to adults in both the site and amplitude of the identified BOLD responses. 

Some of this inconsistency may arise from the relatively wide age ranges of the subjects included in 

these studies, as infants as old as 48 months of age have been grouped with some as young as just a few 

days (Born et al. 1996, 1998). A further confounding effect is that different clinical populations have also 

been included in single groups, with some healthy control infants born at term gestational age, grouped 

with others born prematurely, or even with some infants with a clear clinical indication for a brain MRI 

scan such as hydrocephalus (Born et al. 1996, 1998, 2000, 2002b, Yamada et al. 1997, 2000, Morita et al. 

2000, Altman & Bernal 2001, Konishi et al. 2002, Muramoto et al. 2002). Comparison between groups is 

also complicated by the varying use of pharmacological sedation, with studies from Japan all utilising 

intravenous phenobarbitone (Yamada et al. 1997, 2000, Morita et al. 2000, Konishi et al. 2002, 

Muramoto et al. 2002), in contrast to those from Europe which have mostly used chloral hydrate (Born 

et al. 1996, 1998, 2000, 2002b, Seghier et al. 2004).         

 

Common to the majority of visual fMRI studies is the use of a simple block stimulation paradigm; similar 

to that used by Born et al. (1996) in their first study, where they presented an 8 Hertz (Hz) flickering light 

stimulus for 24 seconds interspersed with 24 seconds of rest (darkness) to 7 infants (aged 6 weeks to 36 

months) all of whom had been sedated with chloral hydrate (100-150mg/kg) (Born et al. 1996). In 

contrast to the canonical positive BOLD response seen in the primary visual cortex and along the 

calcarine fissure in adult subjects, Born described a counter-intuitive task induced decrease in BOLD 

contrast in all 6 of the infants in whom responses were identified, with the activity also localised to the 
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more anterolateral regions of the occipital lobe (Born et al. 1996). An identical study protocol was then 

extended to a larger study group of 17 subjects, with similar findings with the exception being a positive 

BOLD response seen in a single 4 week old healthy infant (Born et al. 1998). Two further studies from 

the same research group also identified similar patterns of response in infant populations with a 

clinically diagnosed visual deficit (Born et al. 2000, 2002b).   

 

These findings led to Born and colleagues proposing that a “negative BOLD” response may represent a 

normal stage in early brain development when the increased metabolic demands of a higher synaptic 

density are not met by the task-driven increase in local CBF (Born et al. 1996, 1998, 2000). They 

attempted to address this issue directly in an interesting study reported in 2002, by simultaneously 

acquiring quantitative local perfusion data using a FAIR (flow sensitive alternating inversion recovery) 

sequence (Born et al. 2002b). In four studied adults, the local CBF was seen to increase accordingly with 

task-induced increases in BOLD contrast, but in the four studied infants (age range 4 months to 71 

months) decreases in both the FAIR and BOLD signals were seen during the flickering light stimulation 

(Born et al. 2002). Although this could be interpreted as showing a task-induced decrease in CBF, the 

authors were cautious in concluding this due to the relatively poor SNR of the FAIR images (Born et al. 

2002b). Of particular interest, in a separate study, Born and colleagues found that a strobing light 

stimulus on closed eyelids also induced a negative BOLD response and decrease in CBF (assessed with 

H2
15O PET) even in adults during slow-wave sleep, suggesting that the behavioural state of the subject is 

also a principal factor in the control of the induced response (Born et al. 2002a).  

 

During the same time period, five studies were reported from a group in Japan utilising a similar 8Hz 

flickering light stimulus and a block stimulation paradigm (Yamada et al. 1997, 2000, Morita et al. 2000, 

Konishi et al. 2002, Muramoto et al. 2002). An intriguing finding consistent to all of these studies was 
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that of positive BOLD responses in the lateral geniculate nucleus (LGN), while the responses in the 

calcarine fissure appeared to switch amplitude from positive to a predominately negative response after 

8 weeks of corrected postnatal age. The authors also suggested that their findings could be explained by 

an age-dependent increase in metabolism due to presumed increases in synaptic density at that 

developmental juncture, with the most marked increases suggested to occur in the primary visual areas 

as opposed to the LGN (Yamada et al. 2000, Morita et al. 2000). By applying the existing models of 

Buxton and Mandeville, the group also attempted to simulate the infant BOLD response and again 

postulated that a developmental increase in CMRO2 was responsible for their findings (Buxton et al. 

1998, Mandeville et al. 1999, Muramoto et al. 2002). However, in the absence of other information, a 

number of large and perhaps incorrect assumptions were made in this modelling including a stable 

relationship between CBF and CBV throughout development (and identical to adults), and the direct use 

of several constants (which may be invalid when relating to the neonatal brain) in the original Buxton 

Balloon model formulation (Buxton et al. 1998).      

 

A further important study is that of Seghier and colleagues (2004), who studied the functional response 

to a 2 Hz flashing light stimulus, in a single sedated 13 week infant who had suffered a large left 

perinatal arterial stroke. They found no BOLD response in the pathological hemisphere (in which they 

also found no optic radiation using DTI tractography), and a negative BOLD response in the unaffected 

(presumed healthy) hemisphere (Seghier et al. 2004). Perhaps most significantly, they also performed a 

study using an event-related paradigm to allow an exact measurement and characterisation of the HRF. 

In their patient, they found a negative impulse response (which they termed an “inverse gamma 

function”) which mirrored the canonical adult response, with the lowest signal seen at 5-7 seconds 

(figure 3.2)((Seghier et al. 2004).      
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Figure 3.2:  Using a visual stimulus and an event-related study design, Seghier and colleagues characterised an 

“inverse gamma” haemodynamic response function in a 13 week old infant. The subject had suffered a large 

perinatal arterial stroke in the left hemisphere (shown in inset picture), and functional responses were only 

identified in the “healthy” hemisphere. Following a 2Hz flashing light stimulus lasting 4.5 seconds, the BOLD signal 

was seen to decrease with the minimum signal seen at approximately 5-7 seconds (x-axis shows scan volume 

number, acquisition TR was 1.5 seconds) (figure adapted and reproduced from Seghier et al. 2004).       

 

Most recently, Lee and colleagues described an fMRI study in a large cohort of preterm and term 

equivalent neonates using a 1 Hz flickering light stimulus (Lee et al. 2012). They were able to identify 

BOLD responses in just 5% of their preterm population and 73% of their term population, and did not 

identify any negative BOLD responses (Lee et al. 2012).  Although newborn infants behaviourally can be 

shown to be visually attentive (for example, showing a preference for looking at images of faces) and 

immature visual evoked potentials can be demonstrated in some infants as young as 24 post-menstrual 

weeks, the authors concluded that fMRI is probably not an appropriate modality for studying visual 

function in preterm infants (Lee et al. 2012). A crucial consideration is that the findings of this study and 

those described above, may support the theory that at least some early visual activity occurs via the 

subcortical extra-geniculo-calcarine system (Johnson 1990). These theories further advocate that 
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functional activity in the primary visual areas not fully established until 2-3 months of age, and therefore 

may be highly relevant to the reported inconsistencies (Johnson 1990).  

      

3.1.2. Sensori-motor stimulation 

There have been 3 reported studies which have used a somatosensory stimulus to elicit fMRI responses 

in neonatal subjects (Eberich et al. 2003, 2006, Heep et al. 2009). In an initial pilot study of seven 

neonatal patients (age range 34 to 58 weeks PMA) with intracerebral pathology (hydrocephalus and 

white matter injury), Erberich and colleagues (2003) used a manually inflated rubber bulb fixed into the 

palm of their subjects’ hands to passively move the fingers during 30 second blocks of activity. They 

were able to identify both negative and positive BOLD responses in the hemisphere contralateral to the 

side of stimulation, although in four of the subjects the predominant cluster was seen in the 

supplementary motor area (SMA) (Erberich et al. 2003). The same group utilised an identical stimulus 

and design paradigm in a much larger study of 42 (24 successful) prematurely born subjects imaged at 

term equivalent PMA and 6 control infants (imaged at 3-9 months of age) (Erberich et al. 2006). Of 

interest, the data in this study was analysed using a standard GLM approach, with the block stimulation 

paradigm convolved with the canonical adult HRF. At term age they were able to identify both negative 

and positive BOLD responses, with a clear preponderance towards positive activity in the contralateral 

hemisphere and 36.4-43.8% of infants showing a bilateral pattern of activation (Erberich et al. 2006). 

The great potential for fMRI to characterise patterns of functional development was highlighted by the 

findings in the smaller group of older infants, all of whom showed exclusively contralateral patterns of 

positive activity (Erberich et al. 2006).  

 

The findings of Erberich’s work were in contrast to that of Heep and colleagues (2009) who also studied 

somatosensory responses in a group of 8 (5 successful) ex-preterm infants studied at term equivalent 
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PMA. In response to passive movement of the forearm (induced by manually lifting the arm using Velcro 

fixed wrist straps) they reported a predominately bilateral pattern of negative BOLD activity in their 

study group, with a single infant showing a bilateral positive pattern of activity (Heep et al. 2009). The 

authors concluded that their study suggested that in the neonatal period, a negative and bilateral BOLD 

response should be considered normal, as the infant with positive responses was later found to have 

mild motor developmental delay at 4-6 months of age (Heep et al. 2009).         

 

3.1.3. Auditory stimulation 

Six studies have reported the use of an auditory stimulus, and of interest positive BOLD responses were 

identified in nearly all of the reported subjects (Altman & Bernal 2001, Anderson et al. 2001, Dehaene-

Lambertz et al. 2002, Perani et al. 2010, 2011, Blasi et al. 2011). This effect was particularly clear in the 

study of Altman & Bernal (2001) who studied the BOLD response to both visual and auditory stimulation 

in 40 infants (38 successful) aged 2 to 9 months of age; with exclusively positive BOLD responses seen to 

an auditory paradigm consisting of 30 second stimulation blocks containing recordings of the infants’ 

mother’s voice, and a negative BOLD response seen in the majority to a flashing light stimulus.   

 

Recent studies have further confirmed that positive BOLD responses can be robustly identified in the 

primary auditory cortex of young infants to both language and musical stimulation (Perani et al. 2010, 

2011, Blasi et al. 2011). A particularly intriguing finding in these studies is that subtle but significant 

differences in the pattern of activation could be identified between vocal and non-vocal environmental 

auditory stimuli, and that responses were even sensitive to the “emotional” pitch of the presented voice 

(Blasi et al. 2011). In newly born term control infants, Perani and colleagues have also reported 

sensitivity to auditory stimuli as subtle as music dissonance and speech intonation (Perani et al. 2010, 

2011). The findings of these studies suggest that even in very early life, the auditory system is 
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sufficiently mature to differentiate complex stimuli, and further imply that the developmental 

trajectories of functional activity may differ markedly between anatomical regions and sensory systems.       

 

3.1.4. Resting state connectivity 

A number of recent studies have sought to characterise the correlated patterns of functional activity at 

rest in early life (Fransson et al. 2007, 2009, 2011, Lin et al. 2008, Gao et al. 2009, 2011, 2012, Doria et al. 

2010, Smyser et al. 2010). This approach is intrinsically attractive for studying the developing brain, as 

not only does it provide exciting information about the maturation of integrated system-wide brain 

activity, but it also requires no stimuli and potentially is relatively free from the limitations of analysis 

inherent to traditional GLM methods (Smyser et al. 2011). In adults at rest, a repertoire of 10-20 resting 

state networks can be reliably identified with a variety of analysis tools, in spatially distinct but 

presumably functionally connected brain regions (Smith et al. 2009). Although consistently identified 

across a variety of patient groups and mental states, the exact role of these networks remains unclear 

and is vigorously debated in the literature. Studies in neonatal subjects have similarly found that resting 

state networks can be readily identified at term equivalent PMA suggesting that large scale neural 

organisation is present in the resting brain even in early life (Fransson et al. 2007, 2009). These include 

complete facsimiles of the adult networks in the primary visual areas, the somatosensory and motor 

cortices, the primary auditory areas, cerebellum and premotor areas (Fransson et al. 2007, 2009, Doria 

et al. 2010. Smyser et al. 2010).   

 

An area of particular interest is the longitudinal development of the resting state networks, with a clear 

maturational pattern visible through the preterm period (equivalent to the third trimester of in-utero 

life). Identifiable but fragmented networks can be identified at 30 weeks PMA, which are then seen over 

the subsequent last weeks of gestation to progress to the more complex long-range and bilateral 
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networks characteristic to the adult brain (figure 3.3) (Doria et al. 2010, Smyser et al. 2010). These 

findings are fascinating as they support the notion that a dramatic developmental increase in brain 

connectivity and organisation takes place around the time of birth, as suggested by the histological 

findings of rapid neural growth and synaptogenesis (Kostović & Jovanov-Milošević 2006).  

 

 

Figure 3.3: Development of the motor “resting state network” during the preterm period. The network can be 

clearly seen to progress from a unilateral representation at 29 weeks PMA, to a bilateral but spatially dispersed 

network at 35-37 weeks PMA, and finally to a well localised bilateral network with a clear pattern of connectivity 

between the left and right peri-rolandic cortices at 41 weeks PMA identical to that seen in the brains of adult 

subjects (numbers correspond to post-menstrual age (PMA) in weeks) (Figure has been published in Arichi et al. 

2011). 

 

A topic worthy of more detailed discussion is the Default Mode Network (DMN) or “task-negative” 

network which encompasses a group of discrete brain regions; the medial prefrontal cortex, the 

posterior cingulate gyrus and adjacent precuneus, and the inferior lateral parietal lobules (Raichle et al. 

2001, Buckner et al. 2008). As many of these structures are traditionally thought of as playing a role in 

memory retrieval and higher cognitive functioning, the DMN has been implicated to play a role in 

“internally focused tasks” such as autobiographical memory retrieval and envisioning the future 



 126 

(Buckner et al. 2008). The network is unique as it is seen to specifically “deactivate” (ie: develops a task 

related decrease in BOLD contrast) during goal-orientated tasks (Raichle et al. 2001). Moreover, 

decreased DMN activity and connectivity between the “hubs” of the network have been described in 

pathological states such as schizophrenia and autism (Garrity et al. 2007, Assaf et al. 2010). Although 

initial resting state fMRI studies did not identify the DMN in newborn infants, later studies have found it 

to be present at term equivalent PMA, and furthermore have described a maturational trend of 

increasing connectivity amongst the network hubs (Gao et al. 2009, 2011, 2012, Doria et al. 2010). These 

fascinating findings call into question the accepted function of the network, or may suggest that 

newborn infants are having self-referential thoughts at an age well before they appear to have attained 

the levels of recognisable cognition which are typically associated with “independent thought” 

(Lagercrantz & Changeux 2009).  

 

3.2. Potential but major challenges 

The small body of existing fMRI studies of the newborn brain have therefore yielded exciting and 

potentially important insights into the functional activity and organisation of the maturing brain. Not 

only do they hint that the neonatal brain contains a richer and more complex architecture of functional 

activity than that previously thought of, but they may also offer a new understanding of the effects of 

congenital and acquired brain injury, and moreover to the nature of the BOLD contrast itself. However, 

this enthusiasm is tempered by the clear limitations present in these previous studies, which may in part 

explain the conflicting results reported both within and between studies.  

 

A major and important possible cause of such inconsistency is that many of the previous fMRI studies 

have used sequences and analysis techniques directly taken from equivalent adult studies. While this 

choice may have seemed logical at the time of study, it is apparent now that a number of fundamental 
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differences exist in both the biological and functional make-up of the immature brain, which suggest 

that they may have contributed to the aberrant findings.   

 

3.2.1. Practical considerations 

Successful MR image acquisition in neonates is a technically and practically challenging process, due to 

their potentially fragile clinical status and inherently uncooperative behaviour (Pennock 2001, Merchant 

et al. 2009). Newborn infants (and particularly those born prematurely) are susceptible to episodes of 

bradycardia and/or oxygen desaturation, and therefore require careful physiological monitoring during 

the period of data acquisition (Merchant et al. 2009). Adequate hearing protection is necessary due to 

the significant acoustic noise generated by the rapid switching of the gradient coils during image 

acquisition, with this effect greatest in fast acquisition techniques such as EPI (Merchant et al. 2009).       

 

Head motion during image acquisition is a major cause of data corruption and potential bias, and has 

been shown to introduce systematic but false patterns of connectivity in functional data (see section 

2.3.2.2) (Hajnal et al. 1994, Power et al. 2012, Satterthwaite et al. 2012, van Dijk et al. 2012). This issue is 

of particular importance in infant subjects who cannot follow instructions to remain still and moreover 

may become distressed in the alien environment of the MR scanner. One of the simplest techniques to 

try and overcome this, is to use head immobilisation techniques such as vacuum-evacuated bead filled 

bags and packing foam (Pennock 2001, Merchant et al. 2009). It is generally preferable that the infants 

are asleep during image acquisition, which is typically achieved either through feeding and swaddling 

the infant (“feed and wrap” technique) or with pharmacological sedation (Edwards & Arthurs 2011). 

However, while a systematic review has supported the effectiveness and safety of sedative medication 

for neonatal MR examination, it should be born in mind that there is a lack of similar systematic 

evidence to suggest that feed and wrap techniques are sufficient for consistently good image quality 
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(Edwards & Arthurs 2011). An important caveat is the unknown effect of sedative agents directly on the 

functional activity of interest; with possible effects on the neural activity itself, the neurovascular 

coupling, and the baseline vascular parameters (Galliard et al. 2001, Seghier et al. 2006, Harris et al. 

2011).    

 

3.2.2. Study population 

Data collection of studies involving infant subjects is a challenging task, with strict ethical protocols and 

constraints limiting the study populations and methods. As a result, the majority of reported fMRI 

studies have grouped patients together into single groups which may cover a broad range of ages and a 

variety of clinical abnormalities (see table 3.1). Only a few studies have been able to report functional 

responses in adequately sized groups of healthy infants delivered at full term gestation, and it is of 

interest to note that all have been able to identify robust patterns of positive BOLD activation (Dehaene-

Lambertz et al. 2002, Fransson et al. 2009, Perani et al. 2010, 2011, Blasi et al. 2011). This is of particular 

significance as differing degrees of brain development and clinical pathology are likely to profoundly 

affect both the spatial and temporal characteristics of the BOLD response, with the sensitivity of any 

subsequent group analysis likely to be markedly decreased by the increased variance present in the data.       

 

3.2.3. Choice of Image acquisition parameters 

An issue fundamental to the EPI sequences generally used to acquire fMRI data is the maximisation of 

the inherently low SNR, with the necessary trade-off between improved temporal resolution and a 

decrease in spatial resolution a resulting effect (see section 2.3.1). This issue is very pertinent to fMRI 

studies of neonatal subjects, where a number of factors if unaccounted for may contrive to decrease 

SNR and therefore the ability to reliably detect functional responses.    
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Throughout early human development, marked maturational changes in the appearances of the brain 

are seen on MRI as cellular density increases and water content decreases (see chapter 1) (Battin & 

Rutherford 2002, Counsell et al. 2003). It is therefore unsurprising that in addition to clear maturational 

trends in tissue-specific properties such as T1 and T2, marked differences are also present in T2* values 

(see figure 3.4) (Rivkin et al. 2004, Lee et al. 2012). This is of particular significance as the SNR for a 

simple GRE fMRI sequence is generally considered to be maximised when the TE is equal to the T2* 

value of the tissue of interest (Bandettini et al. 1994). T2* values are estimated to be approximately 60-

70 msec in the adult brain at 1.5T, with these values significantly decreasing at higher B0 field strengths 

(Bandettini et al. 1994, Krőger et al. 2001, Peters et al, 2007, Harmer et al. 2012). Two studies have 

suggested that the T2* values of cortical tissues in preterm infants is approximately 3 times longer than 

in the adult, with the value at term equivalent PMA still significantly increased at 100-130 msec (Rivkin 

et al. 2004, Lee et al. 2012). This is of particular relevance as the majority of the reported neonatal fMRI 

studies have used TEs suitable for adult subjects (in the range of 40 to 66 msec) (see table 3.1).   

 

 

Figure 3.4: T2* values are prolonged in the preterm brain, and decrease with age. At 1.5 Tesla, two studies have 

shown that quantitative T2* values in the lateral and medial occipital lobes (LOL and MOL respectively) are 
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significantly longer in neonates than those in the adult brain which in comparison are usually approximately 60-

70msec (Rivkin et al. 2004, Lee et al. 2012) (figure reproduced from Lee et al. 2012).   

 

The majority (71%) of reported studies were carried out at low field strength (1.5T), and have used a 

relatively reduced spatial resolution in an attempt to preserve image SNR (see table 3.1). While a voxel 

size of 39-80 mm3 is commonplace in adult fMRI studies and is generally sufficient to provide good 

anatomical localisation of activity, it is likely to cause marked partial volume effects (in which a single 

voxel contains information about more than one tissue type) when imaging the markedly smaller 

neonatal brain. This effect is not insignificant as particular tissue types have a very prolonged T2* values 

in the neonatal brain (in particular the immature white matter), and furthermore as the area where the 

activity is presumed to occur (the cortex) is anatomically bordered by an area where no activity is 

presumed to occur (the CSF) (Rivkin et al. 2004). An additional consideration is that at 1.5T, the BOLD 

effect appears to predominately arise from the intravascular compartment and therefore is 

disproportionately sensitised to the larger venous vessels which have the largest shifts in volumes and 

oxygenation following activity (see section 2.2.1) (Buxton et al. 1998, 2004, 2009, Krűger et al. 2001). 

Known developmental differences in vessel density and wall compliance may therefore have a more 

significant effect on BOLD contrast dynamics at lower B0 field strengths (Norman & O’Klusky 1986, Gilles 

2001, Harris et al. 2011).  

 

3.2.4. Stimulation paradigms  

A key issue in neonatal fMRI study design is the choice of stimulus, which must be of significant 

magnitude to elicit a functional response whilst being gentle enough in nature not to rouse or distress 

the studied infant. The stimulus must be developmentally appropriate for the age of the study 

population and suitable to be performed during sleep. These factors may be pertinent to the 
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interpretation of the reported neonatal fMRI studies which used a visual stimulus, where both the 

developmental stage and sleep status of the subjects may have contributed to the uncertainty about the 

results (Born et al. 2002a, Lee et al. 2012). To prevent bias and improve sensitivity, the stimulus should 

ideally be consistently repeatable in both timing and amplitude (and if possible synchronised with image 

acquisition), with most recent studies therefore favouring a fully automated approach. Designing and 

manufacturing the stimulation apparatus is not trivial, as the equipment must be completely metal-free 

for the MR scanner environment and preferably can be controlled remotely from the MR scanner 

control room (Gassert et al. 2008).       

 

3.2.5. Data Analysis 

While a number of fMRI data analysis packages are widely available and are used throughout the 

reported literature, none have been developed specifically with neonatal or paediatric subjects in mind. 

This is of importance as the optimal parameters for the pre-processing steps (such as the size of the 

filters in the spatial and temporal smoothing) which are considered standard in adult fMRI analysis are 

unknown for data derived from infants.  

 

In a standard univariate GLM analysis, the specification of the design matrix is key to the analysis and 

can profoundly affect the analysis statistics and outcome (see section 2.3.4.1) (Friston et al. 1995b,c). In 

the adult brain, it is customary to account for the true temporal characteristics of the BOLD functional 

response (including it’s smoothness and delay in onset) by producing the design matrix from the 

convolution of the stimulation paradigm with a waveform representative of the canonical HRF 

(Bandettini et al. 1993, Friston et al. 1995b,c, Monti 2011, Poline & Brett 2012). Crucially, even subtle 

changes in HRF morphology have been found to significantly affect the results of fMRI data analysis 

(Aguirre et al. 1998b, Handwerker et al. 2004). With the exception of the single study of Seghier and 
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colleagues (2004), there have been no studies which have attempted a systematic characterisation of 

the HRF in neonatal life, and therefore the appropriate model for use in the GLM is not known. Previous 

fMRI studies of the newborn have not accounted directly for this uncertainty, and instead have either 

used a classical GLM approach with convolution of the canonical adult HRF into the design matrix 

(Dehaene-Lambertz et al. 2002, Erberich et al. 2003, 2006, Perani et al. 2010, 2011), or have used a 

simple image subtraction approach (Born et al. 1996, Lee et al. 2012). This issue is therefore of 

fundamental importance to the field of neonatal fMRI, as the morphology of the HRF in the neonatal 

brain is more than likely to differ from the canonical adult form, as marked differences in the underlying 

vascular physiology are known to occur during infant brain development (reviewed in Volpe 2008).  

 

A major advantage of fMRI techniques is that between session and between subject data can be 

combined into a single analysis to identify robust patterns of activity with far greater sensitivity and 

specificity than a single data set (Holmes & Friston 1998, Smith et al. 2001a). For this to be done, the 

individual subject data must be accurately registered to a common standard space (Jenkinson et al. 

2001). In the neonatal brain, the relatively simple cortical folding and vastly different tissue contrast 

properties can lead to great difficulties with accurate image registration, which is further compounded 

by an even lower image resolution relative to brain size (Aljabar et al. 2008, 2011, Ball et al. 2010). 

Moreover, given the marked developmental changes in brain size and shape which occur in the neonatal 

period, it is clearly inappropriate to register infant functional data either directly to any of the existing 

adult standard brain templates, or to a single infant template if the study population covers a range of 

post-menstrual ages (Kuklisova-Murgasova et al. 2010, Serag et al. 2012).       



 133 

3.3. Summary  

Despite the great potential of the technique to offer a new window into our understanding of early 

brain development, there have been only a limited number of BOLD fMRI studies in neonatal subjects 

over the last 15 years. These studies have demonstrated the feasibility of the technique, and have 

confirmed that functional localisation is present even in the immature brain. Unfortunately, a great deal 

of uncertainty still remains about the nature of BOLD responses in this population, with a number of 

older studies suggesting that a negative BOLD response is normal in early infancy. The possible 

explanation for this ambiguity is likely to be multi-factorial, and includes fundamental aspects of study 

design, image acquisition, and data analysis.   
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Chapter 4 

4. Thesis Aims and Hypotheses 

The work of this thesis was motivated by the themes summarised in the first three introductory 

chapters: firstly by the process of attempting to understand early human brain development; and 

moreover how premature birth can adversely affect it and ultimately lead to life-long pervasive 

neurodevelopmental difficulties (reviewed in chapter 1). The widespread application of MRI techniques 

both in the clinical and neuroscientific environments, has led over the last 20 years to the development 

and application of fMRI, which provides an exciting means with which to non-invasively measure and 

characterise in-vivo brain activity with a greater combination of spatial and temporal resolution than 

previously possible (reviewed in chapter 2). Despite this, fMRI has not been widely applied to studies of 

neonatal subjects, and has a disappointing history of contradictory results with an underlying 

background of inconsistent study design, methodology, and analysis techniques (reviewed in chapter 3).   

 

4.1. Thesis study plan 

I therefore planned the studies described in this thesis with the over-arching goal of attempting to 

optimise fMRI techniques specifically for use with neonatal subjects. To try and achieve this, two main 

studies were envisioned, with the first intended to test the feasibility of the technique using a simple 

somatosensory stimulus, to accurately and reproducibly detect patterns of functional activation in 

neonatal subjects. Thus, in this first study, targeted adaptations and simple restrictions were applied to 

address some of the possible sources of inconsistency, so that a truly systematic fMRI study could be 

carried out in a defined neonatal population. The second study was designed to then investigate more 

deeply whether one of the fundamental principles of fMRI, that of a robust and (intra- and inter-subject) 

consistent haemodynamic response function (HRF) holds true during the rapid sequence of brain 

development which occurs during the preterm and neonatal period. The characterisation of a 
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population-specific HRF is likely to be vital for the future application of the technique, as alterations in 

the waveform can profoundly affect some of the basic assumptions integral to both fMRI study design 

(that of the linearity and time-scale of the response), and analysis (of timing and linear behaviour in the 

standard GLM). Through a number of smaller experiments, I sought to directly investigate some of the 

characteristics of the neonatal HRF (specifically the behaviour of overlapping impulse responses), and 

expand on the knowledge gained about the development of motor function in the neonatal brain. Lastly, 

I aimed to address whether the findings of the main studies (and specifically that of the emperical age-

specific HRF) could be applied to further fMRI studies of other functional brain systems, and to study the 

effect of acquired and focal perinatal brain pathology on the pattern of functional responses.  

 

4.2. Thesis Aims           

The aims of the thesis were therefore to: 

• Perform a systematic fMRI study with neonatal subjects, and in doing so to test the 

feasibility of the technique for identifying accurate and reproducible patterns of 

functional brain activity.  

• Investigate whether fMRI can be used to characterise and investigate developmental 

aspects of brain activity in infants through all stages of the preterm and neonatal period.  

• Characterise the morphology and development of the HRF in the premature and 

neonatal human brain. 

• To investigate whether the application of an age-specific HRF would significantly 

improve the analysis of fMRI data.  

• Test the flexibility and potential of the technique to study functional brain activity 

induced by a variety of sensory stimuli, and in pathological brain states.  
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4.3. Thesis Hypotheses 

The work of this thesis was driven by the following hypotheses: 

• Well localised and positive BOLD functional responses can be identified in the neonatal 

brain using appropriate study design, methodology, and analysis. 

• The neonatal HRF differs significantly from the canonical adult waveform. 

• A systematic maturational trend exists in the morphology and parameters of the HRF 

during early human brain development. 

• The application of an age-appropriate HRF in the analysis of neonatal fMRI data will 

greatly improve the identification of functional responses.  

• The use of optimised fMRI techniques based on the findings of this thesis will allow the 

study of activity in other functional brain systems in the neonatal brain.   
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Chapter 5 

5. Characterising functional responses to hand movement with fMRI in neonatal subjects 

Functional MRI holds the exciting potential to provide novel information about both the functional and 

clinical status of an infant, and a means with which to non-invasively gain a wealth of new information 

about in-vivo brain development. In all of these respects, the rapidly maturing brain of the premature 

infant is a compelling focus for study; as little is known about the functional capacity of these infants; 

there is a clear need to address the increased risk of adverse neurodevelopmental sequelae; and in 

comparison to a growing fetus, their premature exposure to ex-utero life allows not only an easier route 

for detailed study but also a means with which to observe and test the effects of external stimulation on 

brain development.      

 

The somatosensory cortex was chosen as the ideal substrate for a stimulus based fMRI experiment in 

the preterm brain because the major anatomical landmark of the primary motor and somatosensory 

cortices (the central sulcus) can be readily identified from at least 26-28 weeks PMA (van der Knaap et al. 

1996, Battin et al. 1998, Battin & Rutherford 2002), and as robust evoked responses to peripheral 

somatosensory stimulation have been described with multimodal techniques in both preterm and term 

neonates (Erberich et al. 2006, Vanhatalo & Lauronen 2006, Nevalainen et al. 2008, Kusaka et al. 2011). 

In addition, the stimulus itself can be conceptually relatively simple, with the peripheral effects (ie: hand 

movement) easily visualised by the investigator.    

 

The goal of this first study was therefore to directly address some of the inconsistencies and challenges 

identified through review of the previously reported studies, and in doing so to test the feasibility of 

carrying out an accurate and reproducible fMRI study with neonatal subjects.  
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5.1. Somatosensory system development in early human life 

Somatosensory information in the human body is processed via a multifaceted system, which receives 

and communicates peripheral information from a range of receptors in various tissue types (such as the 

skin, muscle and joints) for central interpretation predominately in the primary somatosensory cortex of 

the contralateral hemisphere (Purves et al. 2001, Rees et al. 2010). This information is transmitted via 

two distinct ascending “three neuron” pathways which handle different forms of sensory information: 

the dorsal columns for fine touch, proprioception, and vibration; and the lateral spinothalamic tracts for 

pain, temperature, and some touch information (figure 5.1) (Tawia 1992, Purves et al. 2001, Rees et al. 

2010).     

 

The dorsal column system is fed via a diverse collection of low threshold encapsulated cutaneous 

mechanoreceptors and muscle spindle and tendon organ receptors, all of which are innervated by large 

myelinated fibres (Purves et al. 2001, Rees et al. 2010). These fibres ascend the spinal cord and synapse 

in the dorsal column nuclei of the medulla, from where the medial leminscus then decussates the signal 

to the contralateral side of the CNS, terminating in the ventral posterior aspect of the thalamus (Rees et 

al. 2010). In contrast, pain and temperature information first enters the system via a family of 

nociceptors, thermoreceptors and unencapsulated tactile receptors which then send signals to the 

dorsal horn of the spinal cord via both myelinated and unmyelinated fibres (Purves et al 2001, Fitzgerald 

2005). The “second” neuron of this system then immediately decussates to the contralateral spinal cord 

and travels upwards as the lateral spinothalamic tracts (Purves et al. 2001). Both systems reach an 

eventual target in the ventral-lateral thalamus, from where the thalamo-cortical projections relay the 

information to the primary somatosensory cortex located posterior to the central sulcus. The sensory 

representation of the body is classically depicted in the cortical “homunculus” with the feet and legs 

located at the top of the map, and with certain “sensitive” areas of the body appearing to be 
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enormously over-represented in comparison to their true physical size such as the hands, face, and 

mouth (Purves et al. 2001).    

 

 While information about the first stage of somatosensory system development in the human is sparse, 

it has been shown that reflex movements to an external stimulus can be demonstrated with in-utero 

fetuses as young as 6-7 weeks GA (Tawia 1992). The developmental timetable of pain pathways is slower 

and more dispersed with some of the projections appearing to be amongst the last to mature in the 

spinal cord (Fitzgerald 2005). Though induced electrical activity in the brainstem has been observed at 

10 weeks GA, synaptic connections and differentiation into a “primary sensory area” within the 

immature cortical plate is not seen until around 18-20 weeks GA (Tawia 1992, Rees et al. 2010). At this 

stage however, thalamo-cortical connections are far from established with their growth through the 

subplate and immature cortex taking place continuously through the third trimester of gestation 

(Kostović & Jovanov-Milošević 2006). The maturation of these connections appears to correlate with the 

gradual transformation of diffuse and undefined SSEPs in preterm infants of 25 weeks PMA, to the more 

locally restricted and distinct responses recorded after 29-30 weeks PMA (section 5.1.2) (Taylor et al. 

1996, Vanhatalo & Lauronen 2006).   
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Figure 5.1: (a) The adult ascending somatic sensory system: Stimulation in the peripheral receptor endings (1) is 

communicated up to the brain via two separate “three-neuron” routes. Pain and temperature (and some fine 

touch) information is carried via the lateral “spinothalamic tracts” (blue) with decussation occurring at the level of 

the spinal cord (2). Fine touch, joint position (proprioception) and vibration sensory information is carried up the 

“dorsal columns” (green) with decussation occurring at the level of the medulla via the medial lemniscus (3). Axons 

from both pathways then pass through the midbrain and terminate at the ventral posterior thalamus (4). The 

thalamus then projects axons out to the primary somatosensory cortex, immediately posterior to the central 

sulcus (5). (b) In the developing system of the preterm infant, the ascending dorsal column pathways are present 

and decussate at the medulla from 19-20 weeks gestation. Pain receptors are present as are the neurons to the 

spinal cord, but the spinothalamic tracts which then conduct the signal centrally continue to develop through the 

preterm period. In the brain, throughout the third trimester the axons from the thalamus are still growing through 

the immature white matter and subplate (6).   
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5.1.1. Studies of somatosensory function in neonates 

Functional activity has been demonstrated in the somatosensory system in the neonatal brain with a 

number of different assessment modalities, confirming that the pathways are both present and capable 

of conducting signals from the periphery to the central structures responsible for processing the 

information in the developing brain. It has long been known that the primary electrical activity induced 

by a somatosensory stimulus (SSEPs) can be reliably detected in the neonatal period, even at the cot-

side using a relatively simple one or two channel system (George & Taylor 1991, Karniski et al. 1992a,b, 

Pike & Marlow 2000, Vanhatalo & Lauronen 2006, Vanhatalo et al. 2009). In the preterm period, SSEPs 

have been described in infants as young as 25 weeks PMA, although the timescale and morphology of 

the typically triphasic responses are markedly different than those classically recognised in the adult CNS 

(Taylor et al. 1996, Vanhatalo et al. 2009). A general maturational trend is seen with increasing age, 

associated with a decrease in the latency of the initial deflection, a relative decrease in the prominence 

of the later slow-wave response, and a shortening of the overall duration of the response, all of which 

have been attributed to myelin associated increases in conduction time (Karniski et al. 1992b, Taylor et 

al. 1996, Vanhatalo & Lauronen 2006). The spatial location of the electrophysiological response has 

been found to be well circumscribed and is consistently first seen in the cortical hemisphere 

contralateral to the stimulus (Karniski et al. 1992b, Vanhatalo & Lauronen 2006). It has been suggested 

that SSEPs may be of value in the clinical setting as they have been found to have a high specificity for 

predicting adverse outcome in term infants following perinatal asyphxia, and in predicting Cerebral Palsy 

(CP) in preterm infants (de Vries et al. 1992, Gibson et al. 1992, Taylor et al. 1992, Pike & Marlow 2000). 

While some authors have therefore advocated the more widespread use of SSEPs as a prognostic tool 

(Vanhatalo & Lauronen 2006, Vanhatalo et al. 2009), the general enthusiasm is tempered somewhat by 

the relatively poor sensitivity (around 40-60%) of the technique (particularly in preterm infants) and an 

inability to predict the degree of later impairment (de Vries et al. 1992, Pike & Marlow 2000).   
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A number of recent studies have also been able to describe the reliable measurement of somatosensory 

evoked magnetic fields (SEFs) by MEG in neonatal subjects (Pihko & Lauronen 2004, Lauronen 2006, 

Nevalainen et al. 2008, Pihko et al. 2009). While both EEG and MEG provide information about the 

electrical activity of the cortical neurons, MEG has the advantage of being relatively unaffected by the 

differences in conductance which can arise from variations in the skull thickness and over the fontanelle 

areas (Pikho et al. 2009). Developmental studies in preterm infants have also described maturational 

changes in the latency, amplitude, and morphology of SEFs, with the characteristic adult response not 

seen until 2 years of age (Pihko & Lauronen 2004, Lauronen 2006, Pihko et al. 2009). MEG can also 

potentially yield greater spatial information than EEG, with a detailed study in full term neonates 

describing a pattern of responses across the somatosensory system with the first and largest response 

occurring invariably in the contralateral primary somatosensory cortex (Nevalainen et al. 2008).  

 

Near Infrared Spectroscopy (NIRS) and Topography have also been used to investigate the 

characteristics of the cortical haemodynamic response following passive motor stimulation in sleeping 

newborn infants (Isobe et al. 2001, Hintz et al. 2005a, Kusaka et al. 2011). Of interest, NIRS can provide a 

quantitative measure of both Hb-O2 and d-Hb, which were found to rise and fall respectively during 

passive movement of the infants’ knees and elbows, which would be in keeping with a positive BOLD 

response had it been visualised by fMRI (Isobe et al. 2001, Kusaka et al. 2011). While the three previous 

fMRI studies using a somatosensory stimulus with a population of neonatal subjects have all been able 

to identify BOLD responses, there was marked inconsistency as to both the spatial localisation and 

amplitude of the responses (see section 3.1.2) (Erberich et al. 2003, 2006, Heep et al. 2009). In the first 

study of Erberich and colleagues, a single preterm infant of 34 weeks PMA was included in their cohort 

of 7 patients, in whom they were able to identify a large cluster of positive BOLD response in the 

contralateral perirolandic area with further areas of negative BOLD change seen in the ipsilateral 
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hemisphere and the frontal areas (Erberich et al. 2003). In a later more extensive study of infants at 

term equivalent PMA, they found an interesting pattern of both contralateral and ipsilateral responses 

of mixed amplitude, with slightly less than half of the infants showing a bilateral response (Erberich et al. 

2006). In contrast, a later study by Heep and colleagues found entirely conflicting results with 

predominately negative and bilateral BOLD responses in a relatively small (5 subjects) cohort of ex-

preterm infants studied at term equivalent PMA (Heep et al. 2009).      

 

5.2. Study aims and hypotheses 

The hypothesis of this study was that well localised positive BOLD responses could be identified with 

fMRI in the neonatal brain using appropriate adjustments to the experimental design, methods and 

analysis.  

 

I aimed to directly address some of the challenges and inconsistencies which were identified in existing 

fMRI studies in the newborn period, and which may have led to the previous reporting of discrepant 

results. By addressing these challenges, I then aimed to investigate somatosensory system development 

in early human infancy by characterising the pattern of BOLD responses during the preterm period, and 

to then compare it with those detected in ex-preterm infants at term equivalent PMA and in control 

infants born at full term.  
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5.3. Methods and materials 

The study was approved by the Hammersmith Hospitals Research Ethics Committee (code: H0707/101). 

Written parental consent was obtained prior to all sessions of data acquisition, following a detailed 

discussion with myself or one my colleagues about the aims of the work and the study procedures. All of 

the data was anonymised following collection (and labelled with a study number identifier), and stored 

in encrypted and firewall protected file systems.  

 

5.3.1. Study population 

All of the subjects included in this study were recruited from the Neonatal Intensive Care Unit or 

postnatal wards of the Queen Charlotte and Chelsea Hospital, London during a period of 12 months 

between 2008 and 2009. The study group consisted of: 13 preterm infants; 19 ex-preterm infants who 

were scanned at term equivalent PMA; and 8 healthy control infants who were born at full term 

gestational age (see table 5.1). Clinical details including antenatal, birth and postnatal care were 

recorded for each patient, and a neurological assessment was carried out (Mercuri et al. 2005). Infants 

with extensive IVH diagnosed on cranial ultrasound examination (grade 3 with ventricular dilatation, or 

grade 4 with parenchymal involvement, (see section 1.4.1, (Levene & de Crispgny 1983)), other focal 

intracerebral parenchymal lesions, hydrocephalus, congenital brain malformations or metabolic 

disorders were excluded from the study group. All of the infants were assessed to be clinically safe for 

scanning prior to the data acquisition by a trained paediatrician.      

 

The ex-preterm infants were invited for a day admission to the Children’s Ambulatory Unit, 

Hammersmith Hospital following discharge from the Neonatal Intensive Care Unit. On attendance, all of 

the infants were clinically examined by a paediatrician, and the use of oral sedation was discussed with 

the infants’ parents. If consent was given, a form was signed, and oral sedation (chloral hydrate 30-50 
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mg/kg) was administered approximately 20 minutes prior to the MRI scan. Sedation was given to 15 of 

the 19 ex-preterm infants, but to none of the premature infants and only 1 of the term control infants. 

In those infants in whom it was felt it was not suitable for sedation to be given and/or the parents did 

not consent for its use, a milk feed was given (either via nasogastric tube or orally) prior to the MRI scan, 

the infant was swaddled in blankets, and encouraged to sleep naturally (“feed and wrap”).  2 of the 

preterm infants were receiving respiratory support with nasal continuous positive airway pressure 

(nCPAP) at the time of scanning, while a further 4 required low flow supplementary oxygen (range 50-

100cc) via nasal cannulae. One ex-preterm infant required supplementary oxygen via nasal cannulae at 

the time of scanning. There were no adverse incidents during the data acquisition period in any of the 

subject groups. 
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Patient 

group 

n Gestational age 

at birth  in 

weeks + days 

  

Median 

(range) 

Post-menstrual 

age at scan in 

weeks + days  

 

Median 

(range) 

 

Birth 

weight in 

grams 

 

Median 

(range) 

Birth head 

circumference 

in centimetres 

 

Median 

(range) 

Number of 

infants 

receiving 

sedation 

prior to scan 

Number of 

hours of 

mechanical 

ventilation 

 

Median 

(range) 

Number 

with blood 

culture 

positive 

sepsis in the 

neonatal 

period 

 

Number of 

infants with 

intra-

ventricular 

haemorrhage 

Preterm 13 29+4 

(25+4 - 34+0) 

 

31+1 

(27+1 – 35+3) 

1037 

(795 – 

2374) 

26.5 

(22 – 33) 

0 0.5 

(0 – 120) 

1 Grade 1: 0 

Grade 2: 0 

Grade 3: 0 

Grade 4: 0 

Term 

control 

8 40+3 

(36+3 – 41+6) 

 

40+4 

(36+5-43+0) 

3571 

(2176 – 

4242) 

34.5 

(32 – 28.9) 

1 0 

(0 – 0) 

0 Grade 1: 0 

Grade 2: 0 

Grade 3: 0 

Grade 4: 0 

Ex-preterm 

at term 

equivalent 

age 

19 30+5 

(25+4 – 36+0) 

42+0 

(39+0 – 44+6) 

1050 

(795 – 

2430) 

27.5 

(22 – 33) 

15 0.5 

(0 – 126) 

1 Grade 1: 3 

Grade 2: 0 

Grade 3: 0 

Grade 4: 0 

 

Table 5.1: The study population, with corresponding birth and clinical characteristics. (table published in Arichi et al. 2010). 
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5.3.2. Image acquisition 

MR imaging was performed on a Philips Achieva 3T system (Best, Netherlands) with a standard eight 

channel phased array “birdcage” head coil, located on the Neonatal Intensive Care Unit in the Queen 

Charlotte and Chelsea Hospital (figure 5.2(a)). All scans were performed by a specialist radiographer and 

at least one clinician trained in neonatal resuscitation. The infants' temperatures, arterial oxygen 

saturations and heart rates were monitored throughout the scan (figure 5.2(b)). Ear protection was used 

in all infants in the form of dental putty and adhesive ear muffs (Minimuffs, Natus Medical Inc, San 

Carlos CA, USA), and the head was immobilised using a polystyrene bead filled pillow from which the air 

was evacuated.   

 

  

Figure 5.2: (a) Images were acquired on a 3-Tesla Philips MRI scanner in the neonatal intensive care unit, Queen 

Charlotte and Chelsea Hospital. (b) The infants’ physiological parameters were monitored throughout the period 

of data acquisition. Prior to the scan, acoustic protection was applied (dental putty and adhesive ear muffs), ECG 

leads were applied to the chest, a temperature monitoring lead was fixed into the axilla, and an oxygen saturation 

probe was fitted to the foot. (Figure 2(b) courtesy of Serena Counsell)    

  

3D dual echo-weighted (proton density and T2-weighted), and 3D MPRAGE T1-weighted images were 

acquired for all infants to provide clinical information and to act as a high resolution image with which 
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the functional data could be registered (parameters shown in table 5.2, (Merchant et al. 2009)). All 

structural images were also reviewed and fully reported by a Neonatal Neuroradiologist, and any 

resultant clinical implications were fully discussed with parents and relevant members of the clinical 

team. 

 

 

Table 5.2: Pulse sequence parameters for the routine neonatal MRI examination at the time of study. For optimal 

image quality, sequences were repeated as necessary, but the total duration of the MR examination was limited to 

60 minutes (table reproduced from Merchant et al. 2009).  

  

Functional MR data was acquired with an EPI sequence lasting a total of 6 minutes and 30 seconds with 

the following parameters; TR 1500 msec, TE 45 msec, flip angle 90o, 22 slices, matrix 80*64, voxel size 

2.5 mm2, slice thickness 3.25 mm, slice gap 0.75mm, and total 256 volumes. 4 “dummy scans” which are 

not included in the final image analysis were included at the start of each fMRI sequence to ensure spin 

system steady state was reached prior to data acquisition. DTI data was also acquired from 9 infants (2 

preterm, 2 term control and 5 ex-preterm) during the same image acquisition session as the fMRI data. 

Data was acquired with a single shot EPI sequence lasting 5 minutes and 50 seconds in 32 non-collinear 

directions with a b-value of 750 s/mm2 and the following parameters; TR 9000 msec, TE 49 msec, matrix 

128*128, voxel size 1.75mm2, slice thickness 2mm. 
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5.3.3. Somatosensory stimulus 

The somatosensory stimulus was designed and manufactured in collaboration with the Human Robotics 

Group of the Bioengineering department, Imperial College London. The initial design was in large part 

inspired by the work of Erberich and colleagues, who used an inflatable rubber bulb placed in their 

subjects’ palms to passively open and close the hand (Erberich et al. 2003, 2006). A major limitation of 

the stimulus utilised in their work was that it was manually controlled, which is likely to have lead to an 

inconsistent pattern of stimulation, involving aspects such as the time of onset, amplitude, and 

frequency.  

 

Working in close collaboration with a bioengineering MSc student (Amélie Moraux), a simple 

somatosensory stimulus suitable for fMRI experiments of neonatal subjects was designed and 

implemented with the following specifications:   

 

• Completely metal free and fMRI compatible (Gassert et al. 2008). 

• Able to provide stimulation synchronised with fMRI acquisition. 

• Able to induce custom passive motor stimulation patterns at a controlled amplitude and 

frequency to elicit robust functional responses. 

• To be able to monitor the operation of the stimulus remotely to ensure consistent stimulation 

was occurring and that no potentially harmful events could occur.   

• Light and small enough to avoid the infant suffering movement restriction and/or discomfort.  

• Mechanically safe to avoid distress or possible harm to the infant. 

• Able to be easily cleaned to prevent infection spreading from one infant to another. 
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5.3.3.1. Stimulus design and architecture 

The somatosensory stimulus consisted of a tailor-made inflatable balloon, a control box and 

customisable software (see figure 5.3). As an additional safety feature, a locking emergency stop button 

was attached to the control box. The control box contains a pressure regulator valve controlled by 

software on a standard PC, both of which are connected to the MRI scanner via a Data Acquisition Card 

(DAQ) (National Instruments, Austin TX, USA) (figure 5.4). The DAQ allows integration of the control box 

and software with the MRI scanner “sync” port via a standard coaxial cable and BNC connector (Bayonet 

Neill-Concelman connector). Precise stimulation timing and synchronisation with functional image 

acquisition is therefore possible as this connection can be used to detect the transistor-to-transistor 

logic (TTL) pulse emitted by the scanner (if specified in the set-up of the MR acquisition sequence; 

usually set to occur at the start of each TR).  

 

 

Figure 5.3: Schematic diagram of the device used to create the somatosensory stimulus during the fMRI image 

acquisition. Synchronisation with the MRI scanner was achieved via the Data Acquisition Card within the control 
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box outside the examination room. Somatosensory stimulation is achieved by Inflating the balloon (placed in the 

subject’s right hand) resulting in passive finger extension, with deflation resulting in flexion. (figure published in 

Arichi et al. 2010). 

 

 

 

Figure 5.4: (a) The stimulus control box is kept in the scanner console room. (b) Precise measurement and control 

of the stimulus is achieved with a data acquisition card (yellow arrow), and a pressure regulator valve (red 

arrow).   

 

The balloon is composed of 2 layers of latex around a nylon mesh, which allows it to inflate in a uniform 

(and controlled) manner, and to be easily cleaned (see figure 5.5(a); the manufacturing process of the 

balloon stimulus is described in appendix a). The balloon itself is entirely metal free, with inflation and 

deflation possible via a 7m plastic pipe connected to the control box outside the examination room. The 

control box is connected to the medical air wall supply, with opening and closing of the pressure 

regulator valve within responsible for control of the balloon inflation/deflation. Three sizes of balloon 

were developed for neonatal, 2 year old infant, and adult subjects, based on initial plaster casts made 

from the hands of age-appropriate volunteers.  
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Figure 5.5: (a) A custom made inflatable balloon was developed as a MR safe somatosensory stimulus. The 

balloon is composed of 2 layers of latex around a nylon mesh. (b) Prior to image acquisition, the appropriately 

sized balloon was placed in the right hand of the subject. To prevent the balloon slipping out during image 

acquisition, it was loosely strapped in with a self-adhesive bandage (not shown). 

 

Prior to each MRI session, the balloon was sized and placed in the right hand of each subject (see figure 

5.5(b)). To prevent the balloon from slipping out the subjects hand during the MRI scan, a loose self-

adherent strap was applied around the subject’s hand (Coban, 3M, St. Paul MN, USA). Inflation of the 

balloon resulted in passive extension of the fingers, while deflation allowed flexion. Using the software 

interface on the PC (described in 5.3.3.2), the amplitude of balloon inflation was adjusted appropriately 

for hand size (balloon volume range 1.2cm3 – 3.1cm3).  

 

5.3.3.2. Stimulus control 

Precise control of the pattern of stimulation was achieved with a customisable programme developed 

within the Labview software environment (v8.1 2009, National Instruments, Austin TX, USA). Via the 

DAQ, the software allows the complete integration of the acquired information (from the scanner, air 

supply, and the device itself). Programmes developed with Labview have a “front panel” window which 
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can act as a Graphical User Interface (GUI), allowing the simple selection of the stimulation parameters 

(in this case: the frequency, amplitude, and length of stimulation) (figure 5.6). In addition, a real-time 

graph representing the air pressure output from the control box is included on the front panel to allow 

the investigator to monitor the operation of the stimulus. The stimulus can be stopped either via the 

front panel interface, or by pressing the emergency button if necessary.         

 

 

Figure 5.6: The front panel of the Labview programme acts as a GUI for the investigator. The stimulation 

parameters (frequency, amplitude, length) can be specified in the boxes on the top left of the interface. The graph 

shows the air pressure output from the pressure regulator valve responsible for balloon inflation. This allows the 

investigator to monitor the timing and amplitude of the stimulation, and helps to ensure subject safety.  

 

5.3.3.3. Experimental design  

Prior to use with human subjects, it was confirmed that the device was completely MR safe and 

compatible (Gassert et al. 2008). It was first tested on three healthy adult volunteers to ensure that 

characteristic patterns of functional activation could be identified (figure 5.7). Using a simple block 

stimulation paradigm, a large cluster of functional activation could be identified in the primary 

somatosensory cortex contralateral to the side of stimulation in all three subjects. In addition, as has 

been described in a number of previous fMRI studies of the somatosensory system, additional areas of 
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activity were also seen in the ipsilateral somatosensory cortex, the supplementary motor area, the 

premotor cortices, and the cerebellum (Bandettini et al. 1992, Hirano et al. 2011, Harmer et al. 2012).   

 

 

 

Figure 5.7: The somatosensory stimulus was found to produce characteristic patterns of intra-cerebral activation 

in a healthy right handed 54 year old volunteer. Following passive motor stimulation of the right hand, a large 

cluster of functional activity could be seen in the contralateral (left) primary somatosensory cortex (images a,b,d); 

in addition smaller clusters of activity were seen in the ipsilateral somatosensory cortex (images a,c,d), the 

bilateral premotor cortices (image e), the supplementary motor area (image d), and the ipsilateral cerebellum 

(images c,f). In the corresponding BOLD signal timeseries (average derived from the most significant cluster of 

activity), the data (red) can be seen to closely fit the design matrix (model fit shown in blue). 
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For the full study, a simple block stimulation paradigm was chosen and programmed onto the PC 

interface, with alternating periods lasting 24 seconds each (16 TRs) (figure 5.8). During each “on” period, 

the subject received a periodic sinusoidal inflation/deflation stimulus at a frequency of 0.33 Hz. A 

sinusoid waveform was chosen to obtain a smooth pattern of progressive inflation/deflation in the 

balloon. The rate of stimulation was empirically chosen so as to provide a gentle pattern of stimulation 

which would not unduly cause the baby discomfort; and to allow sufficient time for the desired volume 

of balloon inflation and then complete deflation to occur. During each “off” period, the balloon was kept 

in deflation by complete closure of the valve in the control box. A total of 8 blocks of stimulation were 

presented during the 6 minute and 30 second image acquisition sequence.  

 

 

Figure 5.8: A simple block paradigm was used for the somatosensory stimulus. Equal periods of 24 seconds 

activity (“on”) were alternated with period of rest (“off”). The initiation of the stimulus was synchronized with the 

scanner TR via detection of the TTL pulse produced. During periods of activity, the balloon inflated and deflated 

with a sinusoidal waveform at a frequency of 0.33 Hz. (figure published in Arichi et al. 2010). 
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5.3.4. fMRI data analysis 

All data was analysed off-line using tools implemented within FSL (FMRIB, Oxford, UK, 

www.fmrib.ox.ac.uk/fsl, Smith et al. 2004).  

 

5.3.4.1. Individual subject analysis 

Individual subject “lower-level analysis” was performed using FEAT (FMRI Expert Analysis Tool, version 

5.98). Pre-statistics processing steps were applied to all data sets as implemented in FEAT v5.98 (see 

section 2.3.2); including slice-timing correction (for slice acquisition from the bottom slice up), non-brain 

tissue removal (using BET (Brain Extraction Tool v2.1)), spatial smoothing (FWHM 5mm), global intensity 

normalisation and highpass temporal filtering (cut-off 50 seconds) (Woolrich et al. 2001, Jenkinson et al. 

2002). Data sets were assessed and corrected for motion using MCFLIRT (FSL’s intra-modal motion 

correction tool) which estimates absolute and relative displacement through the entire image time-

series (Jenkinson et al. 2002). If the motion was found to be isolated specifically to either the start or 

end of the sequence, then the relevant volumes were deleted and the analysis adjusted accordingly to 

account for any change in stimulation phase or total sequence length. Following appropriate deletion, 

the minimum number of volumes used for analysis was 128 (or 4 full blocks of stimulation and rest). 

Additional data denoising was performed using MELODIC version 3.0 (Model-free FMRI analysis using 

Probabilistic Independent Component Analysis (PICA) v3.0 (Beckmann and Smith 2004)). Independent 

components were assessed for their spatial representation and frequency power spectrum, and those 

that were judged to represent physiological noise or motion artefact were then filtered from the data 

prior to further statistical analysis. 

 

 A general linear model (GLM) was used to define the observed data using a convolution of the 

experimental design (box-car function of the time course of somatosensory stimulation) and an optimal 
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basis set representing a dispersion range of possible HRF waveforms generated using FLOBS (FMRIB’s 

linear optimal basis sets, v1.1) (see section 4.3.4.2) (Woolrich et al. 2004). The detected motion 

estimates (translations and rotations) were included in the GLM analysis as confounding variables. 

Parameter estimates for each of the explanatory variables and basis functions were then convolved in 

the GLM, and then converted to a t-statistic image by dividing by the relevant standard error (which is 

derived from residual noise after the complete model fit). The t-statistic image was then converted to a 

z-statistical score image, and a threshold of 2.3 with a corrected cluster significance level of p<0.05 was 

then used to generate spatial maps of activated voxels on an individual subject level. For visualisation 

purposes,  all of the activation maps were registered to the individual subject’s high resolution structural 

T2-weighted image using FMRIB’s linear image registration tool (FLIRT) version 5.5 (Jenkinson 2002). 

 

5.3.4.2. Linear Basis sets 

Given the uncertainty with respect to the appropriate choice of HRF for fMRI analysis with neonatal 

subjects (see section 3.2.5), an optimal set of linear basis functions representing a dispersion range of 

possible HRF waveforms was convolved in the GLM instead of the canonical HRF (Woolrich et al. 2004). 

Although there are a number of different implementations of the technique (within different functional 

imaging analysis software packages), the principle is as first described by Friston and colleagues (1995b) 

(Lindquist et al. 2009). The technique is possible as the linear combination of basis functions (convolved 

with the model of stimulation) can be done within the GLM framework, thereby allowing flexibility as to 

the onset and parameters of the measured response in a given subject and greatly increasing analysis 

sensitivity (reviewed in Steffener et al. 2010, Monti 2011). A typical example of this approach is the use 

of a temporal derivative function, which individually does not model a recognised functional response, 

but in linear combination with the canonical HRF will model a delay in onset and/or an initial dip in the 

response (Friston et al. 1995b, 1998a).  
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In this work, this was achieved with the FLOBS toolkit, as implemented in FSL (Woolrich et al. 2004). This 

approach randomly samples the delay and height parameters from a pre-specified range (in this study, 

the default range of values was used) and then generates various possible HRF waveforms. A set of 

“optimal” basis functions is then created using principal component analysis to maximally span the 

subspace of the previously generated HRF samples. As standard (and in this study), three basis functions 

are usually generated (as shown in figure 5.9 below). Statistical analysis of the functional data is then 

performed for each individual voxel of the data set, and the best fit for the data can be identified via a 

weighted linear combination of the basis functions in an F-test. The FLOBS technique has the advantage 

of avoiding a potential and major drawback of basis functions which is the modelling of non-sensical HRF 

shapes, but still allows a large span of the possible HRF subspace (figure 5.9(b)) (Woolrich et al. 2004). Of 

importance, this also allows equal fitting of different shaped HRFs (such as those with an initial dip or 

deep post-stimulus undershoot) without bias towards a predefined shape. 

 

While the use of basis functions greatly improves analysis sensitivity, it can potentially lead to less 

statistical power and fewer degrees of freedom (Lindquist et al. 2009). A further limitation is that the 

ideal method of aggregating or comparing data in a group analysis is still not clear; with some 

investigators advocating including only the results derived from the primary basis function (thus 

negating the advantages gained from using them in the lower level analysis) (Steffener et al. 2010, 

Monti 2011). To avoid this drawback, the higher level analysis in this study was performed using 

permutation methods (rather than a more traditional GLM based method), which allowed the lower 

level complete F-test statistical maps to be used for group level inference (see section 2.3.4.2) (Nichols & 

Holmes 2002).    
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Figure 5.9: To allow the analysis to have flexibility for the possible differences in HRF shape, linear basis 

functions were used in the GLM analysis. (a): Three basis functions were generated using FLOBS (FSL’s linear 

optimal basis sets); with the primary basis function (blue) representing the canonical response, the second (green) 

representing the temporal derivative which allows for variation in response onset, and the third (ref) representing 

a dispersion derivative which allows for variation in the temporal spread and rate of response. (b): The weighted 

combination of these three basis functions can maximally span the possible HRF subspace; to avoid the modelling 

of non-sensical HRF waveforms, FLOBS “constrains” the samples using principal component analysis.     

 

5.3.4.3. Standard template registration 

At the time of conducting this study, there was no widely available neonatal “standard” brain template 

MR image. Given that marked structural and development changes are known to occur from birth 

through to adulthood, it was clearly inappropriate to register the functional data to any of the existing 

standard adult brain templates (Battin et al. 1998, Battin & Rutherford 2002, Kuklisova-Murgasova et al. 

2011, Serag et al. 2012). To address this problem, 2 custom neonatal brain templates were constructed 

by the non-linear transformation of high resolution T2-weighted images. The preterm standard brain 

template was generated from 13 subjects (median PMA 33 weeks and 4 days, range 33+1 to 35+6); and 

the corresponding term PMA standard brain template was generated from 19 ex-preterm at term 

equivalent PMA subjects (median PMA 40 weeks and 2 days, range 39+4 to 42+6). The infants used for 
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the construction of these templates were from a separate cohort than those studied in this fMRI 

experiment. The T2-weighted images of ex-preterm infants were used for the term standard brain 

template generation, as it has been shown previously that brain volume and growth is preserved in 

clinically healthy ex-preterm infants at term corrected gestational age, provided there is no evidence of 

chronic problems such as bronchopulmonary dysplasia (Boardman et al. 2007). The T2-weighted image 

of each of the subjects was registered into stereotaxic space by a non-affine co-ordinate transformation 

as implemented in FNIRT version 1.0β (FMRIB’s non-linear image registration tool). The resultant images 

were then averaged, and single template images were generated for the two subject groups (figure 

5.10).  

 

   

Figure 5.10: Custom neonatal brain templates were made to act as a standard space for the higher level 

functional analysis. The templates were made by non-linear registration of T2-weighted neonatal images into 

stereotaxic space and then averaging. Two templates were made, for the preterm (rows a,b,c) and term equivalent 

PMA groups (rows d,e,f).  
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5.3.4.4. Higher level analysis  

Higher level group analysis was performed using FSL Randomise version 2.1, which utilises permutation 

methods for inferring trends in statistical maps where the null distribution is unknown (Nichols & 

Holmes 2002). This approach was suitable for this study, as not only was the data sampled from a 

population of unknown distribution, but also as it circumvents the potential problems of aggregating 

results derived from lower-level analyses using basis functions (Steffener et al. 2010, Monti 2011). The 

individual subjects’ F-test statistical images were first registered to the appropriate custom template 

brain using linear registration. These were then combined to form a single 4D data set, and 5000 

permutations of the data were then generated. A non-parametric one sample t-test was then used to 

identify suprathreshold clusters with 5mm of variance smoothing. A false discovery rate (FDR) 

calculation was used to correct for multiple comparisons with a p-value threshold of p<0.05.  

 

5.3.5. Probabilistic tractography 

To further probe the anatomical plausibility of the fMRI results, the structural connectivity of the 

identified clusters of activity were qualitatively assessed using DTI probabilistic tractrography. The DTI 

data was pre-processed and analysed using the FMRIB diffusion toolbox (FDT, version 2.0) implemented 

in FSL (Smith et al. 2004). Image artefact secondary to eddy current distortions were minimised by affine 

registration of the DT images to the “b0 image” (the first non-diffusion weighted volume of the 

sequence, also referred to as the “reference volume”). Images were brain-extracted to remove all non-

brain tissue using the Brain Extraction Tool (BET) and fractional anisotropy (FA) maps were then 

generated using a diffusion tensor model as implemented in DTIFIT (Behrens et al. 2003b). Local 

diffusion directions were then calculated using BEDPOSTX (Bayesian Estimation of Diffusion Parameters 

Obtained using Sampling Techniques, X stands for modelling crossing fibres) which runs Markov Chain 

Monte Carlo sampling to build voxel-wise diffusion parameter distributions (Behrens et al. 2003b, 2007). 
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Probabilistic tractography was then performed using the maximally activated voxel from the fMRI GLM 

analysis as a seed area (following linear registration into diffusion space).  

 

5.4. Results 

Functional data was collected from 13 preterm infants, of which 2 data sets were later discarded due to 

image and motion artefacts associated with the nCPAP respiratory support required during the scan. 11 

infants were therefore included in the analysis; with a median GA of 30 weeks and 4 days at birth (range 

25+4 to 34+0), a median PMA of 33 weeks and 4 days at the time of scanning (range 29+1 to 35+3), a 

median birth weight of 1225g (range 795g to 2374g), and a median head circumference of 27.2cm 

(range 22cm to 33cm). The youngest infant from whom data was successfully collected was of PMA 

29+1 weeks at the time of scanning.  

 

Data was also collected from 19 ex-preterm infants at term equivalent PMA, of which 1 infant was 

excluded due to the presence of diffuse white matter abnormality, significant ventricular asymmetry 

and cerebellar abnormalities, following intraventricular haemorrhage and subsequent venous infarction 

during the preterm period. 18 infants were thus available for analysis of median GA at birth of 30 weeks 

and 5 days (range 25+4 to 36+0), with a median PMA at the time of scanning of 42 weeks (range 39+0 to 

44+6), a median birth weight of 1305g (range 795g to 2374g) and median head circumference at birth of 

26.6cm (range 22cm to 33cm). Eight control infants who were born at term GA were also scanned, of 

whom 2 were excluded due to excessive motion throughout the data set. The remaining 6 infants 

included in the analysis were of median GA 40 weeks and 3 days at birth (range 36+3 to 41+6), median 

PMA 40+4 days at the time of scanning (range 36+5 to 43+0), median birth weight 3586g (range 2176g 

to 4242g), and median birth head circumference 35cm (range 32cm to 38.9cm).    
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The median absolute head displacement in the sedated subjects was 0.19mm (total 16 subjects, range 

0.05 – 3.54mm), as compared to 0.79mm in the un-sedated subject group (total 22 patients, range 0.08 

– 6.54mm). In the 4 patients discarded from the analysis for excessive motion (all of whom were un-

sedated during image acquisition), the median absolute displacement was 3.09mm (range 1.52 – 

6.52mm).    

 

5.4.1. Preterm group 

Following stimulation of the right hand, clusters of well localised positive BOLD contrast activation were 

identified in the contralateral (left) primary somatosensory cortex of 9 of the 11 preterm infants 

(example shown in figure 5.11(a,b)), with predominately negative BOLD responses seen also in the 

contralateral somatosensory cortex in the remaining two infants (PMA at scanning: 34+1 weeks and 

30+1 weeks). A pattern of bilateral positive responses in both primary somatosensory cortices was seen 

in only 1 of the 11 infants (PMA at scanning 31+3 weeks). A large contralateral cluster of positive BOLD 

activity was identified posterior to the central sulcus in the putative primary somatosensory cortex of 

the youngest infant from whom data was successfully collected (29+1 weeks PMA) (figure 5.11(c)).  
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Figure 5.11: Example fMRI results in individual preterm subjects following passive movement of the right hand. 

The thresholded statistical maps  (with a corrected cluster significance of p<0.05) have been overlaid on the 

subject’s own T2-weighted image. (a) In a 34+2 weeks PMA infant (born at 33+5 weeks), a well localised cluster of 

positive BOLD activity can be seen in the contralateral primary somatosensory cortex. (b) In the corresponding 

timeseries, the data from the cluster of activity (red trace) can be seen to rise during periods of stimulation (model 

fit shown in blue). (c) A large area of contralateral positive BOLD activation could also be seen in the youngest 

infant (29+1 weeks PMA, born at 27+1 weeks PMA). (figure (c) has been published in Arichi et al. 2010).  

 

The group analysis of 11 preterm infants (figure 5.12) identified a small but extremely well localised 

cluster of positive BOLD activation in the contralateral primary somatosensory cortex only with a 

median percentage signal change during stimulation of 1.0% (range -2.9% to +2.5%). No additional areas 
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of co-activation could be significantly identified in any of the associative motor areas. A group analysis 

specifically for negative BOLD responses (by aggregating the inverse contrast of the primary basis 

function) did not identify any significant clusters.  

 

 

Figure 5.12: Group analysis of 11 preterm infants (median PMA at scan 33+4 weeks). The results of a FDR 

corrected t-test performed using non-parametric permutation methods have been overlaid on a custom T2-

weighted brain template. A well localised cluster of positive BOLD functional activation was seen only in the 

contralateral (left) primary somatosensory cortex. (figure has been published in Arichi et al. 2010).   

 

5.4.2. Term Control group 

fMRI data was successfully acquired from 6 healthy infants born at full term gestation, one of whom was 

sedated for the period of scanning. The group analysis of the 6 patients identified a cluster of positive 

BOLD activation in the contralateral left primary somatosensory cortex. In addition, a central area of 

activation in the SMA, and a further small area of activity in the cerebellum were also identified (figure 

5.13). A median percentage signal change during stimulation of 0.8% (range -0.9% to +2.0%) was seen in 

the group.  
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Figure 5.13: Group analysis of 6 healthy full term control infants (median PMA at scan 40+3 weeks). In addition to 

the main cluster of activity seen in the left primary somatosensory cortex, additional areas of activity are also seen 

in the supplementary motor area (figure c) and the cerebellum (d,e,f). (figure has been published in Arichi et al. 

2010).  

  

5.4.3. Ex-preterm at term equivalent PMA group 

All of the ex-preterm infants at term equivalent age had a detailed neurological examination performed 

at term CGA by an experienced paediatrician, and none were found to have either significant or focal 

neurological deficits at the time of scanning (Mercuri et al. 2005).  

 

A BOLD response was observed in the contralateral primary somatosensory cortex in all 18 of the ex-

preterm infants who were scanned at term equivalent PMA. Of these, 8 infants (44.4%) displayed 

bilateral activity in both primary somatosensory cortices. 14 of the 18 infants had a predominately 

positive BOLD response in the primary somatosensory cortex contralateral to the side of stimulation 

(78%). Group analysis identified an area of contralateral positive BOLD activation in the primary 
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somatosensory cortex, with a median percentage signal change of 0.7% (range -3.5% to +1.8%) during 

periods of activity (figure 5.14). In contrast to the other study groups, a coexisting cluster of negative 

BOLD signal change was also seen in an overlapping area in the contralateral somatosensory cortex, as 

well as in the contralateral primary motor area (figure 5.14, images a,b,c). Ipsilateral activity was seen 

posterior to the central sulcus, but inferior to that seen on the contralateral side, in an area which may 

correspond to the secondary somatosensory cortex (figure 5.14, images a,d,g). In addition, activity was 

also identified above the sylvian fissure in the inferior premotor cortex on the contralateral side (figure 

5.14, images b,e), in the contralateral basal ganglia (figure 5.14, image f), and ipsilateral cerebellum 

(figure 5.14, images h,i). 
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Figure 5.14: Group analysis of 18 ex-preterm infants studied at term equivalent PMA (median PMA at scan 42 

weeks). A more widespread pattern of activation can be seen in this study group, and in contrast to the other 

study groups, co-existing clusters of both positive (red-yellow) and negative (blue) BOLD responses were identified. 

A well localised cluster of positive activation is present in the contralateral (left) primary somatosensory cortex; in 

addition, a small overlapping area of negative BOLD response can also be seen on the contralateral side both 

anterior and posterior to the central sulcus (images a, b, c). Activity is also present in the ipsilateral inferior post-

central gyrus (images a, d, g), in the midline SMA (images d, h), in an area superior to the sylvian fissure in the 

contralateral cortex (images b,e), the contralateral basal ganglia (images f, g), and the ipsilateral cerebellum 

(images h, i). (figure has been published in Arichi et al. 2010).  
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A small number of infants (5) had both a preterm and term equivalent MRI scan performed. In these 

individual subjects, as seen in the group analysis, the pattern of response was seen to increase with age, 

with additional areas of response seen in the ipsilateral hemisphere and SMA (figure 5.15).    

 

 

Figure 5.15: 3D-rendered T2-weighted MR images of the same preterm infant studied at 34+2 weeks PMA and at 

term equivalent PMA. A striking increase in the folding of the cortical surface can be seen to have occurred over 

just 6 weeks of ex-uterine life. In the preterm period (images A,B), a single cluster of positive BOLD response (red) 

can be seen in the left somatosensory cortex. At term equivalent PMA (images C,D), in addition to this cluster in 

the left hemisphere, an area of negative BOLD response (blue) was also seen inferiorly and anteriorly in the 

ipsilateral hemisphere. (note: as images have been rendered in 3D, they are not shown orientated in the 

radiological convention).       
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5.4.4. Probabilistic tractography  

In a small subset of patients on whom it was possible to acquire both fMRI and DTI data of high quality, 

the structural connectivity of the functional results was further assessed qualitatively by performing 

probabilistic tractography. This was done with DTI data collected from 9 infants; 2 preterm infants of 

median GA 28+6 weeks at birth and PMA 32+2 weeks at scanning; 2 term control infants of median GA 

39+0 weeks at birth and PMA 39+5 weeks at scanning; and 5 ex-preterm infants at term equivalent PMA 

of median GA 27+1 weeks at birth and PMA 42+0 weeks at scanning. The probabilistic tractography from 

a seed area defined as the maximally activated voxel from the fMRI analysis identified significant and 

well localised connectivity distributions running from the area of functional activation, through the PLIC, 

and down to the ipsilateral cerebral peduncle. These distributions therefore followed the known 

pathway of the cortico-spinal tract (figure 5.16). Visually, the pattern of connectivity appeared to be 

more dispersed at term equivalent PMA, with a significant part of the distribution seen to cross the 

midline via the corpus callosum (figure 5.16, images d,e,f). In comparison during the preterm period, the 

connectivity distribution appeared to be simpler, with the main pathway appearing to only follow the 

trajectory of the cortico-spinal tract (figure 5.16, images a,b,c). The mean fractional anisotropy (FA) was 

seen to increase within the identified tracts from 0.169 (range 0.152-0.180) in the preterm group, to 

0.193 (range 0.191-0.194) in the term control group, and 0.219 (range 0.185-0.244) in the ex-preterm 

group.       
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Figure 5.16: The anatomical plausibility of the fMRI results was confirmed by performing DTI probabilistic 

tractography using the maximally activated voxel from the functional analysis as a seed area. In a preterm infant 

(35+3 weeks PMA), a significant and well localised connectivity distribution was identified running from the area of 

functional activation in the cortex, down through the PLIC (images a,b,c). In comparison, at term equivalent PMA, 

a more diffuse pattern of interhemispheric connectivity is seen, with a clear pathway across the corpus callosum in 

addition to the primary tract. 
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5.5. Discussion  

In this first study, it was shown that through the combination of a carefully designed (and appropriate) 

stimulus and an adapted image processing and analysis pipeline, it is possible to identify well localised 

BOLD responses with fMRI in neonatal subjects. In the majority of infants, robust positive BOLD 

responses were identified as demonstrated by the findings of the more systematic group analyses. In 

addition, we were able to demonstrate for the first time using fMRI, well localised and reliable BOLD 

responses in the primary somatosensory cortex of premature infants. Furthermore, at term equivalent 

PMA, the results suggested a maturational tendency towards increasing bilaterality and complexity in 

the pattern of activation. 

 

5.5.1. Development of somatosensory activation 

Consistent and well localised patterns of functional activation were identified following somatosensory 

stimulation in neonatal subjects, both during the preterm period and at term equivalent PMA. Of 

interest, the results of this first study of preterm infants do not support either the hypothesis that 

hemispheric lateralisation increases linearly in the first few months of life, or the suggestion that an 

extensive bilateral representation in the more immature brain is replaced by exclusive contralateral 

localisation at  3 to 9 months (Erberich et al. 2006). In the preterm subject group, we were able to 

identify robust patterns of unilateral (and contralateral) activation, and not the widespread bilateral 

responses predicted by that hypothesis. Moreover, while previous studies of infants at term equivalent 

PMA have found mixtures of either predominately positive or negative BOLD responses with unilateral 

and bilateral activation (Erberich et al. 2003, 2006, Heep et al. 2009), the equivalent groups in this study 

showed a consistent pattern of predominately positive BOLD response in the contralateral 

somatosensory cortex with associated involvement of the supplementary and premotor areas, 

compatible with the complex patterns of response seen in studies of older children and adults (Mall V et 
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al. 2005, Guzzetta A et al. 2007). The findings of this study are in agreement with those described in a 

recent neonatal MEG study which found a principal response in the contralateral primary 

somatosensory cortex, with later responses seen inferiorly in the bilateral secondary somatosensory 

cortices (located inferiorly, adjacent to the sylvian fissure) and less consistently in the ipsilateral primary 

somatosensory cortex (Nevalainen et al. 2008).   

 

Although performed on a relatively small subset of only 9 infants, it was possible to further provide 

anatomical validation of the identified functionally active regions with probabilistic tractography. At 

term equivalent PMA, a far more diffuse connectivity distribution was identified, suggesting that a 

maturational increase in structural connectivity may underlie the more complex pattern of functional 

responses. The somatosensory and motor systems are known to display a marked capacity for neural 

plasticity, with the development of the appropriate pathways largely dependent on regular tactile and 

proprioceptive stimulation which provide feedback during infancy (Fox & Wong 2005). It is also known 

that during the third trimester of gestation, thalamo-cortical axons are still establishing connections 

through the highly vascular subplate zone, with cortico-cortico and transcallosal connections yet to be 

fully established (Kostović & Jovanov-Milošević 2006). The activity-dependent maturation of these 

pathways may in part explain the results of this study as the relatively “simple” preterm system has not 

yet developed the more complex intra- and inter-hemispheric projections seen in later life.  

 

5.5.2. Explaining negative BOLD 

In contrast to a number of previous fMRI studies in early infancy, we were able to identify 

predominately positive BOLD responses across all of our subject groups, which are generally consistent 

with the results seen in adult fMRI studies (see chapter 3) (Bandettini et al. 1992, Hirano et al. 2011, 

Harmer et al. 2012). In this study, I aimed to address some of the possible sources of inconsistency 
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present in previous studies, and therefore carry out a thorough and systematic study. Clinical and 

developmental variance was accounted for by intentionally restricting the age ranges of the study 

groups, and by excluding all infants with possible clinical confounders. Methodologically, somatosensory 

stimulation was performed using a developmentally appropriate device which was reliable and 

consistent, fully synchronised with image acquisition, and could be carefully controlled. In the analysis, a 

set of linear basis functions was used to provide a flexible characterisation of the HRF within a 

traditional GLM analysis, a custom made neonatal brain template was used to allow a higher level 

analysis, and then a non-parametric permutation technique was implemented to reduce the effects of 

between subject variance and noise and identify group patterns of activity.   

  

In the term equivalent PMA infant group analysis, we were able to identify co-existent patterns of 

negative BOLD response in addition to the expected clusters of positive BOLD response. The 

identification of negative BOLD accompanying canonical positive BOLD responses is not exclusive to 

paediatric studies, with animal and adult data suggesting they are a concomitant component of the 

normal response to stimuli together with the well described positive activity (Allison et al. 2000, Smith 

AT et al. 2000, 2004, Shmuel et al. 2002, 2006, Kastrup et al. 2008, Klingner et al. 2010). Historically, 

negative BOLD responses were frequently disregarded by investigators as noise artefacts, and were 

often not properly accounted for in the analysis (as they will not be identified unless the inverse 

response is specifically modelled for in the GLM, or checked for in the results). There is a degree of 

evidence to support this stance, as negative BOLD responses have been shown to be readily identified in 

areas devoid of neural tissue, where they may simply reflect increases in blood volume within the large 

ependymal and pial veins which lie along the sulci and adjacent to the CSF (Bianciardi et al. 2011).  
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As opposed to the transient periods of negative BOLD contrast seen before and after the positive peak 

during the canonical HRF (which are thought to arise from increased oxygen extraction and venous 

ballooning), it has been postulated that prolonged periods of negative BOLD contrast may actually 

reflect neuronal inhibition (Shmuel et al. 2006). In adult studies, unilateral median nerve stimulation has 

been found to cause ipsilateral negative BOLD responses in the primary somatosensory cortex (together 

with the expected contralateral positive BOLD response) suggestive of functional neuronal suppression 

rather than behavioural (selective) inhibition alone (Kastrup et al. 2008, Schäfer et al. 2012). Moreover, 

this neuronal inhibition has been shown to be associated with local arteriolar vasoconstriction, and 

decreased tissue perfusion and oxygenation (Devor et al. 2007, Schäfer et al. 2012). The amplitude of 

this ipsilateral negative BOLD effect has been shown to be directly linked to the strength of the initial 

somatosensory stimulus, with a stronger stimulus intensity leading to more negative and dispersed 

responses suggestive of greater neuronal inhibition (Klingner et al. 2010).  

 

A further suggestion is that the negative BOLD effect can be explained by a “haemodynamic steal effect” 

arising from the redistribution of blood in neighbouring cortical areas during a period of activity (Shmuel 

et al. 2002). This theory has largely fallen out of favour as negative BOLD responses are frequently seen 

in areas that are clearly remote to those with positive activation (and therefore have entirely 

independent vascular supplies) (Smith et al. 2004, Kastrup et al. 2008). A recent study however has 

suggested that the negative and positive BOLD responses are not physiologically independent and may 

interact, although the positive response will always predominate (Klingner et al. 2011). The findings in 

the term equivalent PMA group analysis may fit in part with the haemodynamic steal hypothesis as both 

overlapping and adjacent negative BOLD responses were seen together with the expected positive 

activation.     
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5.5.3. Study limitations and implications 

Sedation was used in the majority of ex-preterm infants scanned at term equivalent PMA, and cannot be 

disregarded as a potentially significant confounder. While a number of MRI studies have not used 

sedative medication and reported using “feed and wrap” techniques alone, increased head motion leads 

to the quality of the imaging (particularly for very motion sensitive EPI sequences) in naturally sleeping 

infants to be markedly poorer and a large number of data sets are often discarded as a result. It could be 

argued that this in itself represents a further form of bias as the infants which would then remain in the 

analysis represent a self-selecting group of “non-moving” infants (in whom it is not possible to say that 

they are neurologically identical to those that moved: as reduced movement itself may represent a 

particular pattern of brain activity or neurological status). Such an effect has been demonstrated in 

cognitively impaired adults, who were found to be move significantly more than control subjects, thus 

leading to clear bias (Wylie et al. 2012). The effects of head motion on fMRI data are not insignificant, as 

a number of studies have now shown that systematic but false patterns of correlation and connectivity 

can be identified when it is not appropriately dealt with (Power et al. 2012, Satterthwaite et al. 2012, 

van Dijk et al. 2012). The basic challenge therefore is to choose an appropriate balance between the 

potential bias of the direct effects of sedative medication against those derived from head motion 

and/or the subsequent self-selection of unmoving infants.    

 

Although sleep state has been shown to affect the latency and duration of SSEPs in newborn infants, the 

responses have been shown still to be consistently identified with both electrophysiological and MEG 

techniques (Pihko & Lauronen 2004, Nevalainen et al. 2008). While sedation in adults with pentobarbital 

has been shown to cause marked changes in cerebral blood flow and therefore significantly affect the 

amplitude of the detected BOLD signal (Martin et al. 2000), chloral hydrate sedation does not appear to 

affect either the underlying neural response to stimulation or the associated neurovascular coupling. In 
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clinical practice, chloral hydrate sedation is commonly used when recording auditory evoked responses 

(AEBR) and has been found to not affect either the amplitude or character of the responses (Avalonitou 

et al. 2011). Furthermore, in the rat brain mild to moderate doses of intravenous chloral hydrate do not 

affect either the power spectrum of the resting EEG or the character/parameters of visual evoked 

potentials (VEP) (Sisson & Siegel 1989). Previous fMRI studies in neonates have also attempted to 

address these concerns, with no significant differences identified between unsedated and chloral 

hydrate sedated infants in either the distribution of resting state networks or qualitatively in response to 

visual stimulation (Born et al. 1998, 2000, Doria et al. 2010).   

 

It is also worth considering the inflation of the balloon in our somatosensory stimulus provided both 

finger proprioceptive and local pressure stimulation in the palm, and therefore the patterns of identified 

activation cannot be generalised as a response pattern to either of the sensations individually. 

Stimulated active motor activity may also have contributed to the detected signals, although a grasp 

reflex activated during rest periods by the stimulus would not be expected to involve intracerebral 

structures. In addition, it may not be possible to easily disentangle this possible effect as a previous 

study in older children did not detect a significant difference in activation between active and passive 

motor tasks (Guzzetta et al. 2007).  

 

All stimulus-based fMRI studies in children are largely limited by the fact that an adult-derived HRF 

model is frequently assumed to be appropriate for convolution into the GLM analysis. Given the 

significant differences in key physiological parameters such as CBF, CBV, CMRO2 are known to exist 

throughout the early stages of brain development, it is likely that the HRF following sensory stimulation 

in newborns is different in shape when compared to adults (Greisen 1986, Miranda et al. 2006, Roche-

Labarbe et al. 2010, 2012, Varela et al. 2012). In this first study we attempted to account for the possible 
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developmental differences in the characteristics of the HRF by using a set of linear basis functions in our 

analysis, but this increase in sensitivity would have been accompanied by an associated loss of specificity 

and a loss of statistical power (Woolrich et la. 2004, Lindquist et al. 2009, Steffener et al. 2010, Monti 

2011). A further possibility would be to have analysed the data using a data driven (and therefore model 

free) approach, such as ICA (Beckmann & Smith 2004, Beckmann 2012).   

 

5.6. Study conclusions 

Using targeted adaptations and planning to the study design and population, the form and pattern of 

stimulation, and the data analysis, we were able to demonstrate that robust patterns of positive BOLD 

response can be identified in the neonatal brain with fMRI. The findings of this study represent the first 

description of well-localised patterns of somatosensory cortical activation in a group of infants during 

the preterm period. The potential of the technique to greatly deepen our understanding of early human 

brain development was highlighted by the finding that a maturational trend towards an increasingly 

complex pattern of functional responses could be seen at term equivalent PMA. Furthermore, this 

apparent increase in functional connectivity was associated with qualitative increases in structural 

connectivity in a small subset of patients assessed with DTI probabilistic tractography.    
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Chapter 6 

6. Characterisation of the HRF in the preterm and neonatal period 

A fundamental premise of fMRI study design and data analysis is that the BOLD contrast response to a 

brief stimulus is consistent and reproducible across experimental runs and subjects (see section 2.2.4.1) 

(Friston et al. 1994a, 1995b, Boynton et al. 1996, Aguirre et al. 1998b, Miezien et al. 2000, Handwerker 

et al. 2004). The modelled canonical impulse response is traditionally termed the Haemodynamic 

Response Function (HRF); and is typically convolved with the experimental paradigm to form the design 

matrix of the GLM analysis, thereby accounting for the true temporal characteristics of the induced 

BOLD response (and in particular the delay in onset) (see section 2.3.4.1) (Friston et al. 1994a, Boynton 

et al. 1996).  

 

In the third trimester of gestation and first months of postnatal life, the human brain is known to 

undergo a dramatic but structured sequence of maturation, with the effect of these developmental 

changes on the haemodynamic response to stimulation largely unknown (Battin & Rutherford 2002, de 

Graaf-Peters & Hadders-Algra 2006, Seghier et al. 2006, Harris et al. 2011). In the last study I attempted 

to account for this uncertainty by convolving a set of linear basis functions in the GLM instead of the 

canonical function; therefore allowing a degree of flexibility for possible developmental differences in 

response latency and amplitude (see section 5.3.4.2) (Woolrich et al. 2004, Steffener et al. 2010, Monti 

et al. 2011). However, while the use of basis functions may greatly improve the sensitivity of the analysis, 

there are also associated drawbacks; in particular a loss of specificity and an inability to easily aggregate 

the results for a higher level analysis (Steffener et al. 2010, Monti et al. 2011). Furthermore, an implicit 

knowledge of the HRF is necessary for effective fMRI study design, and in particular event-related study 

designs where the assumed latency and overall length of the responses are integral to the paradigm 

(section 2.3.3) (Buckner et al. 1996, Dale 1999, Bandettini & Cox 2000). The motivation for this second 
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study was therefore the realisation that a definitive characterisation of the HRF in the neonatal period 

was likely to be vital, not only to resolve some of the remaining ambiguity surrounding the amplitude of 

responses, but also to aid the design of future fMRI studies.    

 

6.1. The effect of inter-subject HRF variability on fMRI analysis  

While the key features of the HRF (a delay before onset, a rise in BOLD signal culminating in a “peak” 

response, and a post-stimulus undershoot) are invariably consistent across all adult subject groups and 

stimulus types, several studies have now shown that a wide range of differences can be present both 

within and between subjects in the response latency, width, shape, and magnitude (figure 6.1) (Aguirre 

et al. 1998b, Miezen et al. 2000, Handwerker et al. 2004, Lindquist et al. 2009, Handwerker et al. 2012). 

In addition, for a given subject, there does not appear to be any clear relationship between these HRF 

parameters (ie: a particular response magnitude cannot be used to infer the latency) (Miezen et al. 

2000). When explored in more detail, HRF variability has been found to be minimised within a single 

subject scanned on the same day but in different scanning sessions, and (unsurprisingly) is greatest 

between different subjects (Aguirre et al. 1998b). The origins of this variability are largely unknown, and 

are likely multi-factorial encompassing external and internal influences (such as caffeine intake and 

particular disease states), and either or a combination of both neural and vascular factors (Handwerker 

et al. 2012). In awake task-engaged adults, there is also mounting evidence that endogenous non-

sensory neural activity (related to anticipation, attention, and task structure) almost certainly 

contributes to the detected haemodynamic response, which may be better estimated by taking this 

distinct additional signal into account (Jack et al. 2006, Sylvester et al. 2007, Cardoso et al. 2012).     
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Figure 6.1: There is natural HRF variation across a group of subjects, even when the study group population and 

pattern of stimulation is tightly controlled. In this study, HRFs were sampled from a region of interest in 20 

healthy young adult volunteers performing a simple button pushing experiment. When unaccounted for, these 

differences were shown to lead to a significant increase in analysis false negatives (figure reproduced from 

Handwerker et al. 2004).  

 

The importance of this variability was largely unnoticed in early fMRI studies, as by nature of the 

sustained pattern of stimulation and induced responses, the classic block experimental paradigm tends 

to be relatively forgiving with respect to the exact model of the HRF (Aguirre et al. 1998b, Henson 2003, 

Uludağ  2008, Lindquist et al. 2009, Handwerker et al. 2012). This is not the case however for an event-

related experimental paradigm, which largely relies on the assumption that the detected BOLD response 

will be identical to that of the canonical HRF (Buckner et al. 1996, Dale & Buckner 1997, Friston et al. 

1998a, Dale 1999, Miezen et al. 2000, Henson 2003). In an elegant study by Handwerker and colleagues 

(2004), it was shown that considerable inter-subject HRF variability exists even with a tightly controlled 

study population and stimulus, and further demonstrated that just a 2 second misestimate of the HRF 
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time to peak can lead to a 38% decrease in the fit magnitude of the GLM analysis. Natural HRF variation 

can therefore have significant effects on the sensitivity of an analysis, largely due to the potential 

increase in false negative results (Handwerker et al. 2004, 2012, Uludağ 2008, Lindquist et al. 2009). 

These findings have led some investigators to suggest the relatively inefficient solution that a separate 

experiment should be included in all fMRI experiments so that a subject (and task) specific HRF can be 

identified (Aguirre et al. 1998). However, the preferred approach adopted by the majority of the fMRI 

community to account for HRF variability, is (as done in the first study of this thesis) to include basis 

functions in the GLM analysis (Friston et al. 1995b, Woolrich et al. 2004, Lindquist et al. 2009).  

     

6.1.1. Maturational changes in the HRF in childhood and old age 

There have been only a few studies which have aimed to systematically characterise the effect of normal 

aging on BOLD haemodynamic responses (Galliard et al. 2000, Altman & Bernal 2001, Richter & Richter 

2003, Schapiro et al. 2004). A consistent finding in fMRI studies of children is that the spatial extent of 

the patterns of activation appears to decrease with age, suggesting that an increase in functional 

localisation is an important component of brain maturation (Galliard et al. 2000, Altman & Bernal 2001, 

Doria et al. 2010, Smyser et al. 2010). A decrease in activation cluster size also appears to be present at 

the opposite end of the spectrum in old age; although this is likely to be mediated by an entirely 

different set of biological processes including degenerative decreases in synaptic and microvascular 

density, and differences in vascular reactivity (D’Esposito et al. 1999, Huettel et al. 2001, D’Esposito et al. 

2003). Old age is also associated with a decrease in the magnitude of the measured BOLD responses 

(D’Esposito et al. 1999, 2003); but this trend has been shown to be reversed in childhood where a linear 

increase in BOLD response magnitude was described in an extensive study of 332 children between 4 

and 19 years of age during both a language and motor task (Schapiro et al. 2004). 
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Subtle changes specifically in HRF morphology have been described during normal aging; with an earlier 

trailing edge of the positive peak together with a more significant undershoot period seen in healthy 

younger subjects (7-20 years old) relative to a group of “older” subjects (>30 years old) (Richter & 

Richter 2003). In a study of epileptic patients in childhood and adolescence, the latency time to the 

positive peak of the HRF associated with epileptic discharges was found to be significantly longer in their 

youngest subjects (3 months to 2 years old) in comparison to all of the older subject groups (up to 18 

years old) (Jacobs et al. 2008). Although during young adulthood there appears to be no significant 

relationship between the latency time and increasing age, it has been shown to be prolonged at ages 

greater than 50 years of age (Taoka et al. 1998, Richter & Richter 2003). This apparent delay in response 

has been interpreted as supporting theories which suggest that the age related differences in BOLD 

response are predominately secondary to decreases in cerebral vessel wall compliance (D’Esposito et al. 

2003).    

 

6.1.2. HRF development in early life 

Marked developmental changes in cerebro-vascular haemodynamics are known to occur in the brains of 

newborn infants in the first few days to months following delivery (reviewed in Volpe 2008). Using a 

diverse range of measurement techniques, marked developmental increases have been described in the 

majority of the major intra-cerebral physiological parameters (including the global CBF, CBV and CMRO2) 

throughout the preterm and neonatal period (Chugani & Phelps 1986, Greisen 1986, Altman et al. 1988, 

Edwards et al. 1988, Wyatt et al. 1990, Meek et al. 1998, Miranda et al. 2006, Roche-Labarbe et al. 2010, 

2012, Varela et al. 2012). The effect of these maturational changes in physiology on the morphology of 

the HRF is unlikely to be trivial, given that induced alterations in any or all of these baseline parameters 

has been found to markedly affect the canonical adult response (see section 2.2.4.3) (Cohen et al. 2002, 

Liu et al. 2004, Chen Y & Parrish 2009, Chen J & Pike 2010a,b).  
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Characterisation of the HRF with BOLD fMRI during human infancy has been described in a single 3 

month old infant following a large perinatal stroke, where a negative waveform was observed in the 

unaffected (and presumed healthy) hemisphere using a visual stimulus (see section 3.1.1 and figure 3.2) 

(Seghier et al. 2004). No haemodynamic response could be detected in the abnormal hemisphere, in 

which the optic radiation was also found to be impaired with DTI tractography (Seghier et al. 2004). 

Interestingly, at 20 months of age, compensatory neuronal plasticity was demonstrated in the same 

infant, who was found to have developed a negative BOLD response in the pathological hemisphere 

(identical to that of the unaffected hemisphere) with an associated structural recovery of the previously 

absent optic radiation (Seghier et al. 2005). However, while the findings of these studies are fascinating, 

the pathological status of the subject means that they are probably not generalisable to the neonatal 

population as a whole.  

 

The work of this study was in large part motivated by the findings of Colonnese and colleagues (2008), 

who performed a developmental study of somatosensory system electrophysiological and BOLD fMRI 

responses in the immature rat brain. Using electrical forepaw stimulation, they were able to elicit 

positive BOLD contrast responses from postnatal day 11-13, which equates to approximately 28-32 

weeks in human gestation (Clancy et al. 2001, Colonnese et al. 2008). They further found a systematic 

maturational trend in the key parameters of the sampled HRF, with increasing age characterised by an 

increase in the peak amplitude of BOLD responses, larger and more widespread responses, and co-

activation of the ipsilateral cortex and supplementary areas in addition to the primary sensory areas 

(figure 6.2(a)) (Colonnese et al. 2008, Chan et al. 2010). In addition, LFP recordings and BOLD contrast 

were also found to show a progressive decrease in the time to peak response with increasing age (figure 

6.2(b)) (Colonnese et al. 2008). Developmental increases in the upregulation of carbonic anhydrase 
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activity were found to be fundamental to the observed maturational trends, suggesting that the control 

of resting CBF plays a key role in these changes (Colonnese et al. 2008). 

 

 

Figure 6.2: (a) In the rat somatosensory cortex, the HRF shows a systematic pattern of maturation during early 

postnatal life. An increase in amplitude and shortening of the time to peak response can be seen from the 

youngest P13-15 rats (equivalent to human 32 weeks PMA) to the mature adult. The HRFs in this study were 

derived from the minimisation of the observed data fit with a model derived from the measured LFPs. (b) A 

significant shortening of the time taken to achieve the peak response amplitude was clearly evident with 

increasing age. (Black bars represent group mean and error bars: one standard error from the mean) (Figures 

reproduced from Colonnese et al. 2008).   

 

6.2. Study aims and hypothesis 

The aim of this study was therefore to systematically characterise the ontogeny and morphology of the 

haemodynamic response to neural stimulation before and after the normal time of birth. Given that the 

use of sedative medication could represent a significant confounder in this study, I also aimed to resolve 

this ambiguity by directly measuring the effects of induced sedation on baseline CBF.  
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I hypothesised that the neonatal HRF would differ from the canonical adult model; and further that 

there would be a systematic maturational trend akin to that seen in the developing rat brain (Colonnese 

et al. 2008). I then planned to apply the empirically derived HRFs into the analysis of real fMRI data, with 

the hypothesis that the use of an age-appropriate HRF would significantly improve the identification of 

functional responses in a traditional GLM analysis of fMRI data.  

 

6.3. Materials and methods 

The work was approved by the Hammersmith Hospitals Research Ethics Committee (code: H0707/101). 

As in the previous study, written parental consent was obtained prior to all of the sessions of data 

acquisition, following a detailed discussion with myself or one my colleagues about the aims of the work 

and the study procedures. All of the data was anonymised following collection (and labelled with a study 

number identifier), and stored in encrypted and firewall protected file systems.  

 

6.3.1. fMRI Study population 

All of the neonatal subjects in this study were recruited from the Neonatal Intensive Care Unit and 

Postnatal wards at the Queen Charlotte and Chelsea Hospital, London, UK during a period of 18 months 

between 2010 and 2011. A total of 19 preterm infants and 22 infants at term equivalent PMA were 

scanned. Data sets were excluded from the analysis if the sequence was not able to be completed (due 

to the subject waking), or due to excessive motion throughout the period of data acquisition. The final 

study group (see table 6.1) therefore consisted of 10 preterm infants scanned at median 34+4 weeks 

PMA (range 32+3 to 35+3 weeks) (9 male; median age at delivery 33+2 weeks PMA (26-34+3 weeks); 

median weight 1890g (1560-2360); and median HC 30.07cm (28-33)); and 15 infants scanned at term 

equivalent PMA (median age at scan 41+1 weeks PMA (38+1 to 44+0 weeks)) (5 male; median age at 

delivery 34+1 weeks (26+3-41+1); median weight 3035g (2385-4770); median HC 35cm (31-36.8). 12 of 
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the infants studied at term equivalent PMA had previously been born prematurely. In addition, 10 

healthy adult volunteers (median age 31.5 years (22-54 years), 5 male, all right-handed) were scanned 

using the same sequence and stimulation paradigm as those used in the neonatal subjects. Clinical 

details including antenatal, birth and postnatal care were recorded for each infant subject, and a 

detailed neurological assessment was carried out on all term equivalent PMA subjects by an 

experienced practitioner (Mercuri et al. 2005). Infants were excluded from the study group with the 

same criteria as described for the previous study (see section 5.3.1).  

 

The clinical assessment and subject preparation prior to data acquisition in the MRI scanner was 

identical to that described in the last study. In those infants whose parents had given signed consent, 

oral sedation (chloral hydrate 30-50 mg/kg/dose) was administered approximately 20 minutes before 

scanning.  This was given to 13 of the 15 term equivalent PMA infants, but to none of the premature 

infants. There were no adverse incidents during the data acquisition period in any of the subject groups.  
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Group Number of 

subjects 

(male) 

 

Post-menstrual age 

at scan (median, 

range) 

Gestational age 

at birth 

(median, 

range) 

Weight 

(median, 

range) 

Head circumference 

(median, range) 

Preterm 

infant 

10 (9) 34+4 weeks 

(32+3-35+3) 

33+2 weeks 

(26+0-34+3) 

1890 grams 

(1560-2360) 

30.07 cm 

(28-33) 

Term Infant 15 (5) 41+1 weeks 

(38+1-44+0) 

34+1 weeks 

(26+3-41+1) 

3035 grams 

(2385-4770) 

35 cm 

(31-36.8) 

Adult 10 (5) 31.5 years 

(22-54) 

n/a Not recorded Not recorded 

 

Table 6.1: The study population of subjects included in the final analysis of the HRF characterisation experiment. 

(table published in Arichi et al. 2012).  

 

6.3.2. fMRI image acquisition 

MR imaging was performed on the Philips Achieva 3-T system (Best, Netherlands) with an eight channel 

phased array head coil, in the Neonatal Intensive Care Unit at the Queen Charlotte and Chelsea Hospital, 

London. As described previously, all of the scanning sessions were attended by either myself or a trained 

paediatrician colleague, and the infants' temperatures, oxygen saturations and heart rates were 

monitored throughout the scan (Merchant et al. 2009). A high resolution T2-weighted image and a 3D 

MPRAGE T1-weighted image were acquired for each of the infants for review by a Neonatal 

Neuroradiologist (as described in section 5.3.2). 

 

fMRI data was acquired with a single shot EPI sequence lasting 8 minutes and 37 seconds (parameters: 

(TR) 500msec; (TE) 45msec; (flip angle) 90 degrees; (matrix) 64*64; (resolution(x*y*z)) 
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3.125*3.125*4mm, total 1000 volumes). For this study, a relatively short TR was chosen as a faster 

sampling rate has been shown to be extremely important when attempting to accurately characterise 

the HRF waveform particularly with respect to identifying the time to response onset and peak (Miezen 

et al. 2000, Handwerker et al. 2004). To allow for such an improvement in temporal resolution, the 

spatial resolution of the acquisition sequence must be decreased so as to preserve adequate image SNR 

(see equation 2.4, section 2.3.1). Therefore, the strategy utilised for this study was not to acquire whole 

brain images, but rather to obtain only a limited (but relevant) field of view, with a further increase in 

voxel size from the sequence parameters utilised in the last study. This reduced field of view (consisting 

of just 6 axial slices) was placed above the level of the corpus callosum to give coverage of the peri-

rolandic cortex (figure 6.3). An identical scan protocol was used for both the adult and neonatal subjects.  

 

 

Figure 6.3: (a) So as to acquire rapidly sampled data while attempting to preserve image SNR, a greatly reduced 

sequence FOV of just 6 axial slices was used to acquire data. The FOV was positioned above the level of the 

corpus callosum so as to give coverage of the peri-rolandic cortex (excompassing the primary motor and 

somatosensory areas) where the primary BOLD responses were anticipated to be induced. (b) An identical 

sequence was utilised for both adult and neonatal subjects. (Orange box represents acquisition FOV, green box 

represents the planned shim box ).       
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6.3.3. fMRI experimental design 

An event-related experimental design has been demonstrated in a number of previous studies to be 

suitable for accurately sampling and characterising the HRF in a manner analogous to measuring evoked 

responses with electrophysiological techiques (Buckner et al. 1996, Friston et al. 1998a, Dale & Buckner 

1997, Aguirre et al. 1998b, Bandettini & Cox 2000, Miezen et al. 2000, Handwerker et al. 2004). In this 

study, a simple event-related design was therefore used with a fixed ISI to acquire a sampled BOLD HRF 

following a brief (1 second) stimulus during which the subject’s right hand was moved passively. 

Characterisation of the HRF using such a brief stimulus was felt to be achievable, as robust changes in 

BOLD contrast have been described and used to characterise the HRF using stimuli as brief as 0.1-

0.3msec (Hirano et al. 2011, Yeşilyurt et al. 2010). To ensure full recovery of the BOLD signal to baseline, 

a relatively long 40.5 second inter-stimulus interval was used, during which time the BOLD signal was 

sampled during TR (every 500msec). While inefficient, an experimental design with a fixed ISI was felt to 

be suitable for this study so that no assumptions would need to be made about the linear effects of 

overlapping responses (Dale & Buckner 1997, Bandettini and Cox 2000). In the 1000 volumes acquired, a 

total of 12 complete stimulation and rest epochs were presented.  

 

Somatosensory stimulation was fully synchronised to the image acquisition, and was elicited using the 

tailor-made inflatable balloon as described in detail in the last study. To allow an event-related 

experiment to be performed, a simple series of adaptations were made to the Labview control 

programme, so that the timing of stimulation (according to the acquisition TR number) can be specified 

by inserting a 1 column text matrix in the front panel window.  
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6.3.4. fMRI data analysis and HRF model fitting 

All of the fMRI data was initially analysed using tools implemented in the FMRIB Software library (FSL, 

Oxford, UK, www.fmrib.ox.ac.uk/fsl) (Smith et al. 2004). Each functional data set was first visually 

examined for excessive motion artefact and image distortion, and data sets were discarded accordingly. 

When the motion was found only to be isolated to a particular time period during the acquisition, then 

the specific blocks of data affected by motion were removed from the analysis. This was done as 

systematic but false correlations in fMRI data are seen as a result of motion artefact despite standard 

registration and motion estimate regression techniques (section 2.3.2.2) (Hajnal et al. 1994, Power et al. 

2012, Satterthwaite et al. 2012, van Dijk et al. 2012). Particular attention was placed on removing 

motion artefact which was specifically associated with the timing of the stimulus, which would have 

markedly affected the analysis and later model fitting (figure 6.4). The remaining contiguous blocks of 

data were only included in the final analysis if greater than 40% of the entire data acquisition remained 

(representing a minimum of 5 peristimulus epochs).   
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Figure 6.4: Estimated mean displacement plots created by FSL’s MCFLIRT motion correction toolkit. The red 

arrows along the x-axis denote the timing of stimulation during the period of data collection (x-axis represents 

time in TRs, y-axis represents estimated mean displacement in mm). (a): In an unsedated preterm infant who was 

excluded from the study population, the periods of movement are clearly associated with the stimulation 

paradigm. (b): In a sedated term infant, there is a burst of large movement at the start (up to volume 300) and a 

smaller burst (volume 800) towards the end of the data acquisition. (c) Deletion of the motion corrupted sections 

of the data results in a trace from a shortened block of data in which there is no clear association between the 

stimulus and the estimated head motion.  

 

All of the data was first processed using FEAT (fMRI Expert Analysis Tool, v5.98) and standard pre-

statistics processing steps were applied as described in the last study (Jenkinson et al. 2002, Woolrich et 
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al. 2001). A highpass temporal filtering cut-off of 50 seconds was used as it was assumed that the total 

duration of a single haemodynamic response would not exceed this limit (Smith 2001b). Head motion 

parameters were not included as confound regressors in the analysis, and data de-noising was only 

performed in this study using MELODIC (Model-free FMRI analysis using Probabilistic Independent 

Component Analysis (PICA, v3.0) (Beckmann and Smith 2004)). Time-series statistical analysis in FEAT 

was carried out using FMRIB’s improved linear model (FILM) with local autocorrelation correction 

(Woolrich et al. 2001); with a GLM used to define the observed data using a convolution of the 

experimental design and a set of optimal basis functions generated using FLOBS (see section 5.3.4.2) 

(FMRIB’s linear optimal basis sets, v1.1) (Woolrich et al. 2004). For the generation of the basis set, a 

range of parameters was specified which could allow for a greater range in the delay and height of the 

HRF than the default limits set for typical adult data. As in the previous study, the parameter estimates 

for each of the explanatory variables and basis functions were then convolved into the GLM, converted 

to a t-statistic image by dividing by the relevant standard error, and finally to a z-statistical score image 

at a threshold of 2.3 with a corrected cluster significance level of p<0.05.  

 

The BOLD signal time-series was extracted and averaged from a ROI which was defined as voxels above 

the 90th centile in z-score within the cluster of activation in the contralateral primary somatosensory 

cortex. This cluster was identified with the complete fit of the data derived from an F-test combination 

of the parameter estimates from the individual basis functions. The time-series was averaged across the 

peristimulus period and then normalised by converting the data to a percentage signal change (relative 

to the baseline, defined as the time-points across the 2 seconds prior to stimulus onset). A subject 

specific percentage signal change (relating to the presumed peak of the HRF) was then calculated using 

the following equation (http://mumford.fmripower.org): 
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 % signal change = (100 * (p-p height) *(parameter estimate)  

     

 (baseline signal)    [6.7] 

 

where the p-p height is the peak to peak height of the event in the model (see appendix for shell script 

written and used for this purpose).  

 

For each individual subject and the group analysis, the converted peristimulus data was then fitted with 

a linear combination of two gamma distribution functions (or a “double gamma function”):  

 

h(t) = ρ1*G(µ1,σ1
2) –  ρ2*G(µ2,σ2

2)       [6.8] 

 

using a robust non-linear least squares fit (trust-region algorithm) in the curve-fitting toolbox 

implemented in MATLAB (2009b, The Mathworks, Natick, MA USA). In this model, the HRF as a function 

of time is defined as h(t); where G(µ,σ) is a gamma distribution parameterised by its mean (µ) and 

variance (σ), and ρ1 and ρ2 are scalars responsible for the relative proportions of the positive and 

negative components (Boynton et al. 1996, Glover 1999). The use of two gamma distribution functions 

for modelling the HRF has been widely described in the literature, and has been found to provide a 

reasonable characterisation of all of the key positive (positive peak) and negative (initial dip and 

undershoot) features of the HRF (figure 6.5) (Boyton et al. 1996, Friston et al. 1998a, Handwerker et al. 

2004, Lindquist et al. 2009). 
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Figure 6.5: The linear combination of two gamma distribution functions can be used to model both the positive 

and negative features of the HRF. An optimised fit (and in particular the relative proportions of the two functions) 

can therefore allow the positive peak (in this case modelled by positive gamma Y), an initial dip (modelled by the 

first section of negative gamma R), and a post-stimulus undershoot (the later section of R) to all be included in the 

final HRF model.   

 

6.3.5. Global CBF estimation 

Animal and adult fMRI work have demonstrated that changes in the HRF peak amplitude and time to 

peak can be artificially induced by the experimental manipulation of baseline CBF (Cohen et al. 2002, 

Colonnese et al. 2008, Chen J & Pike 2009a,b, Chen Y & Parrish 2009). To investigate if the 

administration of chloral hydrate could have been responsible for any observed differences in HRF 

morphology, global CBF was measured from a separate cohort of 14 healthy term born infants who 

were then subdivided into two groups (those who were sedated with low dose chloral hydrate 

medication (30-50mg/kg/dose) prior to scanning, and those who were not) (see table 6.3). Infants who 

had required neonatal resuscitation or had any abnormalities (as described above in the fMRI study 
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population) were ineligible for this study. The infants were paired by PMA at the time of scan, as it has 

previously been shown that CBF increases in the first few days and months following delivery (Greisen 

1986, Meek et al. 1998, Miranda et al. 2006, Varela et al. 2012).  

 

Global CBF measurement data was acquired using an optimised Phase Contrast Angiography (PCA) 

sequence (Varela et al. 2012). A multi-slice inflow arteriogram ((TR) 21msec; (TE) 6msec; (matrix) 

160*132; (resolution(x*y*z)) 1*1*1mm) was performed for geometrical planning of the PC flow 

measurement sequence. Flow data was acquired using a sequence previously developed and optimised 

specifically for neonatal subjects ((TR) 7msec; (TE) 4.2msec; (flip angle) 10o; (resolution(x*y*z)) 

0.6*0.6*4.0mm; (maximal encoding velocity (vENC)) 120 cm/sec) (Varela et al. 2012). The acquisition 

plane for this sequence was positioned at the level of the sphenoid bone, where the internal carotid and 

basilar arteries are approximately parallel and simultaneous flow measurements can be done using a 

single imaging plane and encoding velocity along the through-plane direction (figure 6.6) (Buijs et al. 

1998, Varela et al. 2012).  

 

 

Figure 6.6: (a) Phase Contrast Angiography (PCA) data was acquired in a single axial slice placed to allow 

measurement of all three of the major arteries providing blood flow to the brain. (b,c) A multi-slice inflow 

arteriogram was first performed for planning. The internal carotid arteries and the basilar artery can be seen to 

be roughly parallel to one another, and approximately perpendicular to the acquisition slice in the maximum 
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intensity projections of the inflow arteriogram in the coronal and sagittal planes. (figure reproduced from Varela et 

al. 2012).   

 

Instantaneous flux was measured for each cardiac phase and artery, using a time-resolved ROI method 

(Q-flow Philips image analysis package, release 2.3.5.0 (Philips Corporation, Best, Netherlands)). The 

mean velocity across the ROI was multiplied by vessel area to give an estimate of instantaneous flux, 

and flow in the vessel calculated from the mean of the instantaneous flux across the cardiac cycle (figure 

6.7(a,b)). Total flow to the brain was obtained by summing blood flow in the two internal carotid 

arteries and the basilar artery. Whole brain volume was measured from high resolution T2-weighted 

images, following tissue segmentation using in-house software. Each subjects’ T2-weighted images were 

first bias-field corrected using FAST v4.1 (FMRIB’s automatic segmentation tool (Zhang et al. 2001)). The 

corrected image was then aligned to a 4D neonatal atlas using non-linear registration as implemented in 

IRTK (Image Registration Toolkit; www.doc.ic.ac.uk/~dr/software/) (figure 6.7(c)) (Rueckert et al. 1999, 

Kukilsova-Murgasova et al. 2011). The CSF and extra-cerebral tissue was subtracted from the segmented 

image, and then whole brain volume was then computed in mm3.  Global CBF in ml/100g/min was then 

calculated by dividing the total flow to the brain by the brain volume with a further correction for brain 

density (1.05 g/mL in neonates) (Delpy et al. 1987). 
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Figure 6.7: (a) Global Cerebral Blood Flow (CBF) analysis was performed using a time-resolved region-of-interest 

(ROI) method. The individual vessels (right internal carotid artery (red), left internal carotid artery (green), basilar 

artery (blue)) were manually delineated and then propagated across the cardiac cycle. (b) This allowed 

quantification of the instantaneous flux across the cardiac cycle in the three vessels of interest. (c) The calculated 

flow was then divided by the brain volume, which was computed using an automated segmentation tool (figure 

(b) reproduced from Varela et al. 2012).   

 

6.3.6. Application of empirical HRFs to experimental data 

To test the value of the HRF waveforms derived in the main study, they were then applied into the GLM 

analysis of 6 preterm (median age 34+0 weeks PMA (range 32+2-34+5)) and 6 term equivalent PMA 

(median age 40+5 weeks PMA (39+0-43+3)) infant data sets from the study group described in the 

previous study. The block experimental design (24 seconds of activity interspersed with 24 seconds of 

rest) was convolved with the age-specific HRF waveform into the GLM using the parameters derived 

from the HRF characterisation study. Standard pre-processing steps and data analysis (as described 

previously) were performed using FEAT v5.98, and z-statistical score images were generated with a 

threshold of 2.3 and corrected cluster significance of p<0.05. Each of the individual subject statistical 

maps was then registered to a custom-made neonatal template for higher level analysis using linear 

registration (section 5.3.4.3) (Jenkinson et al. 2002, Smith et al. 2004). A fixed-effects model was then 

applied to identify group means, and perform a paired t-test on the lower-level statistical images.     
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6.4. Results 

Following passive motor stimulation of the right hand lasting 1 second, clusters of positive BOLD 

functional activation were identified in the contralateral (left) primary somatosensory cortex in all 3 

subject groups (figure 6.8). As observed in the developing rat brain and in the last study, a trend towards 

co-activation of the ipsilateral primary somatosensory cortex and associated sensori-motor areas such 

as the supplementary motor area was seen with increasing age (Colonnese et al. 2008, Chan et al. 2010). 

To maintain consistency across the 3 different subject groups, HRF characterisation was performed 

using the BOLD signal time-series from a region of interest (ROI) in the contralateral cortex only (figure 

6.9). 

 

 

Figure 6.8: Identified clusters of functional activation following passive motor stimulation of the right hand. 

Thresholded statistical maps with a corrected cluster significance of p<0.05 have been overlaid on the subjects 

own T2-weighted image.  (top row; a,b,c): In a 32+3 PMA week preterm infant, a large cluster of positive BOLD 
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activation can be seen only in the contralateral (left) hemisphere. (middle row; d,e,f): At term equivalent age 

(PMA 41+1 weeks), a bilateral pattern of activation was more commonly seen. (top row; g,h,i): A healthy 24 year 

old adult also shows a smaller clusters of activation in the ipsilateral somatosensory cortex and centrally in the 

supplementary motor area, in addition to the primary cluster in the contralateral hemisphere. (figure published in 

Arichi et al. 2012). 

  

 

Figure 6.9: Example BOLD signal timeseries averaged across a region of interest (ROI) in the contralateral 

primary somatosensory cortex. The ROI was defined as voxels >90
th

 centile in z-score in the cluster of activation. 

The data (red trace) is shown with the corresponding GLM model (blue trace).  
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6.4.1. HRF characterisation 

Following analysis, ROI idenfitication, and extraction of the data timeseries, it was possible to 

characterise a HRF for each subject. Although there was HRF shape variability between subjects within a 

group, with some subjects for example showing an initial dip or deeper post-stimulus undershoot, all 

had an easily identified positive peak response at some point during the waveform. When the BOLD 

signal timeseries was extracted from a region of interest placed in an area where activation was not 

identified in the GLM analysis (eg: the frontal lobe), no systematic change in signal or any clear HRF 

waveform was seen when averaged around the peri-stimulus period (figure 6.10).    

 

 

Figure 6.10: A HRF waveform was not recognised when a ROI was placed in an area which was not identified as 

activated in the initial GLM analysis. In these 3 adult subjects, the ROI was randomly placed in the right frontal 

lobe (red area, inset picture), and the BOLD signal timeseries (blue) extracted, and averaged around the 

peristimulus period (with the stimulus occurring at time-point 0). 

 



 202 

By identifying the parameter estimates for each of the separate basis functions, and performing a simple 

linear sum, it is possible to “deconvolve” and extract the form of the HRF which was used in the final 

GLM fit. When this was done however, it was clear that this method favours a characterisation of the 

positive peak response only (figure 6.11).  The averaged peristimulus timeseries data was therefore 

instead fitted with a double gamma distribution function using the curve fitting toolbox implemented in 

MATLAB. This was done as a separate process so as to provide an independent and best model fit 

without any of the possible constraints imposed by the GLM fit.      

 

Figure 6.11: The peristimulus data in a single infant at term equivalent PMA (40+1 weeks), was fitted with a 

double gamma distribution. This fit (red) was done independently of the GLM analysis using a non-linear least 

squares fit. The data fit performed by the GLM using a linear combination of three basis functions (blue) is good at 

characterising the positive peak of the data, but does not adequately model the other features of the HRF, such as 

in this case where there is a deep and prolonged post-stimulus negative undershoot. The circles represent the data 

mean (sampled BOLD signal converted to percentage signal change relative to baseline) at each timepoint, with 

errorbars representing one standard deviation (SD) from the mean.  
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6.4.1.1. Adult Group  

In the adult group (n=10), the parameters and morphology of the sampled HRF waveforms were in 

agreement to those described in the literature (figure 6.12) (Aguirre et al. 1998b, Glover 1999, Miezen 

et al. 2000, Handwerker et al. 2004). The median time to the positive peak was 5.38 seconds (range 4.5 

to 9), with a median peak amplitude of 1.63 % signal change (range 0.78 to 2.93) (relative to the pre-

stimulus baseline BOLD signal), and median positive peak to undershoot ratio 0.23 (range 0 to 0.69).  

 

 

Figure 6.12: The sampled HRF in the adult group (n=10, median age 31.5 years) was in agreement with the 

parameters and shape as reported in the literature. The mean % BOLD signal change (relative to the pre-stimulus 

baseline signal) at each timepoint (circles) is shown fitted with a double gamma probability distribution function 

(blue trace). The error bars represent 2 standard errors of the mean. Somatosensory stimulation (hand opening 

and closing) occurred at time point 0 and lasted a total of 1 second. (figure published in Arichi et al. 2012).  
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6.4.1.2. Term equivalent PMA infant group 

The HRF waveform in the term equivalent PMA infant group (n=15) had a median time to the positive 

peak of 7.0 seconds (range 3 to 9 seconds) (figure 6.13). The median peak amplitude was 0.54% (range 

0.27 to 1.42%), and the negative undershoot to positive peak ratio 0.49 (range 0 to 3.31).  

 

 

Figure 6.13: The sampled HRF in the term equivalent PMA infant group (n=15, median PMA 41+1 weeks). In 

comparison to the canonical HRF, there is a deep negative post-stimulus undershoot period. (figure published in 

Arichi et al. 2012).   
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6.4.1.3. Preterm infant group 

The median positive peak amplitude of the preterm infants (n=10) was 0.52%, (range 0.19 to 0.99) with 

a relatively shallow undershoot period (ratio to the positive peak: 0.15 (range 0 to 0.62)) (figure 6.14). 

The median time to the positive peak was 11.25 seconds (range 8.5 to 16).  

 

 

Figure 6.14: The sampled HRF in the preterm infant group (n=10, median PMA 34+4 weeks). (figure published in 

Arichi et al. 2012).   
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6.4.1.4. Characterising HRF development 

A clear developmental trend in the shape parameters of the HRF can be identified from the described 

data, characterised by a reduction in the time to positive peak and an increase in positive peak 

amplitude with increasing age (table 6.2, figure 6.15).  

 

 

 

Figure 6.15: A systematic developmental trend in HRF morphology. With increasing age, a trend towards a 

shortening of the time to the positive peak, and an increase in positive peak amplitude can be seen. The negative 

post-stimulus undershoot period is noticeably deeper at term equivalent PMA (figure published in Arichi et al. 

2012).   
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Group n 
Time to positive peak 

(median, range; seconds) 

Positive peak amplitude 

(median, range; % BOLD signal 

change) 

Undershoot to positive 

peak ratio 

(median, range) 

Preterm infant 10 11.25 (8.5 – 16) ** 0.52 (0.19 – 0.99) ** 0.15 (0 – 0.62) 

Term equivalent 

PMA infant 
15 7.0 (3 -9) * 0.54 (0.27 – 1.42) ** 0.49 (0 – 3.31) * 

Adult 10 5.38 (4.5 – 9) 1.63 (0.78 – 2.93) 0.23 (0 – 0.69) 

 

Table 6.2: Summary of the sampled HRF parameters across the 3 study groups.  (* p<0.05, ** p<0.001 Mann-

Whitney Wilcoxon test in comparison to adult group, Holm-Bonferroni correction for multiple comparisons). (table 

published in Arichi et al. 2012).   

 

In comparison to the adult group, the HRF waveform in the term equivalent PMA infant group has a 

significantly longer time to peak (p<0.05: Mann-Whitney-Wilcoxon test, Holm-Bonferroni correction for 

multiple comparisons), a significantly smaller positive peak amplitude, and significantly deeper negative 

undershoot period (figure 6.16). The median positive peak amplitude of the preterm infants was similar 

to those of the term equivalent PMA infants, although a proportionately shallower undershoot period 

can be seen. A highly significant lengthening in the median time to the positive peak at 11.25 seconds is 

seen in the preterm infants in comparison to both the adult and term infant groups (p<0.01) (figure 

6.16(c)). The median ratio of the post-stimulus negative undershoot to the positive peak amplitude was 

found to be significantly different between the term equivalent PMA infant group with both the preterm 

(p<0.05) and adult groups (p<0.05) (figure 6.16(b)). No significant difference was found between the 

adult group and preterm infant group in the ratio of the negative undershoot to the positive peak 

(p=0.8331).  
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A particularly interesting aspect of the developmental trend was the striking shortening of the time to 

the positive peak of the response with increasing age. In the neonatal subjects, this relationship can be 

seen to follow an inverse exponential trend; with increasing PMA associated with a decrease in the time 

taken to reach the positive peak of the HRF (figure 6.17). 
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Figure 6.16: (a) There was a highly significant difference in the amplitude of the HRF positive peak between both neonatal groups and the adult group. There was no 

significant difference between the preterm and term equivalent PMA infants (Boxplots:  box represents 25
th

 and 75
th

 centiles and central line the group median; outliers 

denoted by ‘+’ symbol; Mann-Whitney Wilcoxon test with Holm-Bonferroni correction for multiple comparisons, p<0.05 *,p<0.01 **)). (b): The ratio of the negative HRF 

undershoot to the amplitude of the positive peak was significantly deeper in the term infant group in comparison to both the preterm and adult groups. (c): One of the 

most striking findings was that of a highly significant trend towards a reduction in the time taken to achieve the positive HRF peak with increasing age. (figure published 

in Arichi et al. 2012). 
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Figure 6.17: Within the neonatal subjects only, an inverse exponential relationship is seen between post-

menstrual age (PMA) in weeks and the time taken to reach the positive peak of the response (in seconds). (r
2
= 

0.6479; dashed lines represent 95% population confidence intervals). (figure published in Arichi et al. 2012). 

 

6.4.2. Global CBF estimation 

Global CBF data was acquired from a total of 14 healthy infants who were born at full term gestation 

and then subdivided into two paired groups (those who were sedated for scanning and those who were 

not) by PMA at the time of scan.  There were no significant differences between the two groups in the 

age of the infants at scan (Mann-Whitney-Wilcoxon test: p=0.5198); the weight (Wilcoxon signed rank 

test: p=0.3750); occipito-frontal head circumference (p=0.8438); or brain volume (p=0.1562) (table 6.3). 

Sedation was not found to affect the global mean CBF, with no significant difference between the paired 

sedated (median: 22.40ml/100g/min) and unsedated groups (median: 20.78ml/100g/min) (Wilcoxon 

paired signed rank test: p=0.4688). The CBF values measured in this study were in good agreement with 
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those previously described using diverse measurement techniques (Edwards et al. 1988, Greisen 1986, 

Roche-Labarbe et al. 2010, 2012, Varela et al. 2012).  

 

Group Post-

menstrual age 

at scan 

(median, 

range) 

 

Weight 

(median, 

range) 

Head 

circumference 

(median, range) 

 

Brain volume 

(median, range) 

Global Cerebral 

Blood Flow 

(median, range) 

Sedated 

(n=7) 

41+3 weeks 

(38+1-43+4) 

3700g 

(3115-3920) 

35.5cm 

(34-36.5) 

400.8ml 

(368.0-444.0) 

22.40ml/100g/min 

(19.15-26.78) 

Unsedated 

(n=7) 

40+3 weeks 

(38+4-43+0) 

3500g 

(2652-3944) 

35.5cm 

(34-36.7) 

388.0ml 

(324.0-446.5) 

20.78ml/100g/min 

(19.20-28.87) 

 

Table 6.3: Sedative medication has no significant effect on global CBF as measured by MR Phase Contrast 

Angiography (PCA). The infants in the global CBF estimation study were paired by PMA at scan, and separated into 

two groups: those who were sedated for scan and those who were not. In addition to there being no significant 

difference between the two groups in the measured global CBF, there were also no significant differences between 

the paired groups in any of the birth or clinical characteristics. (table published in Arichi et al. 2012).    

 

6.4.3. Application of the empirical HRF models to experimental data 

To test the value of the derived HRF models the empirical waveforms were then convolved into the GLM 

analyses of independent data collected from 12 infants from the population studied in the last study 

using a block paradigm of somatosensory stimulation (chapter 5). In 6 preterm subjects, a fixed effects 

GLM analysis following convolution of a preterm age-appropriate HRF waveform into the lower level 

subject analyses, identified a large but well localised cluster of positive BOLD functional activation in the 

primary somatosensory cortex contralateral to the side of stimulation (left hemisphere) (figure 6.18(a)). 
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In contrast, when the same analysis was performed with convolution of the empirical adult HRF, only 

small areas of negative BOLD were identified in the left peri-rolandic region, with no significant areas of 

positive signal activation (Figure 6.18(b)). In agreement with these findings, a direct comparison of the 

two types of analysis (a paired t-test on the effect-size estimates) identified a highly significant and well 

localised cluster in the left primary somatosensory cortex (figure 6.18(c)). This marked difference can be 

seen in the BOLD signal timeseries in an exemplar study (figure 6.19(a)) where convolution of the 

experimental design with the preterm infant HRF is shown to markedly improve the model fitting to the 

BOLD signal data from the identified cluster of activation with correlation coefficient 0.8407 and sum of 

squared errors (SSE) 1.9013, in comparison to the canonical adult HRF (correlation coefficient 0.3496, 

SSE 8.0755).   

 

This process was repeated in a group of 6 infants at term equivalent PMA. In an exemplar study (figure 

6.19(b)) convolution with the age appropriate term infant HRF waveform can be seen to improve the fit 

to the data with a correlation coefficient of 0.9096 and SSE 1.5775, in comparison to 0.9055 and SSE 

3.0254 using the canonical adult HRF. Convolution of the term infant derived HRF and adult subject 

derived HRF with the experimental model identified similar clusters of positive functional activation 

most significantly in the left somatosensory cortex, but with co-activation of the ipsilateral right 

somatosensory cortex (figures 6.18(d,e)). Despite the slight improvement in the model fit of the data, 

the paired t-test did not identify any significant areas of difference between the two forms of analysis 

(figure 6.18(f)).   
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Figure 6.18: The application of an age appropriate HRF model significantly improves the identification of 

functional activity in preterm infants. Preterm infant group (top row: a,b,c): (a) A large cluster of positive 

activation was identified in the contralateral somatosensory cortex when an age-specific HRF model was convolved 

into the GLM analysis in a group of 6 preterm infants; (b) this was not seen when the analysis was repeated using 

the canonical adult t-test analysis was performed on the statistical maps derived from the lower level analyses. (c) 

The difference between the two forms of analyses as tested by a paired t-test is a significant and well localised 

area of functional activity in the primary somatosensory cortex. Term equivalent infant group (bottom row: d,e,f): 

(d) Significant clusters of functional activity were identified when both the age-specific and (e) canonical adult HRF 

models were convolved into the GLM analysis of 6 infants at term corrected PMA; (f) There was no significant 

difference between the two forms of analysis on a paired t-test analysis. (figure published in Arichi et al. 2012). 

 



 214 

 

Figure 6.19: Example peristimulus BOLD timeseries data derived from clusters of activation (inset pictures, red) 

identified following passive motor stimulation of the right hand. (a) In a preterm infant, the age-specific HRF can 

be seen to greatly improve the model fit (green), as the peak in contrast occurs much later than would be 

predicted using the adult HRF (blue). (Grey bar represents the time period (24 seconds) that the somatosensory 

stimulus was applied, circles represent data mean, and error bars represent 1SD from the mean) (b) In an infant at 

term equivalent PMA, the age-specific HRF improves the model fit (red) by incorporating the deeper undershoot 

period seen following the positive peak. (figure published in Arichi et al. 2012). 
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6.5. Discussion 

Using a combination of optimised fMRI scanning parameters, an appropriate and precise somatosensory 

stimulus, and an event-related experimental design, the morphology of the BOLD contrast HRF 

waveform was characterised in the developing human brain. As described in the rat brain (Colonnese et 

al. 2008), a systematic maturational change in the morphology and parameters of the HRF was seen, 

both in terms of the time-to-peak and overall magnitude of the response. In addition, it was found that 

at term equivalent PMA, global CBF is unchanged by low-dose pharmacological sedation suggesting that 

the observed differences cannot be ascribed to the use of sedation but are more likely secondary to true 

developmental changes in intra-cerebral physiology. The potential improvement in accuracy yielded 

from the use of an age-appropriate HRF model convolved into the GLM analysis was demonstrated in 

two infant groups, with a significant effect seen when applied to preterm infant functional data.   

 

6.5.1. Developmental changes in neurovascular coupling 

In comparison to the canonical form seen in the mature adult brain, the amplitude of the HRF positive 

peak was found to be significantly less in the developing neonatal brain, regardless of PMA. In addition, 

the time taken to attain the positive peak amplitude of the HRF was found to decrease significantly with 

increasing age. The physiological reasons underlying these differences are likely multi-factorial, involving 

many stages of the neurovascular coupling cascade which ultimately culminate in the haemodynamic 

changes responsible for the BOLD contrast response (see section 2.2.2) (Attwell & Iadecola 2002, 

Logothetis & Pfeuffer 2004, Buxton 2009, Mangia et al. 2009, Cauli & Hamel 2010, Harris et al. 2011, Kim 

& Ogawa 2012). Due to limitations inherent to studying the in-vivo human infant brain, the effects of 

developmental changes on these processes have not been extensively investigated; and many of the 

detailed measures common to calibrated fMRI experiments in adult subjects and animal models are not 

applicable to this population (Galliard et al. 2001, Harris et al. 2011).  
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Of note, robust electrophysiological responses to simple somatosensory stimuli can be elicited at a 

significantly younger age than reliable BOLD signal responses have been described in both animal and 

human subjects (Taylor et al. 1996, Vanhatalo & Lauronen 2006, Vanhatalo et al. 2009). Although it is 

unlikely that neural activity in very immature subjects is occurring without the vascular provision of the 

required metabolic substrates, it does suggest that marked differences in the dynamic coupling of the 

neural activity and vascular response must underlie some of the trends in HRF morphology identified in 

this study. The neurovascular coupling cascade is thought to involve multiple signaling pathways 

encompassing perivascular astrocytes, vasoactive chemical agents, and direct neuronal connections 

(Attwell & Iadecola 2002, Buxton 2009, Cauli & Hamel 2010, McCaslin et al. 2011). Changes in astrocyte-

mediated processes may be of particular significance as animal studies have found marked increases in 

number, size and local connectivity at an age which corresponds to the human age groups studied in this 

work (Kaur et al. 1989, Harris et al. 2011).         

 

6.5.2. Trends in cerebral haemodynamics in early life 

A localised increase in CBF is known to be the key to the positive peak of the BOLD response through the 

change in signal which results from an increase in local oxygenated haemoglobin (Hb) (Buxton et al. 

2004, Hillman et al. 2007, Buxton 2009, Chen & Pike 2009a,b). Arterial Spin Labelling (ASL) experiments 

have demonstrated that the local CBF time course following stimulation closely mirrors that of the BOLD 

HRF, and furthermore have suggested that a feedback mechanism may contribute to a post-stimulus 

suppression in CBF which correlates with the HRF post-stimulus negative undershoot (Chen & Pike 

2009a,b). Global decreases in CBF following caffeine administration have been shown to lower the 

baseline BOLD signal, increase the percentage signal change of BOLD responses and shorten the time to 

peak (Chen Y &Parrish 2009, Liu et al. 2004, Perthen et al. 2008); while increases in CBF caused by the 

cerebral vasodilating effects of carbon dioxide have been shown to result in the converse (see section 
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2.2.4.3) (Cohen et al. 2002, Chen & Pike 2010a,b). These alterations are known to occur in the context of 

unchanged neurophysiological and metabolic parameters (Matsuura et al. 2000, Chen and Pike 2010a) 

and have therefore been proposed to be primarily due to the linking of arteriolar compliance as a 

function of baseline CBF (Liu et al. 2004).  

 

Global CBF is known to increase dramatically during early human development, with preterm infant 

brain values approximately half that of a full term infant, with a further twofold increase in adult life 

(Greisen 1986, Edwards et al. 1988, Meek et al. 1998, Roche-Labarbe et al. 2010, 2012, Varela et al. 

2012). Given that such a systematic rise in baseline CBF would be expected to induce HRF changes 

similar to hypercapnia, the trends observed in the results of this study are therefore likely secondary to 

developmental changes in the capacity of the local arterioles to increase local CBF through the 

neurovascular coupling cascade. This would be in keeping with histological studies which suggest that 

the human foetal cortical microvasculature develops radially from the superficial leptomeningeal vessels, 

with muscularisation of the extrastriatal arterioles and capillary beds not established until close to term 

equivalent PMA (see section 1.2.6) (Kuban & Gilles 1985, Norman & O’Klusky 1986, Kamei et al. 1992, 

Gilles 2001). Cerebral vessel density and volume has been shown to approximately double from the 

newborn to adult primate cortex, with the bulk of this change occurring at the capillary level, with this 

increase in vessel density likely to translate to a faster and higher amplitude local CBF response (Risser 

et al. 2009).    

 

Near-Infrared Spectroscopy (NIRS) studies have shown that quantitative measures of CBV remain 

unchanged both throughout the preterm period and during the first weeks after full term gestation 

(Wyatt et al. 1990, Franceschini et al. 2007, Roche-Labarbe et al. 2010, 2012,). This would suggest that 

the empirical steady-state relationship (Grubb’s power law, equation [2.3]) between whole brain CBV 
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and global CBF seen in adults may differ or does not have a constant exponent during the preterm and 

neonatal period (Grubb et al. 1974, Buxton et al. 2004). A constant CBV coupled to an increasing CBF 

through the late preterm to term infant period would lead to a shortening in the mean transit time 

(MTT) of Hb-O2 when considered in the context of tracer kinetics as expressed by one of the Stewart-

Hamilton equations (Meier & Zierler 1954, Elwell et al. 1997, Buxton 2009): 

 

MTT = CBV/CBF        [6.9] 

 

A reduction in the MTT would therefore in part explain the shortening of the time taken to achieve the 

positive peak of the HRF seen with increasing PMA in our neonatal population.   

 

A proportionately deeper post-stimulus undershoot was seen in the term infant subjects, despite a 

similar positive peak amplitude throughout the neonatal period. It has been suggested that the 

undershoot period may reflect a transient increase in d-Hb due to a temporal mismatch between the 

CBF and draining venous CBV response due to differences in vessel wall compliance (Buxton et al. 1998, 

2004; Chen and Pike 2009a). In the context of established biomechanical models such as the Balloon 

Model, a deep post-stimulus undershoot could be explained by an initially stiff post-capillary-bed venous 

compartment which becomes compliant after prolonged expansion, leading to the volume outflow of 

the system resembling a hysteresis loop (section 2.2.4.2) (Buxton et al. 1998, 2004, 2009). Alternatively, 

there is also recent evidence to suggest that it is transient decoupling between the CBF and a sustained 

post-stimulus increase in the local cerebral metabolic rate of oxygen (CMRO2) which results in d-Hb 

accumulation and therefore a decrease in BOLD signal (Dechent et al. 2011, Hua et al. 2011). In the 

neonatal brain, the latter effect may predominate as marked increases in neuronal density and 

integration occur in the late preterm to term infant period, with these changes correlating with the 
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significant maturational rises in CMRO2 which have been quantified with NIRS and PET (Altman et al. 

1988, Chugani & Phelps 1986, Roche-Labarbe et al. 2010, 2012).  

 

6.5.2. Possible effects of sedative medication 

In this study (as in the last study), induced sedation with chloral hydrate was used in the majority of the 

term infant subjects, who are more prone to motion and may become distressed during image 

acquisition in comparison to preterm infants. Although sedation with chloral hydrate has been found 

not to affect either the identification or topology of either induced functional activity or resting state 

networks in neonatal subjects, the potential effects directly on the underlying neural activity and 

vascular physiology have not been formally assessed (Born et al. 1998, 2000, Doria et al. 2010). In this 

study, it was felt that the benefits of sedation in avoiding the potential confounding effects of stimulus 

associated head motion and inefficient data collection, outweighed the concerns generated by this 

uncertainty.  

 

Sedation does not appear to affect electrophysiological responses, and neurovascular coupling has been 

found to be preserved even during light anaesthesia (Sisson and Siegel 1989, Avalonitou et al. 2011, 

Huttunen et al. 2008). It has been suggested that sedative medication, and in particular phenobarbitone, 

may alter baseline CBF and therefore may be responsible for the inconsistent findings in previous infant 

fMRI studies (Lindauer et al. 1993, Joeri et al. 1996, Martin et al. 2000, Rivkin et al. 2004, Seghier et al. 

2006). This effect is of particular relevance as the control of baseline CBF was shown to be key to the 

maturational trends in the HRF identified in the developing rat brain (Colonnese et al. 2008).  

 

In this study, I found that chloral hydrate sedation does not affect baseline CBF in a paired sample of 

healthy infants born at full term gestation. It therefore seems unlikely that the observed maturational 
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differences between the groups of this study can be ascribed to the increased use of sedation in the 

term equivalent PMA group. Although it is not possible to completely exclude a possible effect of chloral 

hydrate on local haemodynamics, animal data suggests that very high doses of the active compound 

(2,2,2-trichloroethanol) in chloral hydrate acts as an agonist of non-classical K+ channels in smooth 

muscle cells, leading to induced increases in local CBF and uncoupling with an unchanged CMRO2 

(Uematsu et al. 2009, Parelkar et al. 2010). This effect would therefore not be in keeping with the deep 

negative undershoot period observed in the sedated term infants. In the future, if novel motion-

resistant image acquisition and analysis techniques can be optimised, it may be possible to perform a 

HRF characterisation study in unsedated infants to definitively answer this question. Critical information 

may also be gained with quantitative CBF techniques such as ASL, which can provide an exact measure 

and timecourse of local CBF responses (Chen & Pike 2009a,b). In addition, recent studies have suggested 

that ASL may provide more specific spatial information with reduced inter-subject variance in 

comparison to BOLD fMRI responses (Pimental et al. 2012).  

 

6.5.3. Study design, limitations and implications 

Although an event-related fMRI design with a widely-spaced constant ISI is relatively inefficient at both 

detecting activity and HRF estimation (Dale & Buckner 1997, Handwerker et al. 2004, Murphy et al. 

2007), it was chosen in this study as particular assumptions could not be made, in particular whether 

overlapping impulses would sum in a linear fashion (Bandettini & Cox 2000, Buxton et al. 2004, Gu et al. 

2005). The initial analysis of the data was done using a set of linear basis functions which allowed 

flexible HRF modelling; an approach which is particularly suitable in subjects where alterations may 

occur due to physiological and/or clinical factors (Woolrich et al. 2004, Steffener et al. 2010, Monti 

2011). However the increased sensitivity is accompanied by a loss of specificity as evidenced by the 

differences in data model fitting when compared to an independent non-linear least squares fit.  
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The term equivalent PMA infant study group consisted mostly of subjects whom had been born 

prematurely (12/15), and although the findings of the last study suggest that functional activity is well 

localised regardless of the gestational age at birth, further work will be required to identify any more 

subtle effects on HRF morphology which may result from preterm birth. An important consideration is 

that the HRF characterised in this study is potentially representative of BOLD responses only in the 

primary somatosensory cortex. This is of relevance as the canonical HRF model in adults was originally 

derived from experiments using a visual stimulus, and further characterisation studies have now 

demonstrated that subtle differences exist in distinct brain regions using different stimulus types which 

can lead to an increase in false negative results (Friston et al. 1994a, Miezin et al. 2000, Handwerker et 

al. 2004). Further work to characterise this inter-region variability is of particular importance in the 

neonatal brain, as resting state fMRI studies have shown that different neural networks appear to 

develop at different rates; with the auditory system seemingly maturing before others (Doria et al. 2010, 

Smyser et al. 2010).  

 

The benefits of an age-appropriate HRF for convolution into the GLM analysis was demonstrated in this 

study in two example preterm and term infant groups. This effect was most marked in the preterm 

infant group, where a cluster of positive activation in the primary somatosensory cortex was only 

identified when an age-appropriate HRF was used in the GLM design model, incorporating the 

significantly longer time taken to achieve the positive peak. In the term equivalent PMA infant group, a 

large area of positive functional activation was identified irrespective of the HRF model used, and a 

significant difference was not seen when comparing the age-specific and adult canonical HRF models. 

This is explained by the relative similarity in the time to the positive peak of the term equivalent PMA 

infant and adult HRFs, which will lead to a similar positive overshoot time regardless of the 

proportionately deeper undershoot period. However, if the linear summation behaviour of the HRF 
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holds true, then at shorter inter-stimulus intervals than used in this work, the rise rate and amplitude of 

BOLD signal change would be significantly reduced should the next period of stimulation occur during 

the undershoot (McClure et al. 2005).  

 

It is notable that no significant areas of negative BOLD response were identified in either subject group 

using an age-appropriate HRF model. Negative BOLD responses were most commonly reported using a 

visual stimulus and in later infancy (approximately 3 months of age and above) where it has been 

postulated that increasing neuronal energy demands exceed the available supply of oxygenated 

hemoglobin (see section 3.1.1) (Yamada et al. 1997, 2000, Morita et al. 2000, Konishi et al. 2002, 

Muramoto et al. 2002, Seghier et al. 2004). The results of this study suggest that a positive BOLD 

response is the developmental norm in the neonatal somatosensory system, but further systematic 

characterisation throughout childhood would be required before the hypothesis of a developmental 

switch in response amplitude can be conclusively accepted.    

 

6.6. Study conclusions 

In this study, the BOLD contrast HRF in the healthy human brain before and around the normal time of 

birth was characterised, and a developmental trend in early human HRF morphology was identified, 

similar to that seen in the rodent brain. The data therefore provide evidence that the marked changes in 

brain structure during the third trimester of human development are also accompanied by a sequence 

of maturation in the brain’s haemodynamic response to stimulation. These maturational changes are 

likely to be due to both probable developmental alterations in the underlying neurovascular coupling, 

and known changes in cerebrovascular physiology. The findings further demonstrate that BOLD fMRI 

responses can be reliably identified in neonatal subjects, and demonstrate a means to significantly 

improve the accuracy of analysis in neonatal fMRI studies. Induced pharmacological sedation with 
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chloral hydrate was found not to affect the baseline CBF, and therefore this effect is unlikely to explain 

the observed trends. Although the effects of sedation on local CBF responses cannot be completely 

excluded, the described HRF parameters are still relevant for future fMRI studies, particularly in those 

involving sedated subjects. Further unanswered questions from the results of this study are whether 

they can be extrapolated and applied to fMRI studies of other neural systems, and if the HRF displays 

the same linearity at this developmental juncture as is assumed to occur with the canonical adult form.   
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Chapter 7 

7. Further work and applications 

It is hoped that the findings of the studies described in the last two chapters of this thesis will be 

valuable to aid the planning and carrying out of future neonatal fMRI studies, and thereby add an 

exciting new dimension to our knowledge of the normal and pathological sequences of human brain 

development. For this to be possible, there remain a few questions which could not be definitively 

answered in the main studies of this thesis, but for which I have performed some simple preliminary 

studies to explore the underlying principles. I have been fortunate to have been working with a number 

of enthusiastic and highly skilled collaborators, notably in the bioengineering department at Imperial 

College London, with whom we have begun to establish the applicability of the presented findings by 

performing further fMRI studies of neonatal subjects with novel patterns of stimulation and following 

brain injury. In this chapter of the thesis I have collated together a brief description and some of the 

early results of these studies to represent both some of the unresolved issues (and the possible 

experiments which may be necessary to answer them) and the potential for future applications of the 

techniques.       

 

7.1. Further investigation of the neonatal HRF 

This small set of simple experiments was performed as additional detailed studies are likely to be 

essential to definitively understand how (and whether) the characterised HRF can be incorporated into 

future fMRI studies. These steps are necessary as the ubiquitous use of the canonical HRF within the 

fMRI community is based on certain assumptions which may not be valid in the immature neonatal brain. 

Two of these premises are described and tested here: firstly that the shape and characteristics of the 

HRF are consistent between brain regions and stimulus types, and secondly that overlapping HRFs will 

sum in a predictable linear fashion.     
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7.1.1. Characterising the neonatal HRF to auditory stimulation 

In the adult brain, subtle variations in the induced haemodynamic responses have been described 

between distinct brain regions with different forms of stimulation (Miezen et al. 2000, Handwerker et al. 

2004). It is possible that this effect may be even more pronounced in the neonatal brain where 

particular neural systems are thought to mature at different rates, and this may be a key contributor to 

the ambiguity surrounding the results of previous neonatal fMRI studies (see chapter 3). Indeed, resting 

state fMRI studies have hinted towards such a trend, with the auditory network seemingly establishing a 

mature bilaterally distributed appearance earlier than others (Doria et al. 2010).  

 

With this in mind, the HRF in the auditory functional system was characterised in 3 healthy adult 

volunteers (2 male, ages 29, 34 and 44 years old), using a simple auditory tone stimulus presented 

through MR safe head-phones (MR confon GmbH, Magdeberg, Germany). fMRI data was acquired and 

analysed in an identical manner as described in chapter 6 of this thesis, with the exception of the 

placement of the acquisition field of view (over the primary auditory areas). As expected, the sampled 

HRF was found to have similar characteristics to that sampled from the primary somatosensory cortex, 

with a time to the positive peak of approximately 5 seconds, a post-stimulus negative undershoot, and a 

total duration of approximately 30 seconds (figure 7.1). Of note, the peak amplitude of the sampled HRF 

appears to be greatly reduced in comparison to both that of the somatosensory system and the 

canonical HRF (which was first derived from the visual cortex), which may be due to the modulatory 

effects of the background MR scanner gradient noise.  
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Figure 7.1 The HRF sampled using a simple auditory stimulus. (a): In 3 adult volunteers the sampled HRF 

resembles that of the canonical waveform. Circles represent data mean, error bars represent 2 SEM. The data has 

been fitted with a double gamma function model. Inset pictures represent the identified clusters of functional 

activity. (b): In a 33+1 week PMA preterm infant, the fitted HRF appears to peak much earlier than that 

characterised in the somatosensory system.     

 

This auditory HRF characterisation experiment has been successfully performed in a single preterm 

infant (33+1 weeks PMA). In keeping with the findings of the somatosensory experiment and the pilot 

adult data, a robust increase in BOLD contrast was observed with a characteristic pattern of overall 

signal change resembling the HRF. Although the peak of this HRF is again delayed in comparison to that 

sampled from an adult, it occurs much more rapidly (approximately 7 seconds) in comparison to the 

somatosensory system (11.25 seconds), which may indeed hint towards greater developmental maturity 

in the putative auditory system at this juncture (figure 7.1(b)). If this is truly the case, then it may also 

partly explain why the majority of the reported neonatal fMRI studies using an auditory stimulus have 

been able to consistently identify positive BOLD responses (Altman & Bernal 2001, Dehane-Lambertz et 

al. 2002, Perani et al. 2010, 2011, Blasi et al. 2011). This intriguing data therefore suggests that further 

HRF characterisation may be necessary for the successful application of fMRI in studies of different and 
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distinct functional systems, with the additional benefit of providing exciting new knowledge about the 

sequence of functional maturation in the newborn brain.    

 

7.1.2. Exploring the Linearity of the neonatal HRF 

The linearity of the BOLD response is a fundamental concept in fMRI methodology and analysis, as the 

assumed summation of overlapping responses is integral to predicting the measured responses in the 

context of the GLM (Boynton et al. 1996, Dale & Buckner 1997, Donaldson & Buckner 2001).    

 

7.1.2.1. The effect of varying the interstimulus interval  

In an event related experiment, overlapping responses are presumed to sum in a linear fashion, such 

that two events which occur in close succession lead to a larger evoked response (Boynton et al. 1996, 

Dale & Buckner 1997, Henson 2003). The design of the HRF characterisation study in this thesis was 

based on the premise that events spaced far apart in time will each evoke a single response identical to 

that of the HRF (Dale 1999, Bandettini & Cox 2000, Miezin et al. 2000). If the linearity of the response 

holds true, then it could be extrapolated that the amplitude of the evoked response should be affected 

by the baseline signal when it initiates, and potentially decreased if it occurs during the post-stimulus 

negative undershoot (McClure et al. 2005). While this decrease in signal is only likely to be very small in 

an adult subject (due to the proportionately high amplitude of the positive peak of the response), in a 

neonatal subject this effect can be profound. At an ISI of 30 seconds, it can be seen in simulated data 

that the HRF shape is relatively preserved in all 3 subject groups as there has been sufficient time for the 

signal to recover to baseline levels (figure 7.2(a)). At a 20 second ISI, the amplitude of the HRF peak 

would be predicted to decrease, particularly in both the adult and term equivalent PMA infant groups, 

due to the effects of the preceding undershoot signal (figure 7.2(b)). Of note, in the term equivalent 

PMA infant group, this effect would lead to the ratio of the positive to negative components of the HRF 
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reaching closer to 1; and further to no response at all being detected in the preterm infant group at a 

timepoint equivalent to the peak response in the other two groups. It has been proposed that for adult 

subjects, HRF detection efficiency is optimal at an ISI of 12-15 seconds (Bandettini & Cox 2000). At an ISI 

of 12 seconds in neonatal subjects however, the simulation suggests that this would result in a “block” 

like pattern of constant response in the preterm infant subject, while no response at all would be 

predicted in the term equivalent PMA group at the adult peak response timepoint (figure 7.2(c)).  

 

This effect has been investigated in 2 pilot studies conducted on a 31 year old healthy adult volunteer, 

and a 42+1 week PMA (term equivalent) infant (figure 7.3). In the adult, a typical HRF was sampled using 

an event-related design with somatosensory stimulation at an ISI of either 40 or 12 seconds (figure 

7.3(a)). In keeping with the expected linearity of overlapping responses, the positive peak amplitude is 

seen to be slightly reduced with an ISI of 12 seconds. In the term equivalent PMA infant, an 

approximation of the HRF is sampled with an ISI of 28.5 seconds, with a peak response at 7.5 seconds, as 

seen in the HRF characterisation study (figure 7.3(b)). However, at an ISI of 12 seconds, a recognisable 

response can no longer be identified, as predicted by the simulated data, due to the linear summation of 

a new response initiating during an ongoing deep negative post-stimulus undershoot.   
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Figure 7.2: Varying the Inter-stimulus Interval (ISI) in an 

event-related experiment can alter the amplitude of the 

predicted response. The traces shown are derived from the 

sampled HRFs characterised in Chapter 6. The faint vertical 

dashed line represents the timing of the stimulus event, while 

the thick vertical dashed line represents the positive peak of 

the adult response. (a) At a 30 second ISI, the responses 

largely resemble the sampled HRFs. (b) 20 second ISI leads to 

a reduction in the amplitude of the HRF positive peak. (c) At a 

12 second ISI, no response is detected in the term equivalent 

PMA infant group, and a constant “block like” response is seen 

in the preterm infant group. (Simulations were performed in 

MATLAB, using the pulstran function).   
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Figure 7.3: The detected BOLD response is reduced by a shorter ISI, in keeping with linear summation of 

overlapping responses. (a): In an adult volunteer, somatosensory stimulation induced a response identical to that 

of the typical HRF at both a 40 second (blue) and 12 second (red) ISI, but the positive peak amplitude of the 

response is decreased at a 12 second ISI due to the effects of the previous post-stimulus negative undershoot. (b) 

This effect is more profound in a term equivalent PMA infant. At an ISI of 28.5 seconds, the detected response is 

that of a typical HRF; but at an ISI of 12 seconds, the response appears to be abolished due to the linear effects of 

the previous undershoot. Data points represent data mean, error bars represent 2 SEM.       

 

7.1.2.2. HRF summation in block paradigms 

Linearity is also implicitly assumed when modelling the predicted response in a block design fMRI 

experiment in the context of the GLM (Boynton et al. 1996, Donaldson & Buckner 2001, Henson 2003). 

Under these assumptions, the summation of the overlapping responses during a “block” of repetitive 

stimulation would be predicted to result in a sustained and high amplitude BOLD response (Donalson & 

Buckner 2001, Hoge & Pike 2001). Moreover, a higher frequency of events during the block of 

stimulation would also be predicted to result in a higher amplitude but slightly delayed response 

(Boynton et al. 1996). In simulated data, this effect would be predicted to be consistent across all 3 of 
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the subject groups investigated in this thesis (figure 7.4). Of note, these simulations do not take into 

account a probable upper threshold (which has been demonstrated in the visual system) in both the 

amplitude of the BOLD response and the frequency at which a difference can be distinguished by the 

nervous system (Yeşilyurt et al. 2008). 

 

In example data derived from somatosensory stimulation of the wrist (see section 7.2.1.1), it can be seen 

that the assumed linearity of the real BOLD data does not match that of the predicted responses. In a 

single adult volunteer, a higher stimulus frequency does indeed lead to a marked increase in the 

amplitude of the response (although not to the magnitude predicted) (figure 7.4(d)). In the two infant 

subjects however, there is only a slight increase in the response amplitude in the preterm infant, but no 

apparent effect in the term equivalent PMA infant (figure 7.4(e,f)). The peak of the response does 

however appear to be delayed at higher stimulus frequencies as predicted in the simulations. Given that 

this data is derived from single subjects, it is not appropriate to assume that it is representative of the 

population as a whole. However, it does suggest that further detailed studies of this effect will be 

necessary to understand if the behaviour of the neonatal HRF conforms to the assumed linearity of the 

canonical adult HRF.  
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Figure 7.4: The effect of varying the stimulus frequency on the timing and amplitude of BOLD responses. (a,b,c (top row)): In simulated data, the linear 

summation of the responses at a higher stimulus frequency would be expected to evoke larger and slightly later responses in all 3 of the subject groups. 

Vertical line represents peak response at 0.3Hz. (c,d,e (bottom row)): Example data suggests that this may not be the case in neonatal subjects; where the 

onset of the response does appear delayed with a higher stimulus frequency, but the amplitude is not significantly increased.    
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7.2. Novel applications for fMRI studies of the newborn brain 

It is hoped that the findings of this thesis will allow further detailed fMRI studies to be performed in 

neonatal subjects. This will be vital to only provide new information about the developing brain, but 

moreover to understand the applicability (and flexibility) of the findings to other sensory systems and 

stimulation paradigms. Some of this work-in-progress has yielded extremely promising results, which are 

briefly presented here. 

 

7.2.1. Further characterisation of the immature motor system 

While the results of the first study described in this thesis hint towards the exciting potential that fMRI 

can offer for gaining a deeper understanding of the development of early human somatosensory system, 

the stimulus used in biological terms could be considered relatively non-specific as it is likely to provide 

both a local pressure and proprioceptive stimulus across several joints and more than one peripheral 

dermatome. In addition, by nature of their relatively uncooperative (and uncommunicative) behaviour, 

it is unknown how much active (ie: that initiated by the subject) movement and/or resistance to the 

induced movement could have contributed to the detected responses.  

 

With these considerations in mind, a further stimulation device has been designed, manufactured, and 

implemented in collaboration with the bioengineering department at Imperial College London. This 

device is based on similar principles to those of the balloon interface, but was designed specifically to 

provide gentle proprioceptive stimulation of only the wrist through induced flexion and extension driven 

by pressurised air (figure 7.5(a)). As previously, the rate and amplitude of the movement can be 

carefully controlled by the investigator through the software interface. By applying a combination of the 

lessons learnt from the initial study, an age-appropriate HRF, and the new stimulation device, we have 

been able to collect robust and reproducible fMRI data in a cohort of 14 preterm infants (median PMA 
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at scan 34+1 weeks (range 31+0 to 34+5). In this group of infants (as with the balloon interface), passive 

movement of the right wrist was found to evoke a well localised and unilateral pattern of positive BOLD 

activation in the contralateral primary somatosensory cortex (figure 7.5(b,c,d)).  

 

 

Figure 7.5: The novel wrist stimulation device designed for further studies of the developing motor system in 

neonatal subjects. (a) Photograph of the device fitted on a 34+3 week PMA preterm infant. It can be easily fitted 

on a neonatal subject without causing any discomfort, is MR safe, and weighs just 35g. Extension and flexion of the 

wrist is initiated by the piston (yellow) driven by pressurised air. (b,c,d): The group analysis of 14 preterm infants 

(median PMA 34+1 weeks) following stimulation of the right wrist, shows a large but well localised cluster in the 

peri-rolandic area in the contralateral cortex. The results of a non-parametric t-test, generated with permutation 

methods and threshold-free cluster enhancement (TFCE) have been overlaid on an age-appropriate template brain.  

 

Although a newborn infant can be seen to make spontaneous movements with their trunk and limbs, 

little is known about the control or initiation of these movements (Prechtl 2001). While it is generally 

accepted that these movements do not appear purposeful, the quality of the movements can be 

qualitatively assessed and has been described to follow a recognisable sequence of ontogeny in the first 

few months of life (Prechtl et al. 1993, 2001, Hadders-Algra 2004, Lagercrantz & Changeux 2009). 

Deviations in either the normal pattern of movement (both quality and quantity) or sequence of 

maturation, have been found to be correlated with later adverse neurodevelopmental outcome (Prechtl 
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et al. 1993, Hadders-Algra et al. 1999, Ferrari et al. 2011). In the mature brain, movements are initiated 

in the primary motor cortex (anterior to the central sulcus) and transmitted to the contralateral side of 

the body via the corticospinal tracts (Purves et al. 2001). In early life, the corticospinal tracts are known 

to be present from approximately 24 weeks gestation; but are thought to serve a very different 

predominately inhibitory and sensory role in the immature motor system, with functions such as the 

inhibition of peripheral stretch reflexes, mediating muscle tone, reinforcing tactile reflexes, and the 

early individualisation of finger movements (Eyre 2001, Sarnat 2003, Martin 2007).         

 

The accurate characterisation and quantification of spontaneous movements in the developing neonate 

is therefore of great interest to both the clinical and developmental neuro-biology communities. The 

described novel wrist interface has a segmented fibre-optic position sensor integrated into the 

moveable arms of the device, which can provide extremely precise position feedback information (with 

a maximum error of just ±1.1o). The spontaneous movements of the infant’s wrist during fMRI data 

acquisition can therefore be measured, convolved with the age-appropriate HRF, and entered into the 

GLM analysis as a further design matrix. The considerable potential of this approach can be seen in an 

exemplar study of an infant studied at 33+4 weeks PMA. “Passive” movement (ie: that induced by the 

device) of the right wrist was found to elicit a cluster of well localised functional activity in the primary 

somatosensory cortex posterior to the central sulcus, while surprisingly the spontaneous “active” 

movements (ie: those initiated by the infant) were found to be associated (as in the adult) with 

functional activity anterior to the central sulcus in the presumed immature primary motor cortex (figure 

7.6). Further validation of this result was provided by performing DTI probabilistic tractography from the 

identified clusters of activation, which confirmed that the area associated with spontaneous movements 

appeared to be connected to the midbrain via the corticospinal tract running through the PLIC (figure 

7.6(c)).   
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The combination of fMRI and the innovative robotic wrist interface device thus offers the unique 

prospect of a true understanding of the developing relationship between cortical activity and 

movements in newborn infants during normal brain maturation and following localised injury.  

 

 

 

Figure 7.6: Functional activity associated with passive (blue) and active (red) movements of the right wrist. (a,b): 

Well localised clusters of positive BOLD functional activity can be seen posterior to the left central sulcus (blue) in 

the primary somatosensory cortex, and anterior (red) in the primary motor cortex. The cluster corrected 

statistical maps from the two different conditions have been overlaid on the subject’s own high resolution T2 

image. (c): The findings of the functional data are validated by the connectivity distributions derived with DTI 

probabilistic tractography. The pathways from the “active” motor cluster (red) follow the path of the cortico-

spinal tracts (through the posterior limb of the internal capsule (PLIC) and down to the cerebral peduncle. In 

contrast, the pathway from the “passive” cluster (blue) also passes through the PLIC, but then terminates at the 

level of the thalamus, as would be seen in the thalamo-cortical tracts.  

 

7.2.2. The Olfactory system 

The neural systems that underlie the development of olfaction around the time of birth are not well 

understood. Behavioural studies of infant olfaction have suggested that neonates can distinguish 
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between pleasant and aversive smells, and furthermore that familiar smells (such as breast milk) may 

have a calming effect during painful procedures (Bingham et al. 2007, Nishitani et al. 2009). A recent 

functional NIRS study has described greater responses in neonatal subjects in the frontal areas to the 

smell of breast milk in comparison to formula milk, suggesting that the neural correlates of this 

behaviour may be amenable to functional neuroimaging (Aoyama et al. 2010). In the mature brain, 

primary olfaction is processed inferiorly in the piriform cortices, with higher level processing such as 

smell association and discrimination processed in the thalamus, orbito-frontal, cingulate, and insular 

areas (Savic 2002). Functional MRI (fMRI) is therefore an ideal tool for understanding olfaction in the 

early brain, as activity can be identified in both cortical and subcortical areas.  

 

An fMRI compatible “olfactometer” was designed and made based on similar principles to those 

described in adult fMRI studies (Popp et al. 2004, Johnson & Sobel 2007), with particular care placed on 

limiting infective risk between subjects. The general theory of an olfactometer is relatively simple: 

delivery of pressurised air through 3 odour chambers (each containing a small amount of liquid odorant) 

is regulated via the computer controlled opening of valves. The smell is then presented through nasal 

cannulae fitted to the infant prior to the image acquisition (figure 7.7(a)). To minimise infective risk, all 

of the components distal to the control valves were composed of readily available medical equipment, 

which could be easily disposed of between subjects.  

 

In pilot data using this equipment and a formula milk odour stimulus, it has been found that sedated 

infants at term equivalent PMA age show well localised patterns of positive BOLD response in the 

primary olfactory areas at the base of the brain (figure 7.7(b)). Of interest, the term equivalent PMA 

infant somatosensory HRF was found to be appropriate for data derived with this stimulus type, with the 
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predicted design model closely fitting the data timeseries within the identified cluster of activity (figure 

7.7(c)). 

 

Figure 7.7: The neonatal olfactometer. (a): Schematic diagram of the control box, and presentation manifold. 

The control box contains an air flow regulator, meter and valves, and as with other stimulation devices is kept 

within the MR scanner console room. Pressurised air is bubbled through the stimulus odorant liquids within the 

odour chambers, thereby presenting the vaporised odour to the subject inside the scanner examination room. (b): 

Well localised positive BOLD responses in the piriform cortices were identified in a term equivalent PMA infant 

following stimulation with formula milk (orange arrows). (c): The BOLD contrast timeseries (red) can be seen to 
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closely fit the design model (green) which is derived from the pattern of stimulation and the population 

appropriate HRF. (figure (a) courtesy of Richard Gordon-Williams).   

 

A truly exciting aspect of future studies using the fMRI-compatible olfactometer will be the possibility of 

investigating a newborn infant’s ability to distinguish smells; and in particular those that are familiar or 

“comforting” (such as the mother’s breast milk) in contrast to those that are aversive or associated with 

unpleasant events (such as those associated with the clinical environment). The results of such a study 

may have great implications with respect to our understanding of the development of associative 

behaviour and cognitive capability in newborn infants.     

 

7.3. fMRI in the study of perinatal brain injury 

Acquired brain injury during the perinatal period has been described in a number of clinical case reports 

to have a profound effect on the growing and developing neonatal brain (Johnston 2009, Staudt 2010). 

In these infants, multi-modal neuro-imaging studies have found fascinating evidence of the early brain’s 

increased capacity for neural plasticity with compensatory patterns of novel neural organisation still 

apparent later in childhood (Staudt et al. 2002, Fair et al. 2006, Basu et al. 2010, van der Aa et al. 2011a). 

The ability of the child to compensate and the eventual clinical outcome appear to depend on a number 

of factors including the type, timing, and location of the original injury (Staudt et al. 2010). The addition 

of quantitative information derived from diffusion-based MRI data in early infancy has been described 

to offer prognostic information with greater sensitivity and specificity than anatomical MR imaging 

alone (van der Aa 2011b, Roze et al. 2012). By providing information about the locality of brain activity, 

fMRI is ideally suited to add further insights into both the processes of compensatory plasticity and the 

prediction of later outcome. That said, an important caveat is that the pathology itself may have effects 
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(particularly in the acute phase of the disease) directly on the haemodynamic response and/or cause 

image artefacts, which may make interpretation difficult (Amemiya et al. 2012).     

 

Early data collected from 2 preterm infants studied at term equivalent PMA and 1 year of age, suggest 

that compensatory patterns of functional activity and structural connectivity can already be identified in 

neonatal life, and further suggest that this information may offer dramatic new insights into the 

mechanisms of neural organisation during early brain development (figure 7.8). Functional 

somatosensory stimulation of the hand contralateral to the brain lesion was found to elicit positive 

BOLD responses in the abnormal hemisphere, which was displaced due to the presence of the area of 

damage. In both cases, DTI tractography from the cluster of functional activation found clear 

connectivity distributions which circumvented the porencephalic cyst, and which were later 

consolidated at follow-up imaging at 1 year of age.      
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Figure 7.8: The combination of fMRI and DTI probabilistic tractography can offer new insights into the development of functional and structural activity following perinatal 

brain injury. Both infants were born preterm, and developed large porencephalic cysts following HPI in the perinatal period (on the right side in infant (a), and left in (b)). The 

infants were imaged at term equivalent PMA, and at approximately 1 year (corrected) of age. (a): In this infant at term age, right hand stimulation resulted in bilateral 

functional responses, with the derived tracts deviating around the cyst. A CST could not be delineated in the pathological hemisphere. At 13 months of age, functional 

responses are seen in the contralateral hemisphere only, with a thin CST; neurologically the infant has developed a dense right hemiplegia. (b): In this infant, functional 

responses are seen in the contralateral (left) hemisphere at term age, with the thalamo-cortical tracts passing over and around the left-sided porencephalic cyst. There is 

relative preservation of the CST. At 14 months, functional responses are still seen on the left only. Although there is atrophy of the left thalamus, the PLIC is preserved, as 

evidenced by the symmetrical appearance of the CSTs, and the infant has had a good neurological outcome with mild asymmetry only. 
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Additional insights into early brain development and organisation may also come from 

characterising the functional and structural effects of pathology acquired at different developmental 

junctures, with greater patterns of plasticity seen in particular pathways in ex-preterm infants as 

adolescents (Johnston 2009, Staudt et al. 2010). Further work however, will be vital to investigate 

the effects of brain pathology (both acquired and congenital) on BOLD haemodynamic responses, 

and to assess the sensitivity and specificity of the technique as a potential biomarker of later 

outcome. Although the usefulness of aggressive rehabilitative therapy in this population remains 

controversial (Blauw-Hospers & Hadders-Algra 2005), the possible use of fMRI as a tool for 

monitoring the effectiveness of therapeutic intervention remains an exciting prospect.  

 

7.4 Summary 

This chapter highlights the potential that fMRI holds for adding striking new insights into our 

understanding of early human brain development and pathology. While the early results from these 

studies are far from conclusive, they importantly suggest that the findings of the main studies 

described in this thesis can be applied to further fMRI studies of the neonatal brain.   
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Chapter 8 

8. Thesis Conclusions 

The main findings of the work presented in the thesis were: 

• Blood Oxygen Level Dependent (BOLD) contrast functional MRI (fMRI) can be used to 

identify robust, reproducible and well localised patterns of brain activity in human infants 

during the preterm period and through to term equivalent post-menstrual age.  

• The typical amplitude of the induced BOLD response is positive in this population with a 

specific range of stimuli. 

• The morphology of the Haemodynamic Response Function (HRF) in the neonatal period 

differs significantly from the canonical adult HRF. 

• A systematic maturational trend exists in the parameters of the HRF during the neonatal 

period, which is likely due to developmental changes in neurovascular coupling.  

• The application of an age-appropriate HRF into the data analysis significantly improves the 

identification of functional responses.       

 

The work of this thesis was planned and carried out with the foremost goal to identify and address 

some of the possible sources of inconsistency in previously reported neonatal fMRI studies, and in 

doing so explore whether fMRI techniques could be applied to accurately and reliably characterise 

functional brain activity in early human life. This was achieved by firstly performing a systematic 

study with specific and targeted adaptations (including a custom designed somatosensory stimulus) 

in a cohort of preterm and term equivalent PMA infants; and then secondly by characterising the 

typical response to a brief stimulus, as knowledge of the underlying function (the HRF) is 

fundamental to fMRI methodology and data analysis. Together, these studies demonstrate that 

through a combination of appropriate study design, methodology, and analysis; reproducible and 

positive BOLD contrast responses can be identified in neonatal subjects. Furthermore, the BOLD 

contrast haemodynamic response to stimulation was found to be fundamentally different in early 



 244

life in comparison to the typical adult response, suggesting that the technique is both sensitive and 

specific enough to provide detailed information about early human brain development. Lastly, the 

promising early results of work in progress demonstrates the possibility that the findings can be 

applied to study neonatal brain activity with other forms of stimulation, and in subjects who have 

suffered perinatal brain injury.  

 

It was clear when reviewing the literature of previously reported neonatal fMRI studies that the 

greatest unresolved issue has been that of “negative BOLD”, and specifically whether such responses 

are a normal developmental stage in early human infancy (Born et al. 1996, Yamada et al. 1997, 

2000, Seghier et al. 2006). Whilst areas of negative BOLD are now recognised as a normal 

component of the functional response in adult fMRI studies, they are thought to represent complex 

integrative processes such as neural inhibition and modulation, rather than the primary response 

itself (Schmuel et al. 2006, Kastrup et al. 2008, Klingner et al. 2010, Schäfer et al. 2012). In contrast, 

in infants it has been postulated that a rapid rise in synaptic density in the first few months of 

postnatal life leads to an increased metabolic requirement which is insufficiently met by the vascular 

supply of oxygen, leading to an accumulation of d-Hb (and a negative BOLD response) in the primary 

area of activity (Born et al. 1996, Yamada et al. 2000, Muramoto et al. 2002). In the studies of this 

thesis, the predominant nature of the identified BOLD responses was positive. Furthermore, it was 

found that the HRF in early infancy has a significantly delayed but undoubtedly positive peak, with a 

marked negative post-stimulus undershoot evident at term equivalent PMA. Whilst previous studies 

in the literature have convolved the canonical HRF with the stimulation paradigm in a traditional 

GLM analysis, it was found here that the identification of functional activity is significantly altered by 

using an age-appropriate HRF. Thus, the ambiguous findings of the previously reported studies may 

in part be explained by the inappropriate assumption that the neonatal haemodynamic response 

would be identical to that of the mature adult.     
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A major contributor to the negative BOLD effect may have been that the imaging in a number of 

those historical studies was performed at 1.5 T, which would have led to a significantly reduced SNR, 

and a greater sensitivity to the intravascular (and particularly venous) compartment in which a 

delayed timecourse and accumulation of d-Hb may occur (Buxton et al. 1998, 2009, Krűger et al. 

2001, Bianciardi et al. 2010). A possible way to formally quantify the intravascular contribution to 

the BOLD signal would be to add bipolar gradient pulses (as used in diffusion MR sequences) to 

suppress the signal derived from the rapidly flowing (and large displacing) blood in large vessels 

(Buxton 2009). It may also be that negative responses are specific to the visual system only, and 

occur only at a specific age; neither of which were directly studied in this thesis (Yamada et al. 1997, 

2000, Muramoto et al. 2002, Seghier et al. 2004). An important insight may come through a 

characterisation of the underlying neurochemistry; as a recent series of intriguing studies have 

described a negative correlation in adults between the baseline level of GABA (as measured by MR-

spectroscopy) and the amplitude and dispersion of the BOLD response (Muthukumaraswamy et al. 

2009, 2012, Donahue et al. 2010). This effect may be of great pertinence to the neonatal brain, 

where certain receptor subtypes are relatively over-expressed, and GABA itself is conversely known 

to be the predominant excitatory neurotransmitter (Luján et al. 2005, Ben-Ari et al. 2007, Briggs & 

Galanopoulou 2011).        

 

While every effort was made to account for all of the possible sources of inconsistency in the 

neonatal fMRI literature, there remain some unresolved issues which it was not possible to 

conclusively address. It may be possible to improve the SNR of the imaging sequence by quantifying 

T2* in the neonatal cortex at 3T; as it is generally considered to be maximised when the TE of the 

acquisition sequence is matched to the T2* value of the tissue of interest (Bandettini et al. 1994). 

Values have been found to be significantly raised in the neonatal period at 1.5T, but while this effect 

will certainly be less marked at higher B0 strengths, such measurements have not formally been 

done in the neonatal brain (Bandettini et al. 1994, Rivkin et al. 2004, Harmer et al. 2012, Lee et al. 
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2012). A further prominent issue is the use of induced pharmacological sedation, which remains a 

controversial topic within the field. While possible neurotoxic effects have been implicated in animal 

studies with anaesthetic agents such as ketamine and isoflurane, at present there is no evidence to 

suggest that this is the case with milder agents such as the chloral hydrate used in this thesis (Mellon 

et al. 2007). Although it was found that chloral hydrate does not affect baseline CBF, there 

nevertheless remains the possibility that it has a direct effect on the local neurovascular coupling 

and the resultant vascular reactivity. However, it could be argued that the findings of this thesis are 

undoubtedly of operational value, as the use of sedation in infant MRI studies will likely be necessary 

until such a time that the imaging sequences and analysis techniques have sufficiently advanced to 

counteract the considerable confounding effects of subject head motion.   

 

A number of studies have recently reported the collective use of multiple sources of functional MRI 

data; including the physiological manipulation and quantitative measurement of local CBF, CBV, and 

estimated CMRO2, collectively known as “calibrated fMRI” (reviewed in Hoge 2012). While the 

considerable challenges inherent to imaging the neonatal brain mean that the implementation of 

such an approach is likely to be fraught with difficulty, the information it may provide could be 

crucial in definitively understanding the true physiology of neurovascular coupling and therefore the 

nature of BOLD responses in the neonatal brain. As an example, the measures of local CBF provided 

by ASL have been found to be as sensitive and perhaps even more specific than BOLD contrast, and 

therefore may be more representative of the coupled vascular response to neural activity (Hillman 

et al. 2007, Pimentel et al. 2011). Moreover, if true measures of the underlying vascular and 

metabolic parameters can be acquired, then it may be possible to put the neonatal BOLD response 

in context within a biophysical model of the BOLD response, or generate a new comprehensive 

model specific to the population (Buxton 2012).  
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An intrinsically attractive aspect of fMRI is that it has a number of attributes (in particular the 

quantitative nature of the BOLD signal, the relative experimental flexibility, and the reproducible 

dynamic signal properties across different subjects) which make it ideal for the application of higher 

level statistical testing and mathematical modelling. This has allowed the fMRI community to begin 

to attempt the complex process of accurately mapping and characterising the functional 

organisation of the brain, and furthermore to probe more issues such as the underlying patterns of 

connectivity between different regions at rest. Studying the architecture of functional activity in the 

resting brain is a compelling prospect in neonatal subjects, as emphasised by the findings that 

dramatic increases in inter-hemispheric and long range functional connectivity are seen with fMRI in 

preterm infants even over the short time period that corresponds to the third trimester of gestation 

(Doria et al. 2010, Smyser et al. 2010). It could even be postulated that a deeper understanding of 

the establishment and maturation of these “resting state networks” may hold the key to finally 

comprehending indistinct (but nevertheless fascinating) concepts such as “consciousness” and “self-

awareness” in early human life (Lagercrantz 2009, Lagercrantz & Changeux 2009). Through the 

integration of information acquired from both fMRI and diffusion MRI studies, it is hoped that 

eventually a comprehensive model of brain “connectivity” in early human life can be constructed (as 

is being attempted currently in a large multi-centre study of 1200 adult subjects, dubbed the 

“human connectome project”) (van Essen et al. 2011, van Essen & Ugurbil 2012). While such a major 

undertaking represents a truly daunting prospect, it would indisputably be a valuable future 

resource for both developmental neuroscience and clinical medicine alike.    

 

An important consideration with respect to the information derived from BOLD fMRI is that it 

represents an indirect measure of neural activity over a relatively large “population” of neurons. To 

resolve this potential limitation, an essential but highly complex challenge in the coming years will 

be to successfully integrate information gained through multiple different neuroimaging modalities; 

each of which individually have long provided meaningful but limited information, but collectively 
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may hold the potential to providing a true “model” of brain function. As both measure temporal 

changes in the local haemodynamic response to neural activity, the highly complimentary nature of 

NIRS and BOLD fMRI is relatively easy to see (Huppert et al. 2006, Lloyd-Fox et al. 2010). No less 

important, but conceptually far more complex to do, will be amalgamating the findings of 

electrophysiological studies which are on a markedly different temporal and spatial scale to that of 

BOLD fMRI. While great advances have been described in the creation of algorithms which can 

provide accurate source localisation in EEG and MEG studies (He & Liu 2008, Brookes et al. 2012), an 

obstacle particular to neonatal subjects may arise due to the structurally immature (and physically 

smaller) brain. While these challenges may appear immense, the prospect of integrating such 

complex but complimentary information to provide a full model of functional brain activity from the 

cellular to system wide level is not only exciting for neuroscience, but is also likely to be integral to 

further advances in experimental and translational medicine.          

 

Ultimately, it is hoped that the knowledge gained through the more widespread application of BOLD 

fMRI, will provide a much needed new perspective on the mechanisms of perinatal brain injury. The 

importance of this challenge is increasing, with the incidence of preterm birth continuing to rise in 

the developed world, with the survivors still found to have a markedly increased risk of developing 

later adverse neurodevelopmental outcome (Hintz et al. 2005b, Allen 2008, Ment et al. 2009, Volpe 

2009b, Johnson & Marlow 2011). Although there have been encouraging decreases in the incidence 

of the severe brain lesions typically associated with prematurity, recent studies have identified a 

worrying trend towards an increased risk of learning, behavioural, and psychiatric disabilities in 

adulthood (Johnson & Marlow 2011, van Haastert et al. 2011, Nosarti et al. 2012, Sugiura et al. 

2012). By way of the highly detailed and quantitative information it provides, and its non-invasive 

nature, MRI is ideal for studying the underlying mechanisms of preterm brain injury. In addition to 

providing a potentially powerful new way with which to learn about the underlying pathophysiology 

of perinatal brain injury, fMRI techniques may also represent a promising new biomarker for 
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predicting outcome and monitoring the effects of novel interventional therapies. Unfortunately, due 

to the time constraints of the thesis data collection period it was not possible to either collect 

neurodevelopmental follow-up data from the subjects in the studies, or attempt to correlate the 

findings of the functional data with eventual clinical outcome. However, such processes will be vital 

to know if the techniques can be utilised as biomarkers, and to put the findings in context.  

 

In summary, the work described in this thesis has demonstrated that fMRI can be successfully 

applied to study brain activity in the newborn brain, and furthermore is capable of characterising key 

aspects of brain development. It is hoped that the findings of this thesis will provide a foundation on 

which further studies can be carried out; and that fMRI may make it possible to definitively answer 

fundamental questions about the establishment of functional brain activity, connectivity, and 

anatomy in the developing human brain. Furthemore, fMRI may be capable of providing much 

needed novel diagnostic and prognostic information, and ultimately may prove to be a valuable tool 

in clinical neurology of the newborn.  
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Appendix A: Balloon manufacturing process  

 

Reproduced from the MSc report “Design of a small robotic proprioceptive stimulator for 

premature babies” by Amélie Moraux (supervisor Dr Etienne Burdet): Human Robotics 

Group, Department of Bioengineering, Imperial College London; 2008. 

 

The first step in the manufacturing of the balloon is to create the clay pattern that will be coated with 

liquid latex. To do so, modelling clay should be inserted between the two parts of the plastic mould in 

order to be shaped to the balloon size. As this clay cast will have to be immersed into a cup of liquid 

latex it needs a support to be hold. The technique can be to enter a screw holding a wooden stick at 

the bottom of the clay cast (while it is still inside the plastic mould). When the clay cast is immersed 

into latex, it is hold by the wooden stick which is lying on the edge of the cup. Once shaped and fixed 

to the wooden stick, the clay should be removed from the mould, to be left drying overnight.  

 

The parameters for the latex application are:  

 

-Dip quickly the cast several times into latex to prevent any bubbles forming on the surface of the 

latex and then leave the cast to immerse for 12 minutes.  

-Remove and leave to dry for at least 4 hours.  

-Sew the nylon cloth on the cast following the instructions given below.  

-Apply a first coating of liquid latex onto the nylon cloth (once on the balloon) with a brush so 

that the nylon is filled with liquid latex and then immerse into liquid latex for another 12 

minutes.  

-Remove and leave to dry overnight.  

-The following day, the clay should be broken and removed from the latex. To do so, protect the 

latex surface with a piece of cloth and hammer the balloon. The clay should easily break 

inside the latex balloon so that it can be pulled out through the neck.  

The manufacturing of a new balloon takes 3 days in overall.  

 

To attach the balloon to the pipe, use melt silicon glue and apply it at the interface between 

the pipe and the balloon neck. Ensure that no air can pass through the junction and leave to 

cool down. In order to ease this process, the balloon can be hold to the pipe using a hose clip 

that should be removed after the glue is cold and strong.  
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Sewing technique 
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Size of the cloth  

The size of the pieces of cloth used should be designed according to the size of the “clay balloon”  

For example for balloons made with the 3D template, the height of the balloon is 35mm and the 

diameter is 8mm. The height of the cloth used should be 5mm bigger than the size of the balloon i.e. 

40 mm. The width of the cloth depends on the perimeter of the balloon at maximum diameter i.e. 

8mm. The perimeter is then 50mm which means that each piece of cloth should be 25mm wide. The 

user has to add the width of cloth necessary for the sewing which should roughly be around 2mm on 

each side. These measurements greatly depend on the user because the way the nylon is cut and 

sewed, slightly influences the size of the cloth needed.  

Advice:  

-The nylon cloth should not be pulled to hard when sewed or placed on the balloon cast as it will 

reduce the amplitude of inflation of the balloon once finished.  

-Before immersing the balloon ‘with cloth’ into the latex for the second time, it is advised to first 

brush some liquid latex on the nylon so that all the nylon pores are filled  
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Appendix B: Shell script written for creating peristimulus data 
 

#!/bin/bash 
 
#script for creating hrf timeseries from event-related data, put in .feat directory 
#timings of stimulation: volumes 4,86,168,250,332,414,496,578,660,742,824,906 
#please make sure these timings are correct and alter script appropriately if 
necessary 
#baseline calculated from first 2 seconds of each peristimulus block 
 
mkdir hrf_timeseries_nb 
cd hrf_timeseries_nb 
echo "calculating baseline"; 
 for f in ../filtered_func_data.nii.gz; 
  do fslroi $f baseline01 0 4; 
  fslroi $f baseline02 82 4; 
  fslroi $f baseline03 164 4; 
  fslroi $f baseline04 246 4; 
  fslroi $f baseline05 328 4; 
  fslroi $f baseline06 410 4; 
  fslroi $f baseline07 492 4; 
  fslroi $f baseline08 574 4; 
  fslroi $f baseline09 656 4; 
  fslroi $f baseline10 738 4; 
  fslroi $f baseline11 820 4; 
  fslroi $f baseline12 902 4; 
  fslmerge -t baseline_all baseline01 baseline02 baseline03 baseline04 
baseline05 baseline06 baseline07 baseline08 baseline09 baseline10 baseline11 
baseline12; 
  fslmaths baseline_all -Tmean Baseline_image    
  rm baseline* 
 done 
  
 for b in Baseline_image.nii.gz 
 do  
  echo "creating peristimulus image and sampled hrf text file"; 
  fslmaths $f -sub $b -mul 100 -div $b estpc_image.nii.gz; 
  fslroi estpc_image volume01 4 82; 
  fslroi estpc_image volume02 86 82; 
  fslroi estpc_image volume03 168 82; 
  fslroi estpc_image volume04 250 82; 
  fslroi estpc_image volume05 332 82; 
  fslroi estpc_image volume06 414 82; 
  fslroi estpc_image volume07 496 82; 
  fslroi estpc_image volume08 578 82; 
  fslroi estpc_image volume09 660 82; 
  fslroi estpc_image volume10 742 82; 
  fslroi estpc_image volume11 824 82; 
  fslroi estpc_image volume12 906 82; 
  fslmaths volume01.nii.gz -add volume02.nii.gz -add volume03.nii.gz -
add volume04.nii.gz -add  volume05.nii.gz -add volume06.nii.gz -add volume07.nii.gz 
-add volume08.nii.gz -add volume09.nii.gz -add volume10.nii.gz -add volume11.nii.gz 
-add volume12.nii.gz -div 12 estpc_psimage.nii.gz 
  rm volume*; 
 done 
 
 for s in ../stats/pe1.nii.gz; do 
  p="$(grep "/PPheights" ../design.con | awk '{print $2 }')"; 
  echo "P-P height: $p"; 
  fslmaths $s -mul $p -mul 100 -div Baseline_image pc_image; 
 done 
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