3 research outputs found

    Automatic normal orientation in point clouds of building interiors

    Full text link
    Orienting surface normals correctly and consistently is a fundamental problem in geometry processing. Applications such as visualization, feature detection, and geometry reconstruction often rely on the availability of correctly oriented normals. Many existing approaches for automatic orientation of normals on meshes or point clouds make severe assumptions on the input data or the topology of the underlying object which are not applicable to real-world measurements of urban scenes. In contrast, our approach is specifically tailored to the challenging case of unstructured indoor point cloud scans of multi-story, multi-room buildings. We evaluate the correctness and speed of our approach on multiple real-world point cloud datasets

    Toward Controllable and Robust Surface Reconstruction from Spatial Curves

    Get PDF
    Reconstructing surface from a set of spatial curves is a fundamental problem in computer graphics and computational geometry. It often arises in many applications across various disciplines, such as industrial prototyping, artistic design and biomedical imaging. While the problem has been widely studied for years, challenges remain for handling different type of curve inputs while satisfying various constraints. We study studied three related computational tasks in this thesis. First, we propose an algorithm for reconstructing multi-labeled material interfaces from cross-sectional curves that allows for explicit topology control. Second, we addressed the consistency restoration, a critical but overlooked problem in applying algorithms of surface reconstruction to real-world cross-sections data. Lastly, we propose the Variational Implicit Point Set Surface which allows us to robustly handle noisy, sparse and non-uniform inputs, such as samples from spatial curves
    corecore