17,389 research outputs found

    Carbon-ammonia pairs for adsorption refrigeration applications : ice making, air conditioning and heat pumping

    Get PDF
    A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m(-3)), the heating production (MJ m(-3)) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent-refrigerant pair and heat flows. The simulation results of 26 various activated carbon-ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 degrees C to 200 degrees C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 degrees C; the cooling production is about 66 MJ m(-3) (COP = 0.45) and 151 MJ m(-3) (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m(-3) (COP = 1.50)

    Asynchronous Variational Contact Mechanics

    Full text link
    An asynchronous, variational method for simulating elastica in complex contact and impact scenarios is developed. Asynchronous Variational Integrators (AVIs) are extended to handle contact forces by associating different time steps to forces instead of to spatial elements. By discretizing a barrier potential by an infinite sum of nested quadratic potentials, these extended AVIs are used to resolve contact while obeying momentum- and energy-conservation laws. A series of two- and three-dimensional examples illustrate the robustness and good energy behavior of the method

    Development of advanced composite structures

    Get PDF
    Composite structure programs: the L-1011 Advanced Composite Vertical Fin (ACVF), the L-1011 Advanced Composite Aileron, and a wing study program were reviewed. These programs were structured to provide the technology and confidence for the use of advanced composite materials for primary and secondary structures of future transport aircraft. The current status of the programs is discussed. The results of coupon tests for both material systems are presented as well as the ACVF environmental (moisture and temperature) requirements. The effect of moisture and temperature on the mechanical properties of advanced composite materials is shown. The requirements set forth in the FAA Certification Guidelines for Civil Composite Aircraft Structures are discussed as they relate to the ACVF

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    A review of solar collectors and thermal energy storage in solar thermal applications

    Get PDF
    Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper focuses on the latest developments and advances in solar thermal applications, providing a review of solar collectors and thermal energy storage systems. Various types of solar collectors are reviewed and discussed, including both non-concentrating collectors (low temperature applications) and concentrating collectors (high temperature applications). These are studied in terms of optical optimisation, heat loss reduction, heat recuperation enhancement and different sun-tracking mechanisms. Various types of thermal energy storage systems are also reviewed and discussed, including sensible heat storage, latent heat storage, chemical storage and cascaded storage. They are studied in terms of design criteria, material selection and different heat transfer enhancement technologies. Last but not least, existing and future solar power stations are overviewed.Peer reviewe
    corecore