1,369 research outputs found

    Digital places: location-based digital practices in higher education using Bluetooth Beacons

    Get PDF
    The physical campus is a shared space that enables staff and students, industry and the public, to collaborate in the acquisition, construction and consolidation of knowledge. However, its position as the primary place for learning is being challenged by blended modes of study that range from learning experiences from fully online to more traditional campus-based approaches. Bluetooth beacons offer the potential to combine the strengths of both the digital world and the traditional university campus by augmenting physical spaces to enhance learning opportunities, and the student experience more generally. This simple technology offers new possibilities to extend and enrich opportunities for learning by exploiting the near-ubiquitous nature of personal technology. This paper provides a high-level overview of Bluetooth beacon technology, along with an indication of some of the ways in which it is developing, and ways that it could be used to support learning in higher education

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Privacy-preserving controls for sharing mHealth data

    Get PDF
    Mobile devices allow people to collect and share health and health-related information with recipients such as health providers, family and friends, employers and insurance companies, to obtain health, emotional or financial benefits. People may consider certain health information sensitive and prefer to disclose only what is necessary. In this dissertation, we present our findings about factors that affect people’s sharing behavior, describe scenarios in which people may wish to collect and share their personal health-related information with others, but may be hesitant to disclose the information if necessary controls are not available to protect their privacy, and propose frameworks to provide the desired privacy controls. We introduce the concept of close encounters that allow users to share data with other people who may have been in spatio-temporal proximity. We developed two smartphone-based systems that leverage stationary sensors and beacons to determine whether users are in spatio-temporal proximity. The first system, ENACT, allows patients diagnosed with a contagious airborne disease to alert others retrospectively about their possible exposure to airborne virus. The second system, SPICE, allows users to collect sensor information, retrospectively, from others with whom they shared a close encounter. We present design and implementation of the two systems, analyse their security and privacy guarantees, and evaluate the systems on various performance metrics. Finally, we evaluate how Bluetooth beacons and Wi-Fi access points can be used in support of these systems for close encounters, and present our experiences and findings from a deployment study on Dartmouth campus

    Applications of Context-Aware Systems in Enterprise Environments

    Get PDF
    In bring-your-own-device (BYOD) and corporate-owned, personally enabled (COPE) scenarios, employees’ devices store both enterprise and personal data, and have the ability to remotely access a secure enterprise network. While mobile devices enable users to access such resources in a pervasive manner, it also increases the risk of breaches for sensitive enterprise data as users may access the resources under insecure circumstances. That is, access authorizations may depend on the context in which the resources are accessed. In both scenarios, it is vital that the security of accessible enterprise content is preserved. In this work, we explore the use of contextual information to influence access control decisions within context-aware systems to ensure the security of sensitive enterprise data. We propose several context-aware systems that rely on a system of sensors in order to automatically adapt access to resources based on the security of users’ contexts. We investigate various types of mobile devices with varying embedded sensors, and leverage these technologies to extract contextual information from the environment. As a direct consequence, the technologies utilized determine the types of contextual access control policies that the context-aware systems are able to support and enforce. Specifically, the work proposes the use of devices pervaded in enterprise environments such as smartphones or WiFi access points to authenticate user positional information within indoor environments as well as user identities

    A Context-Aware System to Secure Enterprise Content: Incorporating Reliability Specifiers

    Get PDF
    The sensors of a context-aware system extract contextual information from the environment and relay that information to higher-level processes of the system so to influence the system\u2019s control decisions. However, an adversary can maliciously influence such controls indirectly by manipulating the environment in which the sensors are monitoring, thereby granting privileges the adversary would otherwise not normally have. To address such context monitoring issues, we extend CASSEC by incorporating sentience-like constructs, which enable the emulation of \u201dconfidence\u201d, into our proximity-based access control model to grant the system the ability to make more inferable decisions based on the degree of reliability of extracted contextual information. In CASSEC 2.0, we evaluate our confidence constructs by implementing two new authentication mechanisms. Co-proximity authentication employs our time-based challenge-response protocol, which leverages Bluetooth Low Energy beacons as its underlying occupancy detection technology. Biometric authentication relies on the accelerometer and fingerprint sensors to measure behavioral and physiological user features to prevent unauthorized users from using an authorized user\u2019s device. We provide a feasibility study demonstrating how confidence constructs can improve the decision engine of context-aware access control systems

    A Classification Framework for Beacon Applications

    Get PDF
    Beacons have received considerable attention in recent years, which is partially due to the fact that they serve as a flexible and versatile replacement for RFIDs in many applications. However, beacons are mostly considered from a purely technical perspective. This paper provides a conceptual view on application scenarios for beacons and introduces a novel framework for characterizing these. The framework consists of four dimensions: device movement, action trigger, purpose type, and connectivity requirements. Based on these, three archetypical scenarios are described. Finally, event-condition-action rules and online algorithms are used to formalize the backend of a beacon architecture

    Fitting in Versus Learning: A Challenge for Migrants Learning Languages Using Smartphones

    Get PDF
    There is great interest in the potential of smartphones to enable language learning during daily activities. However, this overlooks the paradox faced by migrant learners that while they have the educational goal of seeking to improve their language skills, they also have the cultural goal of fitting into the host society. Inappropriate use of smartphones as learning aids makes learners stand out as outsiders. Here, we investigate the use of smartphones by migrants for Mobile Assisted Language Learning (MALL) in their daily lives. We report on their participation in the trial of a system that coupled a custom smartphone app with location-based hardware triggers. This presented learning activities based on scenarios from everyday life that were prompted when approaching relevant locations around a UK town. Analysis of pre- and post- interviews indicates that social and cultural influences affect the location, timing and type of learning undertaken using the system. Participants preferred to learn in ways that were unobtrusive, and deferred engagement with content if social context inhibited use of the phone. For example, playing audio in public was seen as inappropriate. Although the app was designed with location-specific content, many participants chose to study elsewhere and at other times, in addition to accessing content from the phone at the time and place that the activity was triggered. We conclude that social context and wanting to belong are important influences for migrant learners, and emphasise the potential of MALL systems in encouraging engagement with physical and digital spaces and reflections about citizenship
    • …
    corecore