58 research outputs found

    An Introduction to Voting Rule Verification

    Get PDF
    We give an introduction to deductive verification methods that can be used to formally prove that voting rules and their implementations satisfy specified properties and conform to the desired democratic principles. In the first part of the paper we explain the basic principles: We describe how first-order logic with theories can be used to formalise the desired properties. We explain the difference between (1) proving that one set of properties implies another property, (2) proving that a voting rule implementation has a certain property, and (3) proving that a voting rule implementation is a refinement of an executable specification. And we explain the different technologies: (1) SMT-based testing, (2) bounded program verification, (3) relational program verification, and (4) symmetry breaking. In this first part of the paper, we also explain the difference between verifying functional and relational properties (such as symmetries). In the second part, we present case studies, including (1) the specification and verification of semantic properties for an STV rule used for electing the board of trustees for a major international conference and (2) the deduction-based computation of election margins for the Danish national parliamentary elections

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    Automatic Margin Computation for Risk-Limiting Audits

    Get PDF
    A risk-limiting audit is a statistical method to create confidence in the correctness of an election result by checking samples of paper ballots. In order to perform an audit, one usually needs to know what the election margin is, i.e., the number of votes that would need to be changed in order to change the election outcome. In this paper, we present a fully automatic method for computing election margins. It is based on the program analysis technique of bounded model checking to analyse the implementation of the election function. The method can be applied to arbitrary election functions without understanding the actual computation of the election result or without even intuitively knowing how the election function works. We have implemented our method based on the model checker CBMC; and we present a case study demonstrating that it can be applied to real-world elections

    Resolving the Complexity of Some Fundamental Problems in Computational Social Choice

    Get PDF
    This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory.Comment: Ph.D. Thesi

    Formal Methods for Trustworthy Voting Systems : From Trusted Components to Reliable Software

    Get PDF
    Voting is prominently an important part of democratic societies, and its outcome may have a dramatic and broad impact on societal progress. Therefore, it is paramount that such a society has extensive trust in the electoral process, such that the system’s functioning is reliable and stable with respect to the expectations within society. Yet, with or without the use of modern technology, voting is full of algorithmic and security challenges, and the failure to address these challenges in a controlled manner may produce fundamental flaws in the voting system and potentially undermine critical societal aspects. In this thesis, we argue for a development process of voting systems that is rooted in and assisted by formal methods that produce transparently checkable evidence for the guarantees that the final system should provide so that it can be deemed trustworthy. The goal of this thesis is to advance the state of the art in formal methods that allow to systematically develop trustworthy voting systems that can be provenly verified. In the literature, voting systems are modeled in the following four comparatively separable and distinguishable layers: (1) the physical layer, (2) the computational layer, (3) the election layer, and (4) the human layer. Current research usually either mostly stays within one of those layers or lacks machine-checkable evidence, and consequently, trusted and understandable criteria often lack formally proven and checkable guarantees on software-level and vice versa. The contributions in this work are formal methods that fill in the trust gap between the principal election layer and the computational layer by a reliable translation of trusted and understandable criteria into trustworthy software. Thereby, we enable that executable procedures can be formally traced back and understood by election experts without the need for inspection on code level, and trust can be preserved to the trustworthy system. The works in this thesis all contribute to this end and consist in five distinct contributions, which are the following: (I) a method for the generation of secure card-based communication schemes, (II) a method for the synthesis of reliable tallying procedures, (III) a method for the efficient verification of reliable tallying procedures, (IV) a method for the computation of dependable election margins for reliable audits, (V) a case study about the security verification of the GI voter-anonymization software. These contributions span formal methods on illustrative examples for each of the three principal components, (1) voter-ballot box communication, (2) election method, and (3) election management, between the election layer and the computational layer. Within the first component, the voter-ballot box communication channel, we build a bridge from the communication channel to the cryptography scheme by automatically generating secure card-based schemes from a small formal model with a parameterization of the desired security requirements. For the second component, the election method, we build a bridge from the election method to the tallying procedure by (1) automatically synthesizing a runnable tallying procedure from the desired requirements given as properties that capture the desired intuitions or regulations of fairness considerations, (2) automatically generating either comprehensible arguments or bounded proofs to compare tallying procedures based on user-definable fairness properties, and (3) automatically computing concrete election margins for a given tallying procedure, the collected ballots, and the computed election result, that enable efficient election audits. Finally, for the third and final component, the election management system, we perform a case study and apply state-of-the-art verification technology to a real-world e-voting system that has been used for the annual elections of the German Informatics Society (GI – “Gesellschaft für Informatik”) in 2019. The case study consists in the formal implementation-level security verification that the voter identities are securely anonymized and the voters’ passwords cannot be leaked. The presented methods assist the systematic development and verification of provenly trustworthy voting systems across traditional layers, i.e., from the election layer to the computational layer. They all pursue the goal of making voting systems trustworthy by reliable and explainable formal requirements. We evaluate the devised methods on minimal card-based protocols that compute a secure AND function for two different decks of cards, a classical knock-out tournament and several Condorcet rules, various plurality, scoring, and Condorcet rules from the literature, the Danish national parliamentary elections in 2015, and a state-of-the-art electronic voting system that is used for the German Informatics Society’s annual elections in 2019 and following

    Three essays in economics and politics

    Get PDF
    119 p.Esta tesis doctoral se compone de tres aplicaciones empíricas que pretenden realizar una investigación en profundidad en los campos de la Economía y la Ciencia Política.En el primer capítulo de la tesis se evalúa el impacto de la Revolución Islámica de 1978 en la economía iraní utilizando el método de control sintético. Para ello se emplean diversas técnicas de optimización, y se comparan para ver con cuál se obtienen mejores resultados en términos de bondad de ajuste. Los resultados indican que el PIB real anual per cápita en Irán disminuyó en torno al 20,15% en el periodo 1978-1980.En el segundo capítulo de la tesis se evalúan las implicaciones de la integración político-económica de Macao en la China continental utilizando y comparando las metodologías más recientes en materia de análisis de causalidad: el método de control sintético y el enfoque de datos de panel para el período 2000-2012. Más explícitamente, los efectos causales de la transición de Macao de colonia portuguesa a parte de China continental se analizan en términos de variables macroeconómicas como el PIB per cápita, el desempleo, la inversión extranjera directa per cápita, las exportaciones y las importaciones per cápita. Se concluye que el proceso de integración de Macao tuvo un efecto positivo tanto en el PIB per cápita como en la inversión extranjera directa per cápita. En cuanto a la tasa de desempleo, las exportaciones y las importaciones de bienes y servicios, los resultados varían en función de la metodología y el criterio de selección del modelo utilizado, por lo que no se pueden extraer conclusiones definitivas sobre estas variables.Finalmente, el último capítulo de la tesis se centra en la relación entre el diseño de las circunscripciones y el número de representantes elegidos por cada partido político. Se trata de una cuestión que interesa tanto a los politólogos como al público en general, ya que, dada la distribución de los votos por partido político, los diferentes diseños de las circunscripciones pueden dar lugar a un número diferente de escaños o diputados para cada partido político. Este fenómeno, también conocido como gerrymandering en la literatura, ha sido objeto de numerosos estudios, especialmente en Estados Unidos. En este capítulo se realiza una aplicación al caso de las elecciones generales de Malta de 2013 y 2017. Según los resultados de diversas pruebas estadísticas y simulaciones, en las dos últimas elecciones generales de Malta no se dieron escenarios de gerrymandering o sesgo partidista

    Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments

    Get PDF
    This thesis is concerned with investigating elements of computational social choice in the light of real-world applications. We contribute to a better understanding of the areas of fair allocation and multiwinner voting. For both areas, inspired by real-world scenarios, we propose several new notions and extensions of existing models. Then, we analyze the complexity of answering the computational questions raised by the introduced concepts. To this end, we look through the lens of parameterized complexity. We identify different parameters which describe natural features specific to the computational problems we investigate. Exploiting the parameters, we successfully develop efficient algorithms for spe- cific cases of the studied problems. We complement our analysis by showing which parameters presumably cannot be utilized for seeking efficient algorithms. Thereby, we provide comprehensive pictures of the computational complexity of the studied problems. Specifically, we concentrate on four topics that we present below, grouped by our two areas of interest. For all but one topic, we present experimental studies based on implementations of newly developed algorithms. We first focus on fair allocation of indivisible resources. In this setting, we consider a collection of indivisible resources and a group of agents. Each agent reports its utility evaluation of every resource and the task is to “fairly” allocate the resources such that each resource is allocated to at most one agent. We concentrate on the two following issues regarding this scenario. The social context in fair allocation of indivisible resources. In many fair allocation settings, it is unlikely that every agent knows all other agents. For example, consider a scenario where the agents represent employees of a large corporation. It is highly unlikely that every employee knows every other employee. Motivated by such settings, we come up with a new model of graph envy-freeness by adapting the classical envy-freeness notion to account for social relations of agents modeled as social networks. We show that if the given social network of agents is simple (for example, if it is a directed acyclic graph), then indeed we can sometimes find fair allocations efficiently. However, we contrast tractability results with showing NP-hardness for several cases, including those in which the given social network has a constant degree. Fair allocations among few agents with bounded rationality. Bounded rationality is the idea that humans, due to cognitive limitations, tend to simplify problems that they face. One of its emanations is that human agents usually tend to report simple utilities over the resources that they want to allocate; for example, agents may categorize the available resources only into two groups of desirable and undesirable ones. Applying techniques for solving integer linear programs, we show that exploiting bounded rationality leads to efficient algorithms for finding envy-free and Pareto-efficient allocations, assuming a small number of agents. Further, we demonstrate that our result actually forms a framework that can be applied to a number of different fairness concepts like envy-freeness up to one good or envy-freeness up to any good. This way, we obtain efficient algorithms for a number of fair allocation problems (assuming few agents with bounded rationality). We also empirically show that our technique is applicable in practice. Further, we study multiwinner voting, where we are given a collection of voters and their preferences over a set of candidates. The outcome of a multiwinner voting rule is a group (or a set of groups in case of ties) of candidates that reflect the voters’ preferences best according to some objective. In this context, we investigate the following themes. The robustness of election outcomes. We study how robust outcomes of multiwinner elections are against possible mistakes made by voters. Assuming that each voter casts a ballot in a form of a ranking of candidates, we represent a mistake by a swap of adjacent candidates in a ballot. We find that for rules such as SNTV, k-Approval, and k-Borda, it is computationally easy to find the minimum number of swaps resulting in a change of an outcome. This task is, however, NP-hard for STV and the Chamberlin-Courant rule. We conclude our study of robustness with experimentally studying the average number of random swaps leading to a change of an outcome for several rules. Strategic voting in multiwinner elections. We ask whether a given group of cooperating voters can manipulate an election outcome in a favorable way. We focus on the k-Approval voting rule and we show that the computational complexity of answering the posed question has a rich structure. We spot several cases for which our problem is polynomial-time solvable. However, we also identify NP-hard cases. For several of them, we show how to circumvent the hardness by fixed-parameter tractability. We also present experimental studies indicating that our algorithms are applicable in practice
    corecore