1,483 research outputs found

    Digital Forensics Investigation Frameworks for Cloud Computing and Internet of Things

    Get PDF
    Rapid growth in Cloud computing and Internet of Things (IoT) introduces new vulnerabilities that can be exploited to mount cyber-attacks. Digital forensics investigation is commonly used to find the culprit and help expose the vulnerabilities. Traditional digital forensics tools and methods are unsuitable for use in these technologies. Therefore, new digital forensics investigation frameworks and methodologies are required. This research develops frameworks and methods for digital forensics investigations in cloud and IoT platforms

    Incident Analysis & Digital Forensics in SCADA and Industrial Control Systems

    Get PDF
    SCADA and industrial control systems have been traditionally isolated in physically protected environments. However, developments such as standardisation of data exchange protocols and increased use of IP, emerging wireless sensor networks and machine-to-machine communication mean that in the near future related threat vectors will require consideration too outside the scope of traditional SCADA security and incident response. In the light of the significance of SCADA for the resilience of critical infrastructures and the related targeted incidents against them (e.g. the development of stuxnet), cyber security and digital forensics emerge as priority areas. In this paper we focus on the latter, exploring the current capability of SCADA operators to analyse security incidents and develop situational awareness based on a robust digital evidence perspective. We look at the logging capabilities of a typical SCADA architecture and the analytical techniques and investigative tools that may help develop forensic readiness to the level of the current threat environment requirements. We also provide recommendations for data capture and retention

    Cloud Forensic: Issues, Challenges and Solution Models

    Full text link
    Cloud computing is a web-based utility model that is becoming popular every day with the emergence of 4th Industrial Revolution, therefore, cybercrimes that affect web-based systems are also relevant to cloud computing. In order to conduct a forensic investigation into a cyber-attack, it is necessary to identify and locate the source of the attack as soon as possible. Although significant study has been done in this domain on obstacles and its solutions, research on approaches and strategies is still in its development stage. There are barriers at every stage of cloud forensics, therefore, before we can come up with a comprehensive way to deal with these problems, we must first comprehend the cloud technology and its forensics environment. Although there are articles that are linked to cloud forensics, there is not yet a paper that accumulated the contemporary concerns and solutions related to cloud forensic. Throughout this chapter, we have looked at the cloud environment, as well as the threats and attacks that it may be subjected to. We have also looked at the approaches that cloud forensics may take, as well as the various frameworks and the practical challenges and limitations they may face when dealing with cloud forensic investigations.Comment: 23 pages; 6 figures; 4 tables. Book chapter of the book titled "A Practical Guide on Security and Privacy in Cyber Physical Systems Foundations, Applications and Limitations", World Scientific Series in Digital Forensics and Cybersecurit

    Locational wireless and social media-based surveillance

    Get PDF
    The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date

    Forensic State Acquisition from Internet of Things (FSAIoT): A General Framework and Practical Approach for IoT Forensics through IoT Device State Acquisition

    Get PDF
    IoT device forensics is a difficult problem given that manufactured IoT devices are not standardized, many store little to no historical data, and are always connected; making them extremely volatile. The goal of this paper was to address these challenges by presenting a primary account for a general framework and practical approach we term Forensic State Acquisition from Internet of Things (FSAIoT). We argue that by leveraging the acquisition of the state of IoT devices (e.g. if an IoT lock is open or locked), it becomes possible to paint a clear picture of events that have occurred. To this end, FSAIoT consists of a centralized Forensic State Acquisition Controller (FSAC) employed in three state collection modes: controller to IoT device, controller to cloud, and controller to controller. We present a proof of concept implementation using openHAB -- a device agnostic open source IoT device controller -- and self-created scripts, to resemble a FSAC implementation. Our proof of concept employed an Insteon IP Camera as a controller to device test, an Insteon Hub as a controller to controller test, and a nest thermostat for a a controller to cloud test. Our findings show that it is possible to practically pull forensically relevant state data from IoT devices. Future work and open research problems are shared

    Secure Storage Model for Digital Forensic Readiness

    Get PDF
    Securing digital evidence is a key factor that contributes to evidence admissibility during digital forensic investigations, particularly in establishing the chain of custody of digital evidence. However, not enough is done to ensure that the environment and access to the evidence are secure. Attackers can go to extreme lengths to cover up their tracks, which is a serious concern to digital forensics – particularly digital forensic readiness. If an attacker gains access to the location where evidence is stored, they could easily alter the evidence (if not remove it altogether). Even though integrity checks can be performed to ensure that the evidence is sound, the collected evidence may contain sensitive information that an attacker can easily use for other forms of attack. To this end, this paper proposes a model for securely storing digital evidence captured pre- and post-incident to achieve reactive forensics. Various components were considered, such as integrity checks, environment sandboxing, strong encryption, two-factor authentication, as well as unique random file naming. A proof-of-concept tool was developed to realize this model and to prove its validity. A series of tests were conducted to check for system security, performance, and requirements validation, Overall, the results obtained showed that, with minimal effort, securing forensic artefacts is a relatively inexpensive and reliable feat. This paper aims to standardize evidence storage, practice high security standards, as well as remove the need to create new systems that achieve the same purpose

    IPCFA: A Methodology for Acquiring Forensically-Sound Digital Evidence in the Realm of IAAS Public Cloud Deployments

    Get PDF
    Cybercrimes and digital security breaches are on the rise: savvy businesses and organizations of all sizes must ready themselves for the worst. Cloud computing has become the new normal, opening even more doors for cybercriminals to commit crimes that are not easily traceable. The fast pace of technology adoption exceeds the speed by which the cybersecurity community and law enforcement agencies (LEAs) can invent countermeasures to investigate and prosecute such criminals. While presenting defensible digital evidence in courts of law is already complex, it gets more complicated if the crime is tied to public cloud computing, where storage, network, and computing resources are shared and dispersed over multiple geographical areas. Investigating such crimes involves collecting evidence data from the public cloud that is court-sound. Digital evidence court admissibility in the U.S. is governed predominantly by the Federal Rules of Evidence and Federal Rules of Civil Procedures. Evidence authenticity can be challenged by the Daubert test, which evaluates the forensic process that took place to generate the presented evidence. Existing digital forensics models, methodologies, and processes have not adequately addressed crimes that take place in the public cloud. It was only in late 2020 that the Scientific Working Group on Digital Evidence (SWGDE) published a document that shed light on best practices for collecting evidence from cloud providers. Yet SWGDE’s publication does not address the gap between the technology and the legal system when it comes to evidence admissibility. The document is high level with more focus on law enforcement processes such as issuing a subpoena and preservation orders to the cloud provider. This research proposes IaaS Public Cloud Forensic Acquisition (IPCFA), a methodology to acquire forensic-sound evidence from public cloud IaaS deployments. IPCFA focuses on bridging the gap between the legal and technical sides of evidence authenticity to help produce admissible evidence that can withstand scrutiny in U.S. courts. Grounded in design research science (DSR), the research is rigorously evaluated using two hypothetical scenarios for crimes that take place in the public cloud. The first scenario takes place in AWS and is hypothetically walked-thru. The second scenario is a demonstration of IPCFA’s applicability and effectiveness on Azure Cloud. Both cases are evaluated using a rubric built from the federal and civil digital evidence requirements and the international best practices for iv digital evidence to show the effectiveness of IPCFA in generating cloud evidence sound enough to be considered admissible in court
    corecore