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ABSTRACT 

Cybercrimes and digital security breaches are on the rise: savvy businesses and 

organizations of all sizes must ready themselves for the worst. Cloud computing has become 

the new normal, opening even more doors for cybercriminals to commit crimes that are not 

easily traceable. The fast pace of technology adoption exceeds the speed by which the 

cybersecurity community and law enforcement agencies (LEAs) can invent countermeasures to 

investigate and prosecute such criminals. While presenting defensible digital evidence in courts 

of law is already complex, it gets more complicated if the crime is tied to public cloud 

computing, where storage, network, and computing resources are shared and dispersed over 

multiple geographical areas. Investigating such crimes involves collecting evidence data from 

the public cloud that is court-sound. Digital evidence court admissibility in the U.S. is governed 

predominantly by the Federal Rules of Evidence and Federal Rules of Civil Procedures. 

Evidence authenticity can be challenged by the Daubert test, which evaluates the forensic 

process that took place to generate the presented evidence.  

Existing digital forensics models, methodologies, and processes have not adequately 

addressed crimes that take place in the public cloud. It was only in late 2020 that the Scientific 

Working Group on Digital Evidence (SWGDE) published a document that shed light on best 

practices for collecting evidence from cloud providers. Yet SWGDE’s publication does not 

address the gap between the technology and the legal system when it comes to evidence 

admissibility. The document is high level with more focus on law enforcement processes such 

as issuing a subpoena and preservation orders to the cloud provider. 

 This research proposes IaaS Public Cloud Forensic Acquisition (IPCFA), a 

methodology to acquire forensic-sound evidence from public cloud IaaS deployments. IPCFA 

focuses on bridging the gap between the legal and technical sides of evidence authenticity to 

help produce admissible evidence that can withstand scrutiny in U.S. courts. Grounded in 

design research science (DSR), the research is rigorously evaluated using two hypothetical 

scenarios for crimes that take place in the public cloud. The first scenario takes place in AWS 

and is hypothetically walked-thru. The second scenario is a demonstration of IPCFA’s 

applicability and effectiveness on Azure Cloud. Both cases are evaluated using a rubric built 

from the federal and civil digital evidence requirements and the international best practices for 
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digital evidence to show the effectiveness of IPCFA in generating cloud evidence sound enough 

to be considered admissible in court.  
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INTRODUCTION 

Cybercrime in the era of cloud computing has introduced challenges and complications 

for existing digital forensics science and its existing models, methodologies, and practices 

(Choo et al., 2017; Cohen, 2013; Grispos, Storer, & Glisson, 2012; NIST Cloud Computing 

Forensic Science Working Group, 2014; Simou, Kalloniatis, Gritzalis, & Mouratidis, 2016). 

While theories such as Bayesian and Dempster-Shafer could be adjusted to help with analyzing 

digital crime artifacts retrieved from cloud environments (Dykstra, 2013a), there is little 

documented information about formally tested and legally accepted methods or techniques that 

can be used to retrieve digital forensics data from Infrastructure-as-a-Service (IaaS) public 

cloud deployments. According to the American Bar Association (ABA), the foundation for 

digital evidence to be considered admissible in court is authenticity and integrity (Dickson, 

2011). Authenticity has traditionally been tied to expert witness testimony. Furthermore, the 

testimony can be challenged in courtrooms with the Daubert Standard (Daubert test), which 

requires that expert witnesses show that they have used a published, known, scientific 

methodology to perform their collection of the evidence. The second requirement is to maintain 

the integrity of the collected data and the generated evidence, and this has been accomplished 

through maintaining a clear, undoubted, and well-documented chain of custody. 

The National Institute of Justice (NIJ, 2007) provides guidelines for first responders on 

how to acquire and preserve digital evidence and generate court-admissible evidence; however, 

public cloud data acquisition was not covered in that publication. Other researchers, such as 

(Alqahtany, Clarke, Furnell, & Reich, 2015), provided a new methodology for forensic data 

acquisition in IaaS deployments, but it requires architectural changes and support by the 

underlying Cloud Service Provider (CSP) to be effective. (Dykstra, 2013a) proposed a novel 

system for cloud forensics acquisition that was tested successfully on private cloud IaaS 

deployments such as OpenStack. These systems can be very useful in the case of public cloud 

investigations, but they require acceptance and adoption by the Cloud Services Providers 

(CSPs). The question remains, however, whether it is possible to acquire indubitable digital 

evidence from Infrastructure-as-a-Service (IaaS) deployments in public clouds, present it in 

court, and gain the acceptance and support of the judges and jurors, all without involving CSPs. 
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This study introduces a practical methodology for collecting forensic data from IaaS 

public cloud deployments. The methodology is built on the known boundaries of the existing 

major IaaS providers, such as Amazon, Google, and Microsoft, and uses the Federal Rules of 

Evidence (FRE) and the Daubert Standard as guidelines. The methodology aims to ensure 

admissible and authentic evidence-generation that can be defended in court and validated via 

expert witness testimony. Data integrity and chain of custody are the bases of the proposed 

method. Hypothetical cases that simulate successful attacks are used to generate data for a 

sample case studies. The same hypnotical scenarios are investigated following the various 

available best practice sources for forensic data acquisition such as RFC 3227 (Killalea & 

Brezinski, 2002) and the Scientific Working Group on Digital Evidence publications (SWGDE, 

2018b, 2020). That feedback is then used to adjust the methodology as needed to produce 

forensic data that successfully satisfies all the evidence rules and withstand scrutiny in court.  

Because there is no actual court case used for the validation of this methodology, the 

forensic data’s court-soundness is assessed against a specially designed rubric based on the 

existing best practices and recommendations for digital forensic acquisition as well as the 

various electronically stored information (ESI) legal rules and regulations. The scope of the 

testing and validation of the methodology is limited to the IaaS service model. This research is 

grounded in design science (DSR) and adheres to all design science guidelines as outlined by 

Hevner, March, Park, & Ram (2004). The rest of the dissertation is organized as follows: 

 Chapter One provides an overview of cloud computing, digital forensics, cloud 

forensics, forensics models, digital evidence acquisition, and digital evidence 

court admissibility. 

 Chapter Two contains a literature review of current and foundational research 

including court admissibility and the Federal Rules of Evidence and other relevant 

standards. Challenges with cloud forensics and IaaS service models and available 

tools are highlighted, and the research gap is identified.  

 Chapter Three addresses the research methodology and a definition of the success 

criterion for the proposed artifact, IPCFA, is presented. This chapter provides an 

overview of the validation, experimentation, and evaluation methods for the 

proposed methodology, as well as other elements related to the selected research 

methodology. 
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 Chapter Four details the proposed methodology (IPCFA) and the various 

proposed phases, as well as how each phase can be carried out.  

 Chapter Five covers the actual applications and demonstration of the proposed 

methodology.  

 Chapter Six discusses the proposed artifact effectiveness, outcomes of the 

demonstration and validation, as well as it articulates the assumptions.   

 Chapter Seven reflects upon the limitations of this research and expands on the 

possible future research to overcome such limitations and extend the validity of 

this research. Finally, it provides the conclusion of this research. 
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CHAPTER ONE 

BACKGROUND OF THE PROBLEM 

Public Cloud Computing 

According to the National Institute of Standards and Technology (NIST), cloud 

computing is a “computing model where a pool of computing resources is shared, rapidly 

provisioned and released, and the usage of each resource is measured” (Mell & Grance, 2011). 

Thus, public cloud computing can be defined as a cloud that can be used by the general public 

and is physically hosted on the cloud service provider’s premises. One of the most common 

public cloud services is the Infrastructure-as-a-Service (IaaS) model. According to Gartner 

(2019), the revenue of the worldwide public cloud market was forecasted to grow by 6.3% 

during the year 2020 alone, and the second fastest-growing market will be the IaaS model, 

driven by the “increasing adoption of cloud-first strategies in organizations” (Gartner, 2019). 

The IaaS model is closest to the traditional, virtualized datacenter services, where the customer 

is responsible for all layers above the virtualization system, or the hypervisor, including the 

operating systems of the virtualized servers. In this service model, the service provider abstracts 

the storage and network infrastructure resources, which make up the major portion of the 

architecture paradigm that provides multitenancy in the cloud. An organization often adapts the 

IaaS model when it is trying to achieve one of the well-known strategic goals of cloud 

migration, such as hosting-cost reduction or operations effectiveness, on-demand server 

(computing) deployments, or flexibility and scalability of resources (elasticity). Some of the 

largest IaaS providers referenced throughout this research are Amazon Cloud (AWS), Google 

Cloud (GCP), and Microsoft Cloud (Azure). 

Information Security in the Public Cloud 

Recently, CSPs have successfully emphasized security and compliance as additional 

strategic goals in explaining why organizations should move to the public cloud. Most CSPs 

today consider themselves secure because they follow security best practices or guidelines and 

are certified with known security compliance bodies, such as PCI (“Official PCI Security 
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Standards Council Site,” n.d.), HIPPA (Health Information Privacy, 2015), or ISO/IEC 

(ISO/IEC 27001 Information Security Management, n.d.). From their published websites, AWS 

(Compliance Programs--Amazon Web Services (AWS), n.d.), Azure (Compliance in the 

Trusted Cloud | Microsoft Azure, n.d.), and Google (Cloud Compliance - Regulations & 

Certifications, n.d.) list the compliance certifications each CSP holds. The list is comprehensive 

and shows certifications from almost all global compliance bodies as well as government 

agencies in the different regions of the world.  

Moving to the public cloud does not guarantee security by default. The security of 

organizational data in the public cloud is a shared responsibility, and the particularity of the 

level of accountability is determined by type of service model chosen. In an IaaS model, the 

CSP might be responsible for the physical network and servers (computing), storage, and 

hypervisor security, and the customer might be responsible for the security of the operating 

systems, user access management, overlay network, traffic flow management, applications, and 

application data (Shared Responsibility Model Explained, n.d.). The breakdown of security 

responsibilities is not fully standardized amongst CSPs, especially the tenant or customer aspect 

(Shared Responsibility in the Cloud - Microsoft Azure, n.d.) (Shared Responsibility Model - 

Amazon Web Services, n.d.). This shared security responsibility model brings with it a myriad 

of legal and technical challenges in how cybersecurity incidents are handled in public clouds, 

specifically in how digital forensics can take place.  

Customer Data/Information Access and Confidentiality

Customer Accounts & Access Controls

Customer Virtual Network & Security Configurations

Customer installed Platforms & Applications

Customer Virtual Servers & Operating Systems

Cloud Hypervisor

Physical Servers & Operating Systems

Physical Network & Security Configurations

Datacenter & Physical Access Control

Data/Information Access and Confidentiality

Customer
Accountable

CSP
Accountable

 
Figure 1 - The common IaaS shared security accountability model 
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Digital Forensics 

According to the National Institute of Justice, “digital evidence is information stored or 

transmitted in binary form that may be relied on in court” (NIJ, 2016). Further, NIST defines 

digital forensics as the practice of collecting and examining digital evidence (NIJ, 2016). NIST 

SP 800-86 categorizes the digital forensics (DF) model into four high-level phases: Collection 

(Acquisition), Examination, Analysis, and Reporting (NIST Cloud Computing Forensic 

Science Working Group, 2014). This model assumes that media is collected and examined, the 

data analyzed, and the acquired evidence reported. The focus of this dissertation is the collection 

(acquisition) phase of digital forensics.  

An organization wanting to investigate a security breach on their locally hosted servers 

and possibly generate digital evidence for litigation purposes can follow one of the various 

published digital forensics processes. Forensic data and evidence acquisition can be performed 

by the corporate staff or directly by law enforcement agencies with the proper legal 

authorization. A server can be seized, hard drives can be imaged, and then data can be analyzed. 

The Chain of Custody (CoC) should be maintained throughout this process. For an organization 

engaging with this process with data and infrastructure hosted on one of the many public cloud 

services providers, there are few formally and legally tested guidelines or processes related to 

obtaining such evidence, aside from trying to convince the CSP to take part in the investigation 

process. Sometimes, depending on the required evidence, using existing remote forensic 

acquisition techniques to obtain some of required data is possible.  

Digital Forensics - Models 

Though NIST in its publication (NIST Cloud Computing Forensic Science Working 

Group, 2014) has referenced a four-phase digital forensics model, many more models and 

frameworks also exist dating back to 1999 (McKemmish, 1999). According to (Simou et al., 

2016), the digital forensics community proposed more than eighteen models from 1999 to 2016. 

All of these models share the concept of taking a media or data repository from a criminal case, 

executing multiple processes on the extracted media, and generating lawful evidence that is 

scientifically reliable and legally acceptable. Following a preparation or initiation phase for the 

forensic investigation, in which data related to the case are identified and collected, the 

collection phase is the starting point. The subsequent phase is the examination, in which the 
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data collected previously are investigated and the most relevant pieces of data extracted. The 

third stage is the analysis of the extracted data to uncover possible evidence. The last phase is 

reporting, in which the findings are presented to the relevant entities. Almost all of the proposed 

models share these four phases, though some use different names or expand these phases into 

smaller sub-phases. Table 1 compares the phases of eight of the well-known models. 

Table 1- The Well-Known Digital Forensic Models and Their Respective Phases 

Model Proposed Phases 

(McKemmish, 

1999) 
Identification, preservation, analysis, presentation 

(Palmer, 2001) Identification, preservation, collection, examination, analysis, 

presentation 

(Baryamureeba & 

Tushabe, 2004) 
Readiness, deployment, traceback, dynamite, review 

(NIJ, 2008) Preparation, identification, collection, preservation, packaging, 

transportation storage, examination, analysis, reporting, 

documentation 

(Agarwal, Gupta, 

Gupta, & Gupta, 

2011) 

Preparation, secure scene, survey, document the scene, secure 

communication channel, collection, preservation, examination, 

analysis, presentation, results review 

(Martini & Choo, 

2012) 

Evidence source identification and preservation, collection, 

examination and analysis, reporting and presentation 

(Cohen, 2013) Identification, collection, presentation, transportation, storage, 

analysis, interpretation, attribution, reconstruction, presentation, 

destruction 

(NIST Cloud 

Computing 

Forensic Science 

Working Group, 

2014) 

Collection, examination, analysis, presentation 

(Zawoad, Hasan, 

& Skjellum, 2015) 

Identification, collection, examination, analysis, presentation, 

verification, preservation 

 

The abovementioned models and frameworks attempt to address the overall approach 

of digital forensics and propose various phases to ensure that the extracted evidence is as 
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complete as possible. Few researchers have investigated expanding these phases, proposing 

processes and methodologies to execute each one properly. This is a significant oversight of 

our discipline. At the 2006 Digital Forensic Research Conference (DFRWS), Ieong (2006) 

presented a model called FORZA, which takes a different approach to digital forensics research. 

He proposed a digital forensics framework that focuses on the various roles involved in an 

investigation and the creation of a table of roles and responsibilities to help guide the complete 

life cycle of the digital forensics investigation. By incorporating the business and legal aspects 

of the investigation, FORZA framework creates processes that can be followed and executed 

by practitioners that yield trustworthy and defendable results that, in turn, prosecutors can rely 

upon to draw conclusions.  

Adams, Hobbs, and Mann (2013) proposed the advanced data acquisition model 

(ADAM), which is composed of multiple digital forensic processes that can easily be followed 

and understood in courtrooms. The authors argue that the “domain of digital forensics is lacking 

generally accepted processes and procedures to which they and the courts can refer” (Adams et 

al., 2013, p. 25). While their proposed model has only three phases, they detailed how to execute 

each phase and provided all required information to successfully carry out the forensic 

investigation from the beginning to the end. This literature review suggests that no other 

scholarly papers expand any of the digital forensics models’ phases or provide procedural 

methodologies for the execution of each phase, more specifically for public cloud forensic 

acquisition. 

Digital Forensics - Acquisition 

Digital evidence is intrinsically fragile and can be distorted, damaged, forged, or 

destroyed intentionally or by inappropriate handling, so it must be handled with care. According 

to the U.S. Department of Justice, digital evidence is always latent and unstable juristically; it 

can also be time-sensitive (NIJ, 2008). When investigating a cybercriminal activity that 

involves compute nodes or physical networked servers, there are potentially numerous 

resources for digital evidence (U.S. Department of Justice; Office of Justice Programs; National 

Institute of Justice, 2004). Of most concern in this research are the data stored on hard drives 

(non-volatile) and memory contents (volatile). The process of acquiring evidence from a server 

can be very complicated and greatly dependent on the specific case. In traditional digital crimes 
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involving a computer or a mobile device, the forensic process can begin by seizing the physical 

device, removing the hard drive (dead forensic acquisition), connecting it to the examiner-

certified computer, and then running the appropriate tools to extract trusted copies of the data.  

No single tool can acquire and collect forensic data from all possible venues. The 

commercial tools most often used today by industry experts and law enforcement agencies 

(LEAs) are Guidance Software EnCase, Access Data's Forensic Toolkit (FTK), and Magnets 

AXIOM (Alqahtany et al., 2015). Most of the time when server seizure is not possible for legal 

or technical reasons, specialized remote acquisition (or remote forensic acquisition) tools can 

be used to perform data collection remotely. If memory (RAM) imaging is needed (to collect 

network traffic information, encryption keys, or other volatile data), then a non-invasive process 

can be followed (live forensic acquisition) to obtain the needed information with as little impact 

as possible on the investigated system. Whether the forensic examiner decides to perform live 

or dead acquisition, defining an order of volatility (OOV) is critical to a fruitful and non-

erroneous forensic data collection. Figure 2 represents the SWGDE-recommended order of 

volatility when it comes to acquiring live computer systems. The recommendation is to acquire 

all data in the RAM; then dump a copy of all running processes, which can partially be collected 

from the RAM image; get the list of open network connections; capture systems settings and 

configurations; and finally acquire the non-volatile data stored in the disk media (SWGDE, 

2014).   

 

 

 

 

Figure 2 - Sample computer volatility order (SWGDE, 2014) 

According to NIST, “identification, collection, and preservation of media can be 

particularly challenging in a cloud computing environment” (NIST Cloud Computing Forensic 

Science Working Group, 2014, p. 11). Collecting digital evidence from a physically accessible 

system is technically feasible: a search warrant can be issued and associated with a specific 

device and location, and law enforcement officers can be engaged to identify and acquire the 

needed data. In traditional digital forensics models, the system or device involved can be seized 

and then the rest of the process applied. The process cannot be followed in the public cloud 

because of its fundamental architecture where the network is shared so the storage is shared and 

RAM 

(Memory) 

Running 
Processes 

Network     
Connections 

 System  
Settings 

Storage 
Media 
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physically split between multiple physical devices or geographical locations. In fact, physical 

access might not be permitted at all, so alternative methods must be pursued. 

START

Computer is 
powered ON?

Prepare for dead acquisition Prepare for live acquisition

Collect a bit-by-bit disk 
image of the hard drive

Collect physical memory 
image

Collect a bit-by-bit disk 
image of the hard drive

NO YES

END

Collect other relevant 
volatile information 

 
Figure 3 - Traditional digital forensics acquisition – a high-level overview 

As with traditional forensics, no single methodology can be prescribed in every 

circumstance for the acquisition or collection of forensic data from a cybercrime scene. Each 

investigation is different and requires a different set of tools and techniques. In the past few 

years, the Scientific Working Group on Digital Evidence (SWGDE) has published two 

documents that shed light on some of the best practices for digital evidence forensic acquisition 

(SWGDE 2014, 2018). Table 2 presents a summary of recommendations, including a subset 

from SWDGE recommendations, to be followed by forensic examiners during the acquisition 

or collection phase of a digital forensics’ investigation. Another extremely valuable source on 

best practices related to digital forensics followed by the international DF community is Digital 

Forensics Processing and Procedures by Watson and Jones (2013). The book goes into greater 

details of the complete life cycle of digital evidence and the importance of chain of custody. 

This handbook includes technical and non-technical procedures and best practices to comply 

with international regulations such as ISO 17020, ISO 17025, and ISO 27001. While looking 

into forensic acquisition from methodical and technical points of view, RFC 3227 (Killalea & 

Brezinski, 2002) cannot be omitted, as it provides a great amount of detail on the technical 

procedure and best practices of collection as well as examples of which tools can be used.  
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In this research, best practices have been extracted from the above-mentioned resources, 

organized, and merged when possible, then each recommendation is assigned an impact (trust) 

factor, which either enhances or devalues the effectiveness of the collected data. In this case the 

factor could be the integrity, authenticity, or operability of the collected evidence or data. While 

integrity and authenticity of the data might have a direct impact on the trustworthiness of the 

generated evidence, operability contributes to the errorless and seamless extraction of quality 

information and evidence from the acquired data. 

Table 2 - Digital Forensic Acquisition Recommendations and Associated Impact Factor 

Best Practice Impact Factor 

1) Prepare order of volatility for each system before starting 

the acquisition process.  
Integrity/Operability 

2) Minimize, to the maximum extent possible, changes to the 

source data. 
Integrity 

3) Minimize adverse effects as much as possible when 

choosing the acquisition technique. 
Authenticity 

4) Document the acquisition process in as much detail as 

possible. 
Authenticity 

5) Make all actions taken during the acquisition process 

auditable, where applicable. 
Authenticity 

6) Use tools validated for use according to NIST CFTT 

(trusted binaries). 
Integrity 

7) Prepare destination media before beginning of the 

acquisition process. 
Authenticity/Integrity 

8) Store acquired data on a trusted platform. Authenticity/Integrity 

9) Acquire and save data in raw format, when possible. Operability 

10) Preview the contents of potential data sources prior to 

acquisition. 
Integrity 

11) Live acquisition tools should execute trusted binaries from 

controlled media. 
Integrity 
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12) Execute live acquisition at the lowest possible level of 

privilege. 
Integrity 

13) Document "memory smear" if experienced during a live 

memory acquisition. 
Integrity 

14) Consider carefully the order in which data are collected. Integrity/Operability 

15) Review acquired data for completeness and certainty. Integrity/Operability 

16) Review tool output and logs for indications of failures. Integrity/Operability 

17) Compute a cryptographic hash value for the acquired data 

using NIST approved algorithms. 
Integrity 

18) Document the physical and logical chain of custody 

properly. 
Integrity 

Digital Forensics - Admissibility 

The general definition of digital evidence admissibility (forensically-sound evidence) 

has been constantly debated in the forensic science community, most especially when it comes 

to acceptance in courts of law, nationally or internationally. During the International Hi-Tech 

Crime and Forensics Conference (IHCFC) of October 1999, the SWGDE and the International 

Organization on Digital Evidence (IOCE) presented a set of international principles to govern 

the acquisition and recovery of digital evidence that would be acceptable in courts of law 

(SWGDE & IOCE, 2000). The proposed principles were well received and adopted by many 

organizations and governments, including the United States.  

Table 3 - SWGDE and IOCE Standards and Principles (SWGDE & IOCE, 2000) 

IHCFC Principle 

1) Upon seizing digital evidence, actions taken should not change that evidence. 

2) When it is necessary for a person to access original digital evidence, that person must 

be forensically competent. 

3) All activity relating to the seizure, access, storage, or transfer of digital evidence 

must be fully documented, preserved, and available for review. 

4) An individual is responsible for all actions taken with respect to digital evidence 

while the digital evidence is in their possession. 
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5) Any agency that is responsible for seizing, accessing, storing, or transferring digital 

evidence is responsible for compliance with these principles. 

 

Furthermore, according to McKemmish (2008), forensic soundness could be defined as 

the “application of a transparent digital forensic process that preserves the original meaning of 

the data for production in a court of law” (p. 10). The author in this publication proposed four 

criteria to evaluate the reliability of an electrically generated evidence:  

1. The generated evidence did not get affected by the digital forensic process. 

2. All the generated errors can be identified and satisfactorily explained. 

3. The entire followed DF process can be independently examined and verified. 

4. The forensic analysis been undertaken by an experienced individual 

In addition to the admissibility recommendations mentioned above, evidence 

admissibility in the U.S. court system has always been justified via compliance with a specific 

set of rules and regulations. For digital evidence to be called upon in U.S. courtrooms—that is, 

to be “admissible in court,” it must conform to guidelines that govern how the evidence is 

collected, authenticated, preserved, and presented. These guidelines are called the Federal Rules 

of Evidence (FRE). According to the American Bar Association, for digital evidence is 

admissible if it meets five criteria: (1) the evidence must be relevant to what the court case is 

about (FRE 401, 402, 403); (2) it must be authentic and proven accurate by technical witness 

expertise (FRE 901); (3) it must not be hearsay or contribute to changing the probability of facts 

that would otherwise be true (FRE 801); (4) if the evidence is a voice recording or a photograph, 

the original or accepted duplicate might be presented (FRE 1003); and finally, (5) its probative 

value must be assessed against its possible unfair prejudice (FRE 104, 105).  
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Figure 4 – U.S. court digital evidence admissibility workflow 

FRE 902 - Evidence that is self-authenticating is a relatively recent and significant 

Federal Rule of Evidence that was amended in December 2017. This new rule provides 

information about how electronic records generated by electronic systems can be self-

authenticated. The rule has fourteen items listed that require no extrinsic evidence of 

authenticity to be considered admissible. The rules that concern digital forensics are 902(13) 

and 902(14) and their prerequisite rules 902(11) and 902(12). Below are the quoted definitions 

related to each FRE:  

 FRE 902(11): “Certified Domestic Records of a Regularly Conducted Activity.” 

 FRE 902(12) “Certified Foreign Records of a Regularly Conducted Activity.” 

 FRE 902(13): “Certified Records Generated by an Electronic Process or System.” 
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 FRE 902(14): “Certified Data Copied from an Electronic Device, Storage Medium, 

or File.” (Federal Rules of Evidence, 2017) 

The 902 FRE rule also addresses the point of digital identification, where hash values 

can be used to authenticate that the electronic record is what it purports to be. According to the 

ABA, FRE 902(13) specifically provides more information on the self-authentication of “A 

record generated by an electronic process or system that produces an accurate result, as shown 

by a certification of a qualified person that complies with the certification requirements of Rule 

902(11) or (12). The proponent must also meet the notice requirements of Rule 902(11)” (Toft, 

2018). This rule has a significant impact on the global digital forensics’ community in terms of 

practices, costs, timelines, and unexpected evidentiary arguments.  

 Courts regularly require that expert witnesses validate evidence claims based on the 

Daubert (Ryan, 2009a) or Frye standards (Ryan, 2009b). Daubert is the most commonly used 

test today, deriving from the 1993 Supreme Court case, Daubert v. Merrell Dow 

Pharmaceuticals Inc., 509 U.S. 579. Daubert uses five factors to determine if the methodology 

followed is acceptable: “(1) whether the theory or technique in question can be and has been 

tested; (2) whether it has been subjected to peer review and publication; (3) its known or 

potential error rate; (4) the existence and maintenance of standards controlling its operation; 

and (5) whether it has attracted widespread acceptance within a relevant scientific community” 

(Ryan, 2009a). Frye, the older and more rarely used standard, is derived from Frye v. United 

States, 293 F. 1013 in 1923. While Daubert has multiple factors to determine whether the 

methodology followed by the expert witness is valid, the Frye standard calls only for general 

acceptance within the scientific community (Ryan, 2009b).  

Another set of rules to follow, more specifically designed for ESI and evidence acquired 

through a subpoena for a civil case, is the Federal Rules of Civil Procedure (FRCP). The two 

rules that may be applicable when addressing a CSP are FRCP 34 (Rule 34. Producing 

Documents, Electronically Stored Information, and Tangible Things, or Entering onto Land, 

for Inspection and Other Purposes, n.d.), which allows a request to preserve, collect, and 

possibly inspect data, and FRCP 45 (Rule 45. Subpoena, n.d.), which allows for a subpoena. In 

criminal cases, subpoenas can be obtained by applying the Federal Rules of Criminal Procedure 

and invoking Rule 41 (search warrant). FRCP Rule 41 is used by prosecutors after the case has 

been filed. Search warrants are used prior to the case being filed with the prosecutor. In civil 
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matters, however, subpoenas are used quite frequently. All of these rules were crafted for 

traditional forensics investigations and evidence collection, and then adopted for digital 

forensics.  

Statement of the Problem 

The acquisition phase of a digital forensics’ investigation is one of the most critical and 

fundamental phases of the entire process. If the investigation has not been performed  

appropriately, it can be challenged in court with regards to chain of custody, completeness of 

documentation, integrity of the generated evidence, and methodology used to acquire the 

evidence (Montasari, 2017). Though telecommunications companies have to comply with 

federal laws—such as the Communications Assistance for Law Enforcement Act (CALEA), 

which permits law enforcement agencies to use wiretaps—no such law exists for dealing with 

CSPs (Dykstra, 2013a). Access to direct authentic evidence that is physically collected by law 

enforcement officers might not a viable option when dealing with incidents in the public cloud. 

Following the traditional forensic acquisition methodologies and techniques, by design, is not 

feasible to conduct court-grade investigations in the realm of the public cloud.  

The problem is there is a lack of digital forensic methodologies that can be followed to 

collect court-grade digital evidence from IaaS public cloud environments (Barrett, 2018; 

Dykstra, 2013a). The aim of this research is to complement and extend the existing traditional 

digital forensic acquisition methodologies and processes to encompass public cloud 

deployments, while continuing to comply with federal and civil laws. The aim is to preserve 

the authenticity and integrity of the collected evidence, thus supporting the credibility of expert 

witnesses, and ease the decision for jurors and judges. Therefore, we are presented with the 

following research question: What digital forensic tools and acquisition techniques are 

applicable for court-grade evidence acquisition from IaaS deployments in the public cloud? 
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CHAPTER TWO 

LITERATURE REVIEW 

Research trends and developments 

In the past two decades, researchers have published many scholarly articles, papers, and 

books that shed light on the possibilities and limitations of cloud computing in delivering 

services. According to Dykstra (2013a), until 2012, all cloud-focused research was about 

offerings “such as resource allocation strategies, load balancing, large data analysis, and the use 

of cloud technology in other disciplines including medicine and higher education” (p. 12). 

Though the main research area for this proposal is the IaaS deployments of the public cloud 

computing model, it is also interesting to note the trends in literature and research related to 

cloud computing overall as compared to research that focuses on cloud security and on cloud 

forensics. It is not feasible to accurately locate and catalogue every publication related to cloud 

computing but using statistical approximation can help us understand generally what has been 

published so far. Finding a single association or online library that had a copy of all possible 

published work was also very challenging, so Google Scholar was the best tool that could search 

hundreds of research associations and organizations to get more comprehensive results.  

This high-level systematic search encompassed all scholarly work from around the 

world and was not filtered to publications from the major associations only. The publication 

timeframe was limited to 2010 through 2020 (inclusive), and a-per-year count was recorded. 

This search filtered for compound phrases in the metadata as well as the various sections of the 

published work. The outcome of this search shows the serious lack of research when it comes 

to addressing forensic science applications in the realm of cloud computing. The limitation to 

this search is work that has not been published electronically or made available through online 

libraries. Sample compound searches used include the following:  
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- "cloud computing" "cloud * computing" OR "Public Cloud" OR "private cloud" -"cloud 

security" -security -forensics 

- "cloud security" "cloud * security" OR "Public Cloud" OR "private cloud" -forensics 

- "cloud forensics" OR "cloud computing" OR "Public Cloud" OR "private cloud" "digital 

forensics"

 

Figure 5 - Cloud Forensics research trend in the past ten years 

Landscape of known challenges 

In the past six years, the security of the data and information hosted in the public cloud 

has become a significant and controversial topic with comparisons made between securing on-

premises assets and securing the same in the multitenant public cloud space. As a result, the 

research community started resolving the ambiguities and attempted to settle the debates about 

cloud security. They have uncovered many challenges and proposed some successful solutions. 

One of the challenges is Incident Response (IR) and Digital Forensics (DF) in the public cloud, 

which is being researched presently (Alqahtany et al., 2015). Researchers have been actively 

publishing about the challenges of exercising digital forensic science related to Anything-as-a-

Service (XaaS) incidents (Freet, Agrawal, John, & Walker, 2015). Almost all researchers have 

categorized the challenges into three categories: technical, architectural, and legal. Few 

researchers have decided to categorize challenges according to the various frameworks or cloud 

services models (Freet et al., 2015; Grispos et al., 2012). NIST, on the other hand, has 

categorized challenges into nine categories in its draft report (NIST Cloud Computing Forensic 
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Science Working Group, 2014). This literature review revealed that most of the challenges 

usually span more than a single category, concentrating on the legal or judicial domain.  

During the past decade, researchers have identified the following high-level digital 

forensics challenges, and although there are many more, the list below highlights the most 

commonly referenced ones. Those highlighted challenges can exist in any or all of the 

commonly adapted cloud service models such as Software-as-a-Service (SaaS), Platform-as-s-

Service (PaaS), and IaaS. By design, the more control users have over a service layer, the fewer 

challenges they face. For example, IaaS should have fewer forensic challenges than SaaS. 

Solutions have also been proposed for some of these challenges, but that doesn’t mean they 

have been widely adopted or accepted by CSPs, regulatory bodies, or forensic tools 

development organizations. Table 4 shows some of the commonly referenced challenges and 

their respective categories, as well as how sometime a challenge can span multiple categories. 

Table 4 - Common Challenges and Corresponding Categories 

Challenge Technical Architectural Legal 

1) No access to the hypervisor logs or 

volatile data 

(Freet et al., 2015) 

(Simou et al., 2016) 

(Grispos et al., 2012) 

(Alqahtany et al., 2015) 

(Cohen, 2013) 

(Zawoad et al., 2015) 

   

2) High dependency on the CSP 

(Simou et al., 2016) 

(Freet et al., 2015) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Zawoad et al., 2015) 

   

3) No physical access & difficulty of 

imaging 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Barrett, 2018) 

(Zawoad et al., 2015) 

   

4) Trusting the collected data integrity 

(data provenance) 

(Simou et al., 2016) 
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(Freet et al., 2015) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Cohen, 2013) 

(Zawoad et al., 2015) 

5) Time zones synchronization 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Alqahtany et al., 2015) 

(Cohen, 2013) 

   

6) Maintaining chain of custody 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Cohen, 2013) 

(Zawoad et al., 2015) 

   

7) Legal authority and geographical 

boundaries (location) 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Miranda Lopez, Moon, & Park, 

2016) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Barrett, 2018) 

   

8) Lack of standardized cloud forensics 

acquisition tools 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Freet et al., 2015) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Barrett, 2018) 

(Zawoad et al., 2015) 

   

9) Lack of standardized cloud forensics 

examination tools 

(Grispos et al., 2012) 

(Simou et al., 2016) 

(Freet et al., 2015) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

(Barrett, 2018)  

   

10) Lack of literacy of court jurors 

(Grispos et al., 2012) 

(Alqahtany et al., 2015) 
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(Cohen, 2013) 

(Zawoad et al., 2015) 

11) Lack of literacy for public cloud 

customers 

(Simou et al., 2016) 

(Alqahtany et al., 2015) 

(Dykstra, 2013a) 

   

12) Lack of literacy for cloud 

investigators 

(Alqahtany et al., 2015) 

(Cohen, 2013) 

   

 

The literature overview done by (Simou et al., 2016) resulted in a comprehensive 

summary table referencing all previously identified challenges and the proposed solutions. 

Though their research findings are perhaps now antiquated, their highlighting of the challenges 

expressed, and the solutions proposed between 2011 and 2016 remains useful. Their literature 

review shows that most of the challenges can only be addressed by the CSPs. Although some 

of the challenges happen to capture the attention of the research community, who have proposed 

multiple viable solutions, no evidence suggests that those solutions were adopted by CSPs. 

These proposed solutions vary in implementation requirements, but to address the most critical 

challenges and help build legally acceptable forensics practices, CSP involvement is inevitable 

(Alqahtany et al., 2015). Clearly, most of the challenges fall into the 

collection/acquisition/preservation phase of the various digital forensics models. Someone 

wanting a quick reference and overview of existing challenges (table of problem/solution pairs) 

can look into (Simou et al., 2016), (Miranda Lopez et al., 2016), (Freet et al., 2015), and 

(Alqahtany et al., 2015), all of whom have compiled a holistic summary of the challenges and 

the respective proposed solutions in the past decade. 

Cloud Forensics - Models 

Cloud forensics has been defined as “the application of scientific principles, 

technological practices and derived and proven methods to reconstruct past cloud computing 

events through identification, collection, preservation, examination, interpretation and 

reporting of digital evidence” (NIST Cloud Computing Forensic Science Working Group, 2014, 

p. 2). NIST’s definition implies the application of the NIST digital forensic model to guide 

forensic investigation in a cloud computing environment, which contradicts the findings of 
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academic researchers in the field, such as Barrett and Kipper (2010) and Martini and Choo 

(2012).  

The research performed by Martini & Choo (2012) is considered one of the few notable 

studies that attempted to tackle the bigger picture of cloud forensics and proposed an integrated 

digital forensics model that could actually be adapted and followed to conduct investigations in 

various cloud deployments. In their publication, the authors started by going over the various 

cloud forensic challenges highlighted by the research community, then reviewed some of the 

commonly used models, namely Kent, Chevalier, Grance, & Dang (2006) and McKemmish 

(1999), analyzed the gap, and established new requirements to be able to carry-on forensic 

investigation in cloud environments. Their proposed model is a hybrid of both Kent et al., 

(2006) and McKemmish (1999), consisting of four phases: Evidence Source Identification and 

Preservation; Collection; Examination and Analysis; Reporting and Presentation. The major 

distinction of the proposed model occurs during the examination and analysis phase. The 

authors reason that during this phase in cloud forensic investigation, some iterations might be 

required as “cloud computing usage would most likely be discovered based upon the 

examination and analysis of physical devices and this would lead to a second (or more) 

iteration(s) of the process” (Martini & Choo, 2012, p. 75).  

The same researchers, one year later, attempted to add more rigor and validation to their 

proposed model and applied it successfully to cloud storage open source services OwnCloud 

(Martini & Choo, 2013). Furthermore, in the same year, Quick & Choo (2013c) attempted to 

generalize the previously proposed methodology and demonstrated its effectiveness to 

successfully acquire forensic data from three of the most popular cloud file storage providers: 

Dropbox (Quick & Choo, 2013a), Google Drive (Quick & Choo, 2014), and Microsoft 

SkyDrive (Quick & Choo, 2013b). While this model was successful in producing forensically-

sound data from SaaS deployment, the literature shows no demonstrations of IaaS-related 

deployments or investigations.  

Cloud Forensics - Tools 

One of the biggest challenges facing cloud forensics is the lack of digital forensics tools 

that are designed with cloud computing in mind. There is a tremendous need for tools to perform 

acquisition, complete analysis, and forensic examination of the cloud data remotely (Almulla, 
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Iraqi, & Jones, 2014). The Computer Forensic Tool Testing (CFTT) project at NIST attempted 

to create a list of trusted tools to perform traditional digital forensics as well as cloud forensics. 

The effort generated tool specifications, test procedures, test criteria, test sets, and test hardware 

(Allen, 2017). As of March 2021, the published “cloud forensics” tools on the CFTT website 

are all purposed for SaaS investigations such as OneDrive, Flickr, Dropbox, and such. There is 

no tool related to IaaS investigations listed in the database. While there are many popular, 

documented, traditionally tested and widely used digital forensics tools such as the Linux-based 

“dd” or the commercial grade “FTK,” the literature did not show any scholarly work related to 

systematically testing such tools on public cloud acquisitions.  

According to Dykstra (2013a), traditional forensic tools are not well suited to the vast 

quantity of data nor the type of data in the cloud, and often cloud infrastructure management 

tools are lacking in forensic options. Moreover, few available examples of cloud investigations 

can be used by practitioners for educational purposes. Prior to Dykstra developing FROST 

(Dykstra, 2013a), no known useable tools had been designed specifically for cloud forensics. 

FROST is the closest tool available today to perform real credible forensics on the management 

plane of private clouds (OpenStack). The idea was to convince CSPs to take a similar approach 

to making their offered services forensically capable. This led Dykstra to evaluate and analyze 

different leading commercial digital forensics tools to see if they could be used for cloud 

forensics. Though FROST was developed in response to cloud forensic challenges, some 

existing commercial tools, such as FTK Remote Agent, EnCase Remote Agent, and X-Ways, 

have also been used to perform live and remote forensics to some extent. 

Dykstra argues that another challenge is the format of the data. Cloud providers who aid 

in an investigation might provide the investigators with data that is in propriety VMs or in 

unsupported formats. These could be difficult or impossible to analyze with popular tools such 

as EnCase or Access Data's Forensic Toolkit (FTK). Thus, state or local law enforcement 

agencies may be unable to fully investigate cybercrimes that involve cloud-based infrastructure 

or cloud storage. According to Zawoad et al. (2015), another important challenge is the 

capturing of volatile data. When a virtual machine is powered off, all such volatile data is lost 

unless an image of the instance or a stateful snapshot is made. Some data, such as registry files, 

may therefore be lost, and someone could intentionally exploit this to ensure the loss of volatile 

data. 
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Few researchers have argued that CSPs can restructure and introduce valuable forensic 

capabilities at the hypervisor level (Poisel, Malzer, & Tjoa, 2013). Without changing the system 

state, the hypervisor is able to provide access to computing resources at a low level. The 

hypervisor can allocate computing resources, such as disk space, CPU, and memory, as well as 

networking. Hypervisors are fully capable of secretly monitoring, introspecting, and interacting 

with VM guests with complete transparency, which can be immensely useful for cloud 

forensics. However, most hypervisors fail to expose APIs at a level sufficient for fine-grained 

introspection that can be customized and remain transparent (Poisel, Malzer, & Tjoa, 2013). 

Thus, CSPs have to start implementing forensic services at the management plane or hypervisor 

kernel level to help resolve the majority of the challenges being highlighted. 

Cloud Forensics - Acquisition 

While reading this section of the research and moving forward, one must keep in mind 

the unblemished distinction between acquiring data for incident response purposes and 

performing digital forensic acquisition in order to pursue a litigation. The focus of this research 

is the latter one. NIST affirms that the “identification, collection, and preservation of media can 

be particularly challenging in a Cloud Computing environment” (NIST Cloud Computing 

Forensic Science Working Group, 2014, p. 8). Most existing methodologies and frameworks 

assume a tool capable of collecting and preserving the needed data, while maintaining chain of 

custody until delivered to court. With traditional digital forensics, one of the challenges has 

been seizure and imaging of physical discs; this is not possible with cloud forensics. As 

(Dykstra, 2013a) argues, physical seizure may be difficult for many reasons, such as that 

multiple tenants may have data on one physical drive, or that one tenant's content could be held 

by many hard drives. Also, that the data would be stored in disk-arrays and not individual disks 

is a very high possibility. Imaging of media could be impractical in a cloud and having only a 

partial image could be called into question legally as not being whole and complete. In addition, 

the disk drives could be spread out over many geographical areas, such as on different countries 

or continents (Dykstra, 2013a; Miranda Lopez et al., 2016, Simou et al., 2016). 

Dykstra writes that two possibilities exist for data acquisition with cloud forensics. First, 

the forensic examiner could collect it remotely, and second, the CSP could furnish it to the 

examiner. According to Dykstra, if forensic examiners had access remotely to the compromised 
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server operating system (OS), then they could potentially collect evidence in a couple of ways. 

1) They could install a forensic tool to remotely acquire evidence; or, 2) the VM could be 

suspended or stopped and then subjected to offline analysis. All this effort, however, assumes 

a great deal of confidence and trust in the hypervisor, the host OS, the hardware, and the guest 

OS; in this case, it would provide evidence that is not only whole but with full integrity. It 

assumes no omissions, no mistakes, and no tampering (Dykstra, 2013a). Alternatives for 

forensic acquisition include Trusted Platform Modules (TPMs), the cloud management plane 

forensics, and Forensics-as-a-Service. 

While it might be possible to collect data remotely from IaaS public cloud deployments 

using some of the existing tools today, there is no methodology or standardized process to 

perform such a sensitive task. If attempted, the process would have to be based on the forensic 

practitioner’s personal understanding of the investigated cloud platform; there is no document 

to be followed to repeat such acquisition if requested in courts of law. In 2014, the Scientific 

Working Group on Digital Evidence published a document to help guide forensic examiners 

acquire data from live systems (SWGDE, 2014). The document focused on defining order of 

operations and types of data to be acquired from a computer, and finally addressed the possible 

limitations and the negative implications of systems’ state changing due to live acquisition. 

While this publication did not explicitly refer to public cloud deployment or IaaS environments, 

it is still applicable when it comes to imaging memory and collecting volatile data from virtual 

machines deployed in the public cloud.  

The same organization published a document entitled “SWGDE Best Practices for 

Computer Forensic Acquisitions,” which gives practitioners high-level guidelines on how to 

carry out a successful and court-grade forensic acquisition and evidence preservation (SWGDE, 

2018a). The document is focused on forensic acquisition from computers/servers and attached 

storage media, and it gives recommendations on each one of the possible acquisition types: 

physical, logical, and targeted acquisition (SWGDE, 2018a). While this document does not 

mention the keyword “cloud” anywhere and does not constitute a defined methodology, it can 

be applied partially in the case of IaaS acquisitions because the document includes high-level 

guidelines and recommendations to follow when capturing any computer system (Storage & 

Memory).  
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In September 2020, as this dissertation was being written, SWGDE published a 

document that directly addresses forensic acquisition when it comes to the cloud services 

providers. The SWGDE (2020) best practice document is considered a very exceptional 

document, and it contributes greatly to the knowledge base of cloud forensics and the DF 

community.  At the beginning of this research, there was no such document in the literature that 

explicitly guided the forensic examiner on acquiring data from public clouds. The authors of 

the best practice document did not focus on a specific cloud service model, but rather 

generalized the scope to cover all of the possible service and deployment models. The document 

approaches forensic efforts from a legal perspective and shares various possible methods of 

acquiring forensic data, such as asking the CSP to furnish the data, exporting the data using 

native cloud tools, using exposed APIs and commercial DF remote agents, and finally physical 

seizing the cloud hardware (SWGDE, 2020). The document splits the acquisition process into 

three main phases and provides high-level guidelines on what should be done in each phase:  

 Prior to acquisition phase  

o Identify the CSP, data sources, data types, timeline, and utilized services.  

o Ask the CSP legally to preserve the data sought.  

o Identify and choose which acquisition methodology will be used.  

 During acquisition phase 

o Document all evidentiary data.  

o Acquire all attached media, local and in the cloud. 

o Confirm the acquisition methodology can produced the required data.  

o Acquire the data with the selected methodology.  

o Take photographs/screenshots of the relevant data if unable to acquire data.  

 After acquisition phase 

o Calculate integrity hash values for acquired data.  

o Verify that the executed acquisition was able to acquire all required data.  

o Document the whole process using the organization defined policies 

o Document any received media from the CSP.  

o Store all acquired data following the organizational policies (SWGDE, 

2020). 
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These three best practice publications from SWGDE are excellent starting points to 

performing forensic acquisition in the public cloud. The documents also provide high-level 

guiding principles to govern the DF processes, such as how to perform live acquisition, define 

OOV, acquire data from computers and storage, and addresses public cloud investigations. 

While the information in SWGDE, 2020 is the most relevant to the research question, it still 

leaves a gap about how to carry out each one of the proposed phases. SWGDE, 2020 argues 

that the process can be taken directly with the CSP, or without the CSP, and attempt to acquire 

the data. The described procedure is very high level by design, and it keeps a lot of room for 

the forensic practitioner to make their own decisions. The procedure does not have default 

processes to fit small businesses or organizations that do not have policies and standards to 

follow when it comes to digital forensics. The document omits chain of custody and physical 

personnel who performed acquisition or interacted with the digital evidence or forensic data. 

The process also lacks reference to the cloud metadata, and it doesn’t discuss the possible types 

of data that can be acquired from a CSP. Each type of data can require a different acquisition 

mechanism, and there is not a single selected mechanism of the described methodology that can 

capture all sought data. These excellent recommendations from SWGDE thus act as a basis for 

the present research and are enhanced and motivated to address IaaS deployments in the public 

cloud realm. 

While there are a plethora of models, methodologies, and procedures related to the 

overall lifecycle of digital forensic evidence, few resources go into detail about how the process 

should be followed to provide optimized results. There are only guidelines and instructions 

provided by the various DF software vendors on how they think the process should be carried 

out. While cybercrime investigations usually vary by which methodology or tool can be used, 

and each case can be very different, having a common ground or methodology to follow is 

efficient and advantageous. It is crucial for the forensic analyst or examiner to put a plan 

together to determine how they will approach each case before attempting to perform any task.  

That said, regardless of which process is being followed, the anticipated outcome is 

expected to be forensically sound, and, if litigation is expected, it must be able to stand in courts 

of law. Appendix A presents the various acquisition methodologies and procedures encountered 

during literature review. Only the live acquisition and logical collection phases of the 

methodologies has been captured in Table 14. The literature shows that almost all of the 
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encountered methodologies do not go into the details of how the forensic practitioner should 

approach the cybercrime scene, and they leave it up to the individual organization incident 

response policies. This might be a possibility, but assuming that all small and large 

organizations have a defined cloud forensics or digital forensics policies, and procedures is not 

realistic.  

Another significant problem highlighted in the literature is the post-acquisition 

examination. Some disk images acquired from cloud platforms cannot be forensically validated 

or rendered not traditionally operable. This in itself could pose a substantial legal challenge, 

which could ultimately frame the evidence as intangible. With traditional digital forensics, a 

hash of the intact physical hard drive can confirm that a copied disk is the same as the original. 

This is not always possible with cloud forensics, and in court the lack of data integrity could 

cause results to be rejected (Dykstra, 2013a). Within the acquisition phase of traditional digital 

forensics, data are to be acquired in such a fashion that both authenticity and integrity are 

maintained. Though impractical for cloud forensics, often this constitutes the use of a write 

blocker, thereby ensuring that nothing else is written to the disk. Imaging software is to be used, 

providing either a bit-for-bit image or a logical image made from active files and directories. In 

order to provide assurance with regard to the integrity of the collected data, it is essential that 

hashing be employed. Different solutions attempt to address data integrity at a stage prior to 

collecting the data, such as FROST; some SaaS forensics tools, such as Kumodd and Kumofs, 

as developed by Roussev, et al.; Cloud FaaS; and Almulla's snapshot-based forensics 

framework. 

Because cloud data storage is decentralized, located in multiple jurisdictions, some legal 

issues arise that are very difficult to address and can create challenges when commonly issued 

search warrants are pursued. With the warrant, it is necessary to identify a particular place where 

the evidence is located. That may not be possible with cloud forensics. Even if a warrant is 

granted, there could be an issue in maintaining chain of custody because of the multiplicity of 

jurisdictions, differing procedures, and the use of proprietary hardware and software (SWGDE, 

2014). Another legal challenge is the availability of cloud forensic acquisition tools that have 

been proven to acquire data in the cloud that meet the legally required rules for a specific 

jurisdiction. While it can be argued that some existing tools that are used today collect data 

from traditional computers or servers can be reused in the cloud, few tools are natively designed 
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with the cloud in mind. Thus, the court could challenge a lack of tools certified for the cloud. 

Accordingly, legal requirements for forensically sound evidence also remain nebulous.  

Cloud Forensics - Laws and Regulations 

Throughout the work investigated here, researchers agree that the reason for the 

existence of almost all of these challenges is ultimately legal (laws, regulations, and court 

compliance and acceptance). Miranda Lopez et al. (2016) and Dykstra (2013a) reached a similar 

conclusion after evaluating two hypothetical use cases of criminal activities in cloud computing 

settings. In their draft publication regarding cloud forensic challenges, NIST has highlighted 65 

challenges, 33 of which fall under legal or architecture categories. The drive behind performing 

digital forensics in the first place has always been uncovering criminal behavior and presenting 

them to their respective authorities (NIST Cloud Computing Forensic Science Working Group, 

2014). The collected evidence must follow certain rules to be admitted at a trial level if litigation 

takes place. If there is no litigation, then the collected information/data/evidence does not need 

to be authenticated against any federal rules or regulatory body standards. Thus, most 

challenges are not categorized under cloud forensics, but rather are dispersed among cloud 

incident response frameworks and corporate security policies. 

Researchers have found that the largest US-based IaaS-offering CSPs—AWS, GCP, 

and Azure—have published basic guidelines on how to technically acquire a copy of virtual 

assets or media, such as acquiring a raw image of a virtual machine storage or a copy of the 

volatile memory. Neither the CSPs nor their competitors have published information related to 

acquiring evidence that can be admissible in court. The abovementioned CSPs have made 

available some blog posts and whitepapers about how to proactively automate incident response 

(threat mitigation) in their respective service offerings. These write-ups have focused mainly 

on processes related to anomaly detection and log correlation and targeting organization’s 

incident response and security policy teams (Building a Cloud-Specific Incident Response Plan, 

2017; Data Incident Response Process | Documentation, 2018; rkarlin, 2018). One recent 

publication showed how acquisition could be accomplished in public clouds using the CSP-

exposed APIs; the researchers focused on Amazon Cloud (AWS) and successfully acquired full 

disk and memory images using the provided API calls, as well as some third-party tools (Orr & 

White, 2018). 



30 

 

The same CSPs have provided information on their websites about how law 

enforcement agencies, attorneys, or private investigators could approach them for search 

warrants or subpoenas (Amazon, 2015; Law Enforcement Requests Report – Microsoft 

Corporate Social Responsibility, 2018; Orton, Alva, & Endicott-Popovsky, 2013). Though this 

information is helpful, it is absolutely up to the CSP to decide what data they can share, what 

they can share partially, and what they can reject sharing (Amazon, 2015; Evans, 2017). The 

CSP’s decision about what type of data to provide is dependent on many factors, such as their 

understanding and compliance with governing laws, regulations, and common service 

provider’s privacy practices.  

Research Gap 

After reviewing the literature over the past decade related to cloud forensics—including 

the challenges that have been voiced and the solutions proposed— the researcher believes that 

for these proposed solutions to be effective, the CSPs must perform architectural changes to 

their underlying hypervisors or cloud engines to allow for native forensic capabilities and 

expose the appropriate API calls. The other option is for the legal community and legislators to 

start creating a different set of acceptance criteria for cloud-generated digital evidence, taking 

into consideration the limitations that exist today. Arguments are also made for new laws and 

regulations to govern the public cloud space to allow for more control when it comes to law 

enforcement agencies (LEAs) interactions. Alqahtany et al. (2015) explains the challenging 

nature of demonstrating the integrity of cloud-based evidence in court in such a manner that it 

can be admissible without being contested. This can be due to the number of different 

stakeholders involved in the data preservation stage. While some researchers have highlighted 

the legal challenges to cloud forensics, they have been addressing all challenges together at a 

high level, with no focus on specific challenges (Dykstra, 2013a).  

The few practical solutions proposed for cloud acquisition have always argued for the 

involvement of the CSP in order to adjust the cloud architecture or allow external interfaces 

direct access to the cloud infrastructure. The reviewed literature does not mention the use of the 

existing digital forensic acquisition tools to perform acquisition in the public cloud.  

In the present research, the gap between cloud forensic acquisition and the U.S. court 

system has been closely examined, and a forensically-sound methodology to prove the collected 
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data’s authenticity is proposed. The methodology inherits its main structure from the various 

international work groups (SWGDE, IOCE, and IETF), standards bodies (NIST, ISO2700), and 

U.S. federal rules and regulations (FRE, FRCP, Daubert). The proposed methodology extends 

the existing knowledge base of digital forensics to encompass public cloud IaaS deployments. 

The focus of this research is to deliver indubitable and highly admissible forensic evidence to 

the U.S. courts. Further, the goal is to allow the same methodology to be extensible, and thus 

easily applicable to any other court system or corporate incident response policies.  

While there is less focus on the existing commercial forensic tools, some existing open-

source and well-known digital forensic acquisition tools have been tested against public cloud 

IaaS resources. Some newly made available means of collecting forensic data from public 

clouds have been tested, such as applications programming interfaces (APIs) exposed by the 

various CSPs, as well as some of the most recently developed cloud forensic gadgets. In the 

present research, two hypothetical scenarios are carefully crafted to mimic realistic forensic 

investigation cases in IaaS deployments. The existing forensic acquisition methodologies and 

best practices are tested against the forensic cases, then the newly developed methodology, 

IPCFA, is attempted. The focus of this research is to maintain the authenticity of the collected 

forensic evidence, meet U.S. courts requirements, and help pass the Daubert test using a 

uniquely developed rubric to execute and validate the proposed methodology.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

Overview 

This research is grounded in Design-Science Research (DSR) and adheres overall to all 

design science guidelines as outlined by Hevner et al. (2004). Hevner et al. (2004) assert that 

design science is concerned with the process of discovery through artifacts that have been 

created in order to address certain problems. Design science can be very productive, allowing 

for new and useful knowledge to emerge from the creation of an artifact. That knowledge can 

then make a significant contribution to the collective knowledge of the cybersecurity discipline. 

The authors proposed a framework that consists of seven guidelines to “assist researchers, 

reviewers, editors, and readers to understand the requirements for effective design-science 

research” (p. 82). Hevner et al. (2004) does not provide any explicit information about the order 

in which the following guidelines should be followed, so in this research the chronological 

order was followed as it produced the intended results.   

Table 5 - DSR Guidelines from Hevner et al. (2004) 

 

Note. Reprinted from “Design Science in Information Systems Research” by Alan 

Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram, retrieved from 

https://www.researchgate.net/profile/Alan_Hevner/publication/201168946_Design_Sc
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ience_in_Information_Systems_Research/links/5405d4670cf23d9765a75fc2.pdf. 

Copyright 2004. 

Design as an Artifact 

According to Barrett (2018), digital forensics as a discipline is “lacking the tools, 

published processes, and guidance for proper acquisition of digital evidence in cloud computing 

environments” (p. 1362). Thus, this research proposes a digital forensics acquisition 

methodology to help investigate cybercrimes related to the IaaS Public Cloud service model to 

complement most of the published digital forensic models. The methodology sheds light on the 

use of the existing digital forensic acquisition tools as well as the newly made available tools 

from the various CSPs. It helps fill the gap temporarily until CSPs provide support for reliable 

cybercrime investigations and upgrade their cloud-means to a forensic-aware cloud 

architecture.  

Researchers have provided adequate starting points for cloud forensics as relates to 

acquisition. Zawoad et al. (2016), in their proposed Open Cloud Forensic model (OCF), provide 

directions for CSPs on how to perform reliable, continuous forensics acquisition. Alqahtany et 

al. (2016) proposed a novel cloud forensic methodology and covered the acquisition process in 

great detail. In both scenarios, the caveat is the dependency on CSPs to support the proposed 

solutions. In this research, the proposed methodology, IPCFA, does not involve the provider 

and is composed of multiple phases, aiming to ensure the integrity, authenticity, and the 

operability of the collected data and the produced evidence. Legally, this means fulfilling FRE 

901 (Rule 901, 2011) and FRE 902 (Rule 902, 2011) and successfully navigating the Daubert 

standard (Ryan, 2009a).  



34 

 

Cloud Evidence Authenticity

FRE 901(a)

FRE 901(b)(1)

FRE 902(11)

FRE 902(12)

FRE 902(13)

FRE 902(14)

FRE 901 FRE 902

Daubert 

Standard
 

Figure 6 - Digital evidence and U.S. courts – Digital evidence admission map 

Maintaining the integrity and authenticity of collected forensic data are the first two 

imperative requirements for court-admissible evidence generation. A third factor is the 

operability of the collected data, which refers to the ease of analysis and examination using 

commonly available and trusted forensics examination tools. The most critical aspects of 

forensically-sound evidence are reliability and completeness; if they are questionable, the 

evidentiary value is significantly weakened (McKemmish, 2008). According to Orton et al. 

(2013), “decisions in court cases rely on the authenticity and reliability of the evidence 

presented” (p. 186).  

In the proposed methodology, the first requirement is to address the integrity problem 

by applying continuous integrity checks throughout the execution of process, starting with 

forensic server creation, and moving throughout various phases to the transfer of the collected 

data back to the forensics server. The second requirement, authenticity, which is related to 

maintaining a trusted and unbroken chain of custody, is mostly addressed by making the 

platform owner executing the process save the collected data directly to the final analysis 

destination to avoid creating untrusted copies. The same two requirements should be met by 

following FRE 901/902 to provide authentic evidence. Operability, the third and final 

requirement, is achieved by making sure the extracted data is always relevant, complete as 

relates to the request, and tool-agnostic. 

Table 6 - Artifact Requirements Summary 

Methodology Requirement         Sub-requirements 
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Maintain the integrity of the 

acquired data 
- Maintain simple and trustful chain of custody 

Maintain the authenticity of the 

acquired data 

- Adhere to FRE 901 and FRE 902 

- Withstand or moot the Daubert test 

Generate reliable and operable 

forensic data 

- Generate complete and uncorrupted data  

- Collected data must be certainly examinable 

Problem Relevance 

According to Hevner et al. (2004), a problem is the variance between a goal state and 

the current state of a system”. The present research attempts to benefit the digital forensics 

community by helping practitioners acquire forensic data from public cloud instances, while 

having the confidence that it will be admitted and trusted in the U.S. courts of law. The security 

of organizational data in the public cloud is a shared responsibility, and distinction in the level 

of accountability is determined by the type of service model chosen. In an IaaS model, the 

responsibilities of the CSP and the consumer are weighted as equally important, which has 

significant impact on security. This shared security responsibility model brings a lot of 

challenges in how cybersecurity incidents are handled in the public cloud, specifically how 

digital forensics can successfully take place.  

Though telecommunications companies have to comply with federal laws—such as the 

Communications Assistance for Law Enforcement Act (CALEA), which permits law 

enforcement agencies to use wiretaps—no such law exists for dealing with CSPs (Dykstra, 

2013a). Access to direct authentic evidence collected by law enforcement officers is not an 

option when dealing with incidents in the public cloud. Traditional DF acquisition 

methodologies and techniques are by design not probable in cloud environments. The challenge 

is to innovate new and/or extend existing acquisition methodologies or processes that continue 

to comply with federal and civil laws and preserve the authenticity and integrity of the collected 

evidence, thus gaining the credulity of expert witnesses, jurors, and judges. Based on the 

existing literature review, and the published methodologies, techniques, and procedures, there 

are no formally written and adopted methodologies for acquiring forensic evidence from public 

clouds, more specifically from IaaS instances. There are numerous research papers focusing on 

SaaS deployments and how to investigate such crimes, while IaaS has always been overlooked 

and thought of as if the existing digital forensics tools and methodologies could be applied.  
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The only publication that directly addresses public cloud digital forensics is the SWGDE 

Best Practices for Digital Evidence Acquisition from Cloud Service (2020), which provides a 

very good starting point for cloud practitioners. The SWGDE best practice document does not 

have default processes to fit small businesses or organizations that do not have policies and 

standards to follow when it comes to digital forensics or incidents response. The document 

omits chain of custody and physical personnel who performed acquisition or interacted with the 

digital evidence or forensic data. The process also lacks reference to the cloud metadata and 

does not discuss the possible types of data that can be acquired from a CSP. Each type of data 

can require different acquisition mechanisms, and no single mechanism of the described 

methodology can capture all sought data. Yet this document serves as a base for the technical 

aspects of this research that is then enhanced and focused to address IaaS deployments in the 

public cloud realm. 

Design Evaluation 

The designed artifact of the research is a methodology, IPCFA, which includes 

numerous procedures to be followed and executed to achieve the desired results. Two 

hypothetical scenarios (cases) with a validation rubric are proposed. One scenario is 

hypothetically walked-thru while the second scenario will utilize an observational case study to 

demonstrate the effectiveness of the proposed artifact. According to Peffers et al. (2007), a case 

study can be used to demonstrate the use of the artifact to solve one or more instances of the 

problem. According to Ramirez, Mukherjee, Vezzoli, & Kramer (2015), using a scenario-based 

scholarly form of evaluation “helps to challenge existing assumptions and to identify novel 

lines of inquiry” (p. 70). The authors also argue that scenario-based evaluations can help 

produce research that is interesting, rigorous, and actionable (Ramirez et al., 2015). Choosing 

to validate the IPCFA in multiple public cloud service providers is essential to exhibit the 

independence of the proposed methodology that it is applicable to any CSP. 

Following DSR guidelines by Hevner et al. (2004), the designed artifact evaluation in this 

research falls under Observational Design Evaluation Methods. The proposed methodology is 

evaluated in terms of functionality, reliability, and usability as relates to core requirements, 

which are integrity, authenticity, and operability, of the collected data. These evaluation criteria 

meet Hevner et al. (2004)’s definition of a well-developed artifact that is “complete and 
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effective when it satisfies the requirements and constraints of the problem it was meant to solve” 

(p. 85). In this research the main constraints are the lack of involvement of the CSP during data 

acquisition and that the data collected should be able to satisfy the Federal Rules of Evidence 

as well as supports the plaintiff withstand the Daubert test. Two hypnotical scenarios (use cases) 

are assumed in two different and well-known CSPs—AWS and Azure. The IaaS deployments 

selected for the scenario are very common and have a high probability of a large number of 

implementations among large enterprises as well as small businesses today. The following two 

scenarios are used to evaluate the existing digital acquisition methodologies versus the proposed 

methodology:  

Scenario #1 – Amazon Web Services (AWS use case):  

Dakwa LLC is an online agricultural wholesale venue that allows importers, exporters, 

and direct buyers to buy, bid, and pay online for crops and raw oils. They are hosted in the 

public cloud and utilize various IaaS components such as virtual machines, databases, and 

network services. They have been set up to accommodate large spikes of traffic by utilizing 

native features of public clouds such as auto-scaling groups to meet the demand during large 

auctions or right before harvest sessions. Their cloud platform is set up as a 3-tier architecture 

to provide modularity, scalability, and high availability.  

J0anneB, a hacker who was hired by a buyer transacting on Dakwa LLC platform, to 

dictate the competition and derive more revenue. J0anneB is very well versed in exploiting 

public cloud architectures, tools, and environments, and tends to exploit areas that are 

emerging such as productions pipelines. She also uses automation techniques of deploying and 

maintaining web applications and systems. She successfully launches her indirect attack and 

gains access to the transactions database, for which she is able to adjust many factors related 

to auctions and place bids for a long period of time, thus the buyer is able to deceptively make 

more financial gains. Some buyers and sellers have noticed the behavior and determined it is 

not normal, raising concerns to the company. The company now seeks to fix and investigate a 

fraud case, bring case to justice, and demand financial paybacks.   

Assumptions:  

- IaaS is hosted on Amazon Cloud (AWS) and is consuming IaaS native resources. 
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- The environment consists of six EC2 instances (two web servers, two application 

servers, two RDS servers). All servers are part of auto-scaling groups and load balancing 

pools. 

- Infrastructure and code deployments are mostly through pipelines and various DevOp 

processes. There is no use of serverless or function-based applications. 

- Dakwa LLC has an IT security department but they lack digital forensics expertise, thus 

they decided to hire an attorney to bring forensic experts along to investigate.  

Scenario #2 – Microsoft Cloud (Azure use case):  

Oba7 is a hacker who sells distributed computing CPU cycles to underground 

communities for cryptocurrencies miners, DDoS attackers, and other malicious-intended 

purposes. He is an expert in utilizing exploit kits to infect legitimate websites with potential 

high traffic to distribute malware to visitor’s workstations. His malicious code renders to 

regular webpages, gets downloaded behind the scenes onto clients’ workstations, and then 

executed to connect back to Oba7’s command and control server. He was able to acquire the 

Azure Public Cloud account information and credentials of Zool Corporation, which owns and 

operates a small-town casino. The hacker accessed the associated cloud account and used the 

readily available computing and storage resources to allow anonymous buyers to borrow 

resources in exchange for cryptocurrency. The buyers pre-transfer the cryptocurrency amount 

that translates to the desired hours/resources to be borrowed, then come to the website, place 

a single text file with the transaction hash and few other encrypted details, and leave. Oba7 

utilizes the power of automation and ephemerality of resources available in the public cloud to 

automatically obliterate all relevant text files right after being accessed and downloaded to the 

local workstation. Thus, the virtual machine and the storage are always in a clean state or even 

do not exist.  

Zool Corporation’s accounting department noticed a major increase in their recent 

cloud utilization bills. They reached out to the CSP and complained that they have been over 

overcharged for several months. The CSP advised the corporation to review their accounts and 

their utilization trends in order to reduce their resources consumption. The corporation is 

determined to investigate their cloud account misuse, find the root cause behind their overages, 

and attempt to legally ask for settlement.   



39 

 

Assumptions:  

- IaaS is hosted on Microsoft Cloud (Azure) and is consuming IaaS native resources. 

- The environment consists of six virtual machines (three web servers, three application 

servers, two Azure SQL servers). All servers are part of availability sets and are behind 

load-balancers.  

- Infrastructure and code deployments are mostly through pipelines, scripts, and various 

DevOp processes. There is no use of serverless or function-based applications. 

- Zool Corporation has a cloud security analyst’s team, but they lack digital forensics 

expertise, thus they decided to hire an attorney to bring forensic experts along to 

investigate.  

An observational case study will be conducted on the Azure scenario for demonstration 

purposes, while the AWS scenario will only be hypothetically walked through and compared 

to various existing recommendations and DF processes from the following publications:  

1. Internet Engineering Task Force (RFC#3227) (Killalea & Brezinski, 2002) 

2. Capture of Live Systems (SWGDE, 2014) 

3. Best Practices for Computer Forensic Acquisitions (SWGDE, 2018a)  

4. Best Practices for Computer Forensic Acquisitions from CSPs (SWGDE, 2020) 

5. FRE 901 - Authenticating or Identifying Evidence (Rule 901, 2011) 

6. FRE 902 - Evidence that is Self-Authenticating (Rule 902, 2011) 

7. Daubert Standard (Ryan, 2009a) 

Given the above resources, a small focus group will be carefully assembled in order to walk-

thru the AWS hypothetical scenario and provide all the steps required in order to collect 

forensically-sound data to support the Dakwa LLC case. Assembling a small focus group is 

important to understand the capabilities of the current practitioners in the market and determine 

any application gaps. They will be instructed to follow the SWGDE (2020) acquisition process 

in addition to their expertise and personal knowledge of U.S. legal systems. In order to recruit 

five highly skilled digital forensic practitioners with legal and public cloud practical knowledge, 

the following selection criteria are required:  

- A U.S.-based and currently practicing digital forensics senior examiner with more than 

five years of practical experience.  
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- A holder of valid and relevant U.S. technical and legal digital forensics credentials 

(education, certified training, experience). 

- Practical understanding of the federal and state rules of evidence and their applicability 

to digital forensics. 

- Working knowledge of digital forensics expert witness legislations and U.S. court 

systems. 

- Working knowledge and valid credentials of working with the existing public cloud 

ecosystem (hands-on with architecture, deployment models, and service models). 

The main task of the forensic investigation is to adhere to the above-mentioned resources 

and to provide the projected steps taken to acquire cloud forensic information that can be used 

to generate court-sound evidence. The acquired cloud forensic data and process must prove 

integrity, authenticity, and operability. After both hypothetical cases have been attempted with 

the existing methodologies and procedures from the common body of knowledge, the newly 

proposed methodology will be executed, and the results compared to the outcome of previous 

attempts. The following investigative outcomes are expected from the collected data:  

- Determining the chronology of the attack. 

- Identifying the source and scope of the impact of malicious activity. 

- Uncovering the origin of the attack and tie back to possible entity. 

- Enabling the client to prosecute the attacker(s) and suspected buyer in courts of law. 

According to the University of Texas, a rubric is a “scoring guide used to evaluate 

performance, a product, or a project” (Build a Rubric, 2017, p. 1). A rubric is a criterion-

referenced assessment tool (O’Reilly & Cyr, 2006). In this research, a customized Admissibility 

Likelihoods Rubric (ALR) is developed from the federal requirements for digital evidence and 

the digital forensic acquisition best practices from the various institutions, technological 

standards, and regulatory bodies. The added value of this rubric is that it bridges the gap 

between the legal requirements and technological requirements, and thus simplifies the decision 

making from technological perspective.  

The rubric presented in Table 7 is used to evaluate the results of executing the 

methodology and validating the generated data authenticity, thus determining the probability of 

being accepted as admissible evidence in the U.S. judicial system. The levels of performance 

used in the rubric are Trustworthy, Doubtful, and Untrustworthy. Each performance level has 
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been assigned a score. These performance levels are not meant to determine actual admissibility 

in U.S. courts, but rather acts as trusted probability vector indicating whether the court is more 

or less likely to accept the evidence. They also provide a clear indicator if the forensic 

methodology followed can withstand defense scrutiny. ALR evaluation is based on the overall 

scope of admissibility probability out of 90 possible points. This evaluation is subjective; thus, 

no given score value can determine 100% admissibility in a trial. The highest the number of 

points on ALR predicts a high level of trust in the forensic process and the generated evidence, 

thus a higher chance of admissibility in federal and state courts. The opposite is also true: if the 

ALR score is low, the lesser the chance that evidence will be rendered admissible.  

Table 7 - Digital Evidence Admissibility Likelihood Rubric (ALR) 

Criteria Trustworthy  

(6-10) 

Doubtful  

(2-5) 

Untrustworthy  

(1-0) 

General/Legal 

1) Adopted a structured 

and published 

forensic acquisition 

method or process 

A structured 

acquisition process 

has been followed, 

and it is a tested and 

published process. 

Acquisition 

process has been 

followed without a 

reference to 

published 

processes. 

No acquisition 

process was 

followed or 

referenced. 

2) Forensic acquisition 

practitioner certified 

abilities 

Acquisition 

performed by 

documented, 

certified, and 

knowledgeable 

examiner. 

Acquisition 

performed by 

undocumented but 

knowledgeable 

examiner. 

Acquisition 

performed by 

inexperienced and 

undocumented 

personnel. 

3) Trustworthy 

capturing of the 

whole acquisition 

process 

The acquisition 

process was 

captured and can be 

clearly referenced to 

examine and verify 

or repeat each step 

of the process, if 

required. 

The acquisition 

process was 

captured but cannot 

be clearly 

referenced to 

examine and verify 

some steps of the 

process. 

The acquisition 

process was not 

captured or was 

unclearly captured 

and cannot be 

reproduced.  

4) Provided case-

supporting artifacts 

All evidence-

supporting logs and 

events from all 

platforms were fully 

captured and 

preserved properly. 

Some evidence-

supporting logs and 

events from 

various platform 

were captured or 

fully captured but 

No evidence-

supporting logs and 

events were 

captured nor 

preserved properly. 
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not preserved 

properly. 

5) Very well 

documented and 

validated chain of 

custody 

Chain of custody 

has been fully 

documented 

throughout the 

acquisition, 

preservation, and 

access processes.  

Chain of custody 

has been partially 

documented but 

not covering all 

phases of the DF 

process.  

Chain of custody 

has been poorly 

documented or 

completely 

undocumented. 

Data acquisition 

6) Used trusted 

acquisition tools 

The tools used are 

tested and trusted 

(compiled from 

trusted source), 

CFTT report is 

available, or a well-

known tool was 

used whose 

integrity is validated 

from vendor or 

maintainer.  

The tools used are 

trusted, but the 

trust has not been 

validated and 

documented prior 

the execution.  

The tools used are 

not well-known 

and their integrity 

were neither 

validated nor 

documented.  

7) Data is captured in 

operable format 

Data is captured and 

saved in raw or 

known format and 

can be examined 

using common and 

trusted tools. 

Data is captured 

and saved in a 

proprietary format 

that is widely used. 

The data can be 

examined using 

few proprietary 

tools. 

Data is captured 

and saved in a 

format that is not 

commonly used. 

The data cannot be 

examined using 

trusted tools. 

8) Utilized secure and 

immutable evidence 

storage 

Storage is defined, 

sterilized, secure, 

isolated, and 

immutable with 

limited network and 

access. 

Storage is defined, 

secure, and isolated 

with limited 

network and 

account access. 

Storage is not 

defined or is 

partially defined 

and is not isolated 

or secured nor 

immutable.  

9) Validated the 

captured forensic 

data 

NIST-approved 

hash algorithm 

value calculated for 

all the captured 

evidence data files. 

All hashes 

comparisons were 

accurate.  

NIST-approved 

hash algorithm 

value calculated for 

some of the 

captured evidence 

data files. Some 

hash comparison 

values were 

accurate.  

NIST-approved 

hash algorithm 

value not 

calculated for the 

collected evidence 

files, or incorrect 

values were 

returned during 

hash comparison.  
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As rubrics by design are objectively deriving the evaluation and grading of the objective 

are usually matched with the pre-defined objective of each criterion. The ALR consists of nine 

criteria. Each one has been derived from the core requirements that enhances the admissibility 

of digital evidence in the U.S. Court system. 

1) Adopted a structured and published forensic acquisition method or process 

Article VII of the Federal Rules of Evidence governs expert witness testimony 

requirements. FRE 702c and FRE 702d (Rule 702. Testimony by Expert Witnesses, n.d.) both 

require the expert witness to apply a defined methodology to the artifacts presented to provide 

facts. Thus, using a pre-defined methodology to perform the digital forensic acquisition is an 

important factor in providing a reliable testimony in courts of law. While attempting a forensic 

acquisition based solely on personal knowledge of the matter might be sufficient in some 

situations, this is ultimately not a reliable approach if a trial is expected.  

 This criterion receives ten points if the forensic examiner has followed a published 

methodology that addresses the acquisition nature of the specific case. The steps 

taken to achieve the desired goal must be documented prior to executing the 

observed methodology.  

 Five points are given if a methodology that has been followed is not published to 

the knowledge base or has been adopted from another form of acquisition that is not 

directly applicable to the investigated case environment. If the examiner created and 

followed their own acquisition process, it is up to the court to determine if the 

acquisition process followed can be used to generate sound evidence. The court 

might invoke a Daubert pre-trial testimony of expert witnesses that thus can be 

challenged in court.   

 The lowest number of points—one point—is expected if the forensic practitioner 

did not follow any process neither published nor created for the purpose of the 

referenced acquisition. This weakens the credibility of the derived evidence, 

diminishing its value in court significantly. Furthermore, it renders the evidence not 

compliant with Federal Rules of Evidence 702c and 702d.   

2) Forensic acquisition practitioner-certified abilities 

This is another essential criterion that revolves around solidifying the credibility of the 

collected evidence as well as enduring the probable Daubert expert witness testimony. If 
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the acquisition is carried out by a court-appointed expert or by law enforcement agency, 

this requirement is automatically satisfied prior to hearing by following FRE 602 and FRE 

706, but in this case the forensic process is carried out by private investigators. When 

entering into a trial, judges usually determine the credibility of expert witnesses by 

executing the Daubert test (Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 

1993).  Prior to a Daubert pre-trial, all experts presenting evidence in the court must submit 

a summary report that includes their analysis and findings. This report is shared with both 

parties, which allows for cross-examination of witnesses. The submitted report must follow 

the FRCP Rule 26 (2015), which explicitly requires the report to include subject matter 

expertise of the witness, experience, education, special trainings, industry certifications, 

publications, and similar cases in which the expert testified in the past four years; this is not 

an exhaustive list of qualifications.  

 The full ten points are possible if the acquisition was performed by a digital forensic 

expert who has previous relevant and in-depth experience in the subject matter. 

Having served as an expert witness in similar cases adds greater trust to the expert 

testimony. Experience must be documented and verifiable such as authored 

publications, court-case appointment letters, training certifications, employment 

duties and assignment letters, and formal relevant education diplomas.  

 Five points are awarded if the expert has knowledge and experience but is not 

properly documented and verifiable; thus, the expertise can be disputed. This also 

applies to experts who are new to the U.S. court system and have limited or very 

recent digital forensic knowledge.   

 If the acquisition was performed by an inexperienced and/or completely 

undocumented examiner, then the lowest score is given.  

3) Trustworthy capturing of the whole acquisition process 

Making the case stronger, admissible, and indubitable is the main driver behind this 

criterion. While the DF acquisition process can take long hours or days depending on the 

case, being able to show a great amount of transparency in the forensic process can be very 

rewarding when evidence is presented in courtrooms. While it might not be possible to 

capture the whole process of a very large file being copied between drives, showing the 

initial and finish state of the transfer with timestamps is possible, and this makes a 
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difference. Judges, juries, and defense attorneys having a clear understanding of how 

evidence was collected can remove a lot of questions and help the trial move forward.   

The referenced publication does not qualify the type of notes if it is written or recorded 

or in any other format, but it emphasized on the detail level of the notes and explicitly 

requires notes to be detailed to a point where the whole process can be duplicated just by 

following the provided notes.  According to the National Institute of Justice special report 

(U.S. Department of Justice; Office of Justice Programs; National Institute of Justice, 2004), 

taking very detailed notes of the acquisition process from start to finish is crucial to having 

complete case information that is presentable in court. When looking at digital forensic 

evidence requirements from an international perspective, the task force formed between 

SWGDE and IOCE (2000) approved the recommendation of having detailed documentation 

of all actions taken during the acquisition process.  

 Ten points are awarded if the acquisition is documented with detail that allows for 

inspection of each step of the process as well makes it possible to reproduce the 

whole process and the expected results. This can be done with written notes, 

screenshots, screen recording, or a combination of methods as long as the results 

provide a full capture of the process.   

 Five points are awarded if the documentation process does not capture the complete 

forensic acquisition. This can be due to some acquisition steps being omitted or 

notes not having enough detail to carry out the process based on the provided notes 

only.    

 If the acquisition process was not documented at all, or was documented at only a 

very high level, then the instance receives one point. 

4) Provided supporting case artifacts 

This criterion encompasses two types of supporting artifacts: the first includes artifacts 

that support the acquisition process itself; the second supports and ties evidence back to a 

claim. While all provided data and evidence can be argued upon in a court setting, having 

supporting information about the presented data can be the differentiator between relevant 

and admissible evidence and inadmissible and rejected evidence. In IaaS acquisition cases, 

the main data sources are the network, the disk drives, and the ephemeral memory storages 
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such as RAM. Collecting data duplicates from these sources can be done in many ways and 

can be documented.  

Providing information that is originally generated by software and processes used 

during the acquisition process can have a very high value in courts. Important artifacts that 

are always overlooked are metadata about all forensic data and evidence. The most recent 

change in Federal Rules of Evidence and the introduction of FRE 902 (Rule 902, 2011) 

provides guidance for self-authenticated information that can be admitted in courts without 

further investigation. FRE 902(11) states that electronic records generated by systems or 

electronic processes can be considered self-authenticated. The same applies to the second 

case where logs, events, or metadata generated during the investigated activity are collected 

and provided to support the advocated claim. Being able to provide supporting logs to 

validate IP activity on the network, for example, is one way of providing self-authenticating 

evidence. 

 A full ten points are awarded if supporting artifacts such as logs, events, and any 

other auto-generated information are captured, preserved, and provided alongside 

the documented acquisition process. Also, it is required that any extracted evidence 

has supporting artifacts to validate the claimed evidence.  

 The second highest number of points (up to five points) is given if supporting 

artifacts are generated for some processes or evidence, but not for all important 

forensic or acquisition tasks. Also, the same number of points can result if all 

artifacts are captured by not preserved properly.  

 One point is awarded if no supporting artifacts are captured or presented in 

conjunction with the forensic process documentation and the collected data or 

evidence.  

5) Very well documented chain of custody (CoC) 

Chain of custody is the heart of the whole forensic process, and without it any collected 

data loses its evidentiary value. Maintaining a complete, clear, and undoubted CoC by 

ensuring that any and every action taken during the forensic process is documented 

contemporaneously is crucial. According to NIST SP 800-101, the most important 

information to include is “each person who handled the evidence, the date/time it was 

collected or transferred, and the purpose for any transfers”  (Jansen & Ayers, 2004, p. 67). 
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While the information required is considered for all types of forensic evidence, digital 

evidence requires more information to be documented in order to be complete. Additional 

information includes the collection method, storage location and type, transport medium, 

integrity checking hashes for each item, and access tracking and purposes.   

 This criterion receives a full score if the CoC is provided, and it has all the 

information required in order to assure the evidence integrity from collection to 

presentation at the trial without skipping any part of the forensic process. 

Information about the creation and preservation of the CoC itself is included as well.  

 Five points is given if the CoC is provided, but it has minimal information about 

personnel, evidence collection, transport, and access, or the CoC is not 

comprehensive and has a few gaps in one or more of the forensic process phases.  

 1 point is given if the CoC is not documented or provided or was provided but not 

documented properly, such as with missing dates, personal information, or process 

information.  

6) Used trusted acquisition tools 

The DF process usually involves executing a plethora of tools starting from case 

initiation and management going through acquisition and all the way to presentation 

software. While all involved tools share the same importance in the process, the acquisition 

tools are thought of as the most critical tools to consider as they are used to collect and 

generate the actual evidence for the investigated case. According to NIST Computer 

Forensics Tool Testing Program – CFTT (Allen, 2017), law enforcement agencies are 

severely lacking computer forensic tools that are trusted to generate reliable data. The 

program was established in order to provide a testing methodology and a database to 

categorize tools, their functions, and the quality of the generated results. Tools that are 

tested and validated under CFTT are considered credible and can generate the intended 

results if used properly. Each tool has a corresponding report that shares all the details of 

applying the CFTT testing methodology. While the NIST database does not have tools that 

are designated for DF in the IaaS public cloud, some listed tools can be re-used in the 

context of IaaS investigations. While trust in the well-known tools is presumed, this trust 

can still be challenged in courts of law, thus it is very important to come ready with 

defensible arguments about any and all tools used throughout the forensic acquisition.   
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 The highest score (ten points divided equally amongst all tools) is given if the tool 

used during the acquisition is either 1) compiled from known good source code and 

hash values that are tracked before and after execution; 2) the tool is certified with 

CFTT and has a valid and relevant report, and the hash values of executables are 

validated; 3) the tool is well-known to the forensic community with a verifiable 

vendor or maintainer and executable hash values. Some other tools not designed for 

forensic analysis such as web browsers, remote access scripts, graphical-user 

interfaces, command-line interfaces, and direct API callers that require 

authentication must be validated by proving authenticity of the connection and the 

access granted.  

 Five points (divided equally amongst all tools) can be achieved if a tool is trusted 

per the previous criterion, but the trust is not validated before executing the tool, or 

the authenticity of non-forensic tools was not captured and documented.  

 One point (divided equally amongst all tools) is given if the forensic examiner 

utilized tools that are not well-known and not trusted,  

7) Data is captured in operable format 

Digital evidence might be the deciding factor in a criminal case, but if it has not been 

stored and preserved in appropriate format it becomes unusable (Garfinkel, Malan, Dubec, 

Stevens, & Pham, 2006). In the context of IaaS forensics, one might think data formats are 

more of a concern when collecting disk and memory images, but appropriate storage and 

preservation matters for all relevant collected data. In public cloud forensics, the acquisition 

is logical, thus a lot of metadata is acquired alongside disk and memory images. Metadata 

is one of the most important aspects of acquiring data from the public cloud, as it contains 

most of the fingerprinting information that can be referenced at any stage during the 

investigation. All collected data must be operable, and disk images need to be complete and 

verifiable; the same applies for memory images, individual files, and screen captures. 

Without DF data in the right format, extracting quality and court-sound digital evidence is 

unmanageable.  

 The highest score is given if all collected files are stored in their respective operable 

formats, and they can be examined to the fullest. The stored files must be verifiable, 

complete, and electronically fingerprinted.  
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 The middle score is given to data that has been collected in uncommon formats that 

are still operable using uncommon or questionable tools and techniques. The data 

still needs to be verifiable in order to maintain integrity.  

 The least score is given if the data collected is not operable by any trusted means as 

well as not fingerprinted, and no hashes are calculated when the data was generated.  

8) Utilized a secure and immutable destination for captured data 

This criterion is a major differentiator between authentic and trusted forensic 

acquisition, and a doubted acquisition. Forensic data is fragile and unstable by design, and 

thus brings a lot of debate in federal or state courtrooms (Dykstra, 2013a). Being able to 

demonstrate that the acquired data has not been changed and could have not been changed 

since it was saved to the storage media is a vital winning argument during a trial. Evidence 

doubts from the defendant can range from questions about the sterilization of the storage 

media all the way to the appropriate use of write blockers to attain credible forensic data. 

The native architecture of cloud computing opens opportunities for digital forensics 

examiners to utilize the elasticity, modularity, and security functions of the cloud to attain 

a high level of evidence preservation until prosecution date.  

 The highest score is given if the forensic data is stored in sterile, secure, isolated, 

and immutable storage. While all these aspects are very important, immutability 

(single write, multiple reads) is the one that is emphasized as it can stand both the 

authenticity and integrity arguments in courtrooms. This can be thought of as having 

the originals stored securely, while copies can be made for investigation and 

analysis.  

 The second highest score can be awarded if the evidence is stored in a secure storage 

that is not isolated nor immutable, but the security of the storage can be verified, 

and the integrity of the files can be maintained. This can be argued in court and can 

be accepted as evidence, but it can also lead to evidence dismissal.  

 Storing forensic evidence and data in shared storage media that cannot validate the 

integrity of all files receives the lowest score possible.  

9) Validated the integrity of the captured forensic data 

This criterion has been touched upon within multiple criteria within the ALR. Having 

authentic evidence means the evidence was collected in a trustworthy way, persevered until 
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presentation with no alterations (NIST Cloud Computing Forensic Science Working Group, 

2014). The Advisory Committee behind FRE 902(14) describes the process of the “digital 

identification process” as the utilization of special software to compare the hash values of 

two documents. This process can render the document authentic in court. The committee 

also states that the new rule is flexible enough that it allows “certifications through 

process[es] other than comparison of hash value, including by other reliable means of 

identification provided by future technology” (Federal Rules of Evidence, 2017, p. 14). 

While this statement opens the door for other means of validation such as witness testimony, 

generating and authenticating and evidence with a hash value is the ultimate means of 

identification today.  

 Up to ten points is given if forensic data collected can be identified and validated 

using a hash algorithm that is approved by NIST, such as SHA-1, SHA-2, or SHA-

3.  

 The second highest score can be awarded if most of the data collected can be 

identified using a hash algorithm that is approved by NIST such as SHA-1, SHA-2, 

or SHA-3. Moreover, most evidence files must have correct hash values when 

compared during trial.  

 The lowest score is given if hash values are not calculated, or a non-approved hash 

functions is used, or the hashes are calculated but do not match evidence original 

hash values during trial.  

While there seems to be a lot of overlap between the various criteria proposed in the 

ALR, each criterion is centered on specific qualities of the captured forensic data that supports 

the admissibility claim of the presented evidence. Similarly, the proposed evaluation and 

validation scenarios, while they are fictional, describe deployments and cybercrimes that are 

ubiquitous today. The focus of executing the proposed methodology is two-fold: first is to 

perform the forensics acquisition using various existing and new tools and techniques following 

pre-defined steps defined, and second is to apply the ALR to evaluate the overall admissibility 

probability if evidence is to be presented in a U.S. court. Digital evidence can always be 

challenged in court, and so the disposition is to provide evidence that is systematically sound 

enough to be assumed highly authentic and comprehensively provocative to be disputed. 
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Research Contribution 

When compared to other prevalent research methodologies such as natural or social 

science, design science research tends to be more specific on the expected outcome and 

contribution of the research. According to Hevner et al. (2004), there are three possible 

outcomes expected from DSR grounded research, which are the “novelty, generality, and 

significance” of the designed artifact. Any given artifact of design science research must meet 

one or more of these three outcomes. Furthermore, the artifact should be developed to address 

a specific problem in a business environment not previously resolved; this can be done by 

expanding on an existing knowledge to resolve a problem or use existing knowledge in a new 

and innovative way to resolve a problem (Hevner, 2004).  

In this research, the artifact is a practical methodology to acquire court-admissible 

digital evidence from public cloud IaaS deployments. The three major requirements that makes 

this research significant and novel to the cybersecurity community are the following: 1) It helps 

enterprises and small business forensic teams in acquiring court-admissible forensics data from 

the major public cloud IaaS deployments; 2) No involvement of the cloud services providers 

throughout the DF process is required; and 3) The acquired data and evidence meets almost all 

U.S. governing rules and regulations related to digital evidence. The methodology builds on the 

existing knowledge base of digital forensics (models, methodologies, mechanisms, and tools) 

and extends the knowledge to include DF acquisition in public clouds IaaS environments, 

expands best practices for acquiring U.S. court-admissible digital evidence, and, as a byproduct 

of this methodology application, sheds light on the capabilities and limitations of the existing 

DF tools as well as the not-so-popular in the digital forensic community, the cloud-native 

Application Programmable Interfaces (API).  

Research Rigor 

Research rigor in design science “provides past knowledge to the research project to 

ensure its innovation” (Hevner, 2007, p. 90). Rigorous research is highly dependent on the 

researcher performing a deep and thorough literature review of the past knowledge base related 

to the researched topic, which helps to guarantee the research outcome is a design science 

research and not a routine design (Hevner, 2004). Furthermore, Hevner et al. (2004) argue that 
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the application of rigorous methods should be applied in both the construction of the artifact as 

well as the evaluation. In this research, rigor is addressed in both phases.  

Prior to the design of the artifact, the preceding research and knowledge base related to 

digital forensics methodologies, models, and technical procedures are thoroughly investigated, 

studied, and categorized. Then, the same is performed for cloud forensics in order to address 

challenges and proposed solutions presented by researchers as well as the cybersecurity 

community. During the construction of the artifact, the knowledge acquired from the past 

knowledge base is considered; in this case, this includes the various methodologies of how 

digital forensics is being conducted today and of how the digital data and digital evidence are 

being acquired.  

The proposed methodology inherits the existing digital forensics methodologies, best 

practices, and available tools of acquiring evidence from non-cloud-based environments. It is 

an improvement to the acquisition phases proposed by the following researchers, standards 

organizations, and governance organizations, to enable public cloud DF acquisition:  

- Scientific Working Group on Digital Evidence (SWGDE, 2018b) 

- Scientific Working Group on Digital Evidence (SWGDE, 2020) 

- Internet Engineering Task Force (RFC#3227) (Killalea & Brezinski, 2002) 

- NIST special publications (Kent et al., 2006) 

- U.S. Department of Justice special reports (NIJ, 2008) 

- An integrated conceptual digital forensic framework for cloud computing (Martini & 

Choo, 2012) 

- Digital Forensics Processing and Procedures (Watson & Jones, 2013) 

While there are a lot of publications deliberating and trying to address digital forensics 

from different perspectives, authors of the abovementioned publications propose 

recommendations and procedures to acquire forensically-sound data from electronic media 

while keeping the possible legal challenges in mind. According to the literature review, besides 

the recent SWGDE, 2020, there is no other work published that guides forensic examiners or 

incident responders on how to address acquisition in public cloud related cases. Adams (2013) 

too includes a small section discussing acquisition from cloud environments but does not go 

into the details of how the acquisition could take place taking into consideration the elastic 

nature of cloud computing resources. The authors of RFC#3227 (Killalea & Brezinski, 2002) 
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were able to create the most relevant process to perform a trusted forensic acquisition that the 

new methodology proposed in this research builds upon. The artifact in this research, IPCFA, 

expands on these methodologies to accommodate cloud computing cases, more specifically 

public cloud IaaS-related investigations. The new methodology proposed in this research takes 

into consideration possible limitations of performing forensic investigations in the realm of the 

public cloud today.  

The proposed methodology correspondingly stems from the knowledge base of digital 

forensics models, methodologies, and procedures. The evaluation consists of a scenario to be 

executed; the methodology is applied and the outcome captured, then validated against the 

metrics composed in specially-designed rubric that encompasses all best practices of DF 

acquisition as well as the U.S. Federal Rules of Evidence (Federal Rules of Evidence, 2017). 

Included are the extra metrics, guidelines, and recommendations produced and validated while 

experimenting with public cloud acquisition throughout this research process.  

Design as a Search 

Design science is naturally iterative, and iterations of search are inevitable to solving 

problems in information systems. Solving a problem following DSR requires utilizing all 

available resources (means) to construct the desirable solution following the presented 

constraints (ends), while navigating the uncertainty in the environment (laws). As means, ends, 

and laws are refined and made more realistic, the design artifact becomes more relevant and 

valuable (Hevner, 2004).  

The proposed methodology, IPCFA, is motivated by performing digital forensic 

acquisition in the public cloud, and more specifically in two of the major public clouds available 

today, Amazon’s AWS, and Microsoft’s Azure. Yet, it can represent neither all possible CSPs 

nor all possible incidents that could occur in the realm of public cloud. The intent of this 

research is to address incidents related to their IaaS compute engines where forensic data can 

fundamentally reside on the host, memory, attached disk images, CSP logs, and other security 

logs. The methodology is generic by design to apply to as many existing CSPs as possible and 

to allow for future adoption and alterations to fit various other use cases. The same limitation 

applies to the deployment models of the public cloud, as this research only attempts to solve 

digital forensics challenges related to Infrastructure-as-a-service deployment. The proposed 



54 

 

solution is modular and consists of numerous phases to allow for future research extensibility, 

modification for adoption, and unit testing.  

The research question has been formalized after performing significant literature review 

and technical experiments related to cloud forensics. The design starts by performing a search 

on the relevant knowledge base to determine all accessible resources (means) that can be 

utilized to facilitate solving the presented research problem. The global footprint of public 

clouds is looked at, more specifically their presence and adoption in the US, and their published 

work is analyzed to understand what they offer in terms of digital forensics capabilities, 

subpoena request abilities, and their openness and cooperation with law enforcements. All the 

encountered DF federal and international rules, models, methodologies, theoretical 

publications, commercial and open-source tools, and techniques are considered part of the 

resources that the research builds upon to develop the methodology. This phase of the search 

helps determine the initial direction for which the search efforts is focused to solve the problem.  

After all the means have been determined and categorized, the next step is to search 

constraints, limitations, and effectiveness of the possible solutions proposed by the digital 

forensics research community in the literature (ends) that might help solve the same problem 

presented in this research. The final goal is to solve the problem, navigate the existing 

limitations, and come up with a working solution that satisfies the constraints. The constraints 

examined are related to the Cloud Services Providers’ terms of service related to subpoena, the 

data exposed via API calls, and various data sources and granularity levels provided by the CSP 

for customers. The other major set of constraints that limit this research design is the U.S. 

Federal Rules of Evidence, as well as privacy rules that govern personal identification 

information exposure. On the technical side, the limitations are to perform the acquisition 

without involving the CSP, to avoid changing the forensic data by the invoked forensic 

acquisition tool or technique, and to ensure the data collected gets transmitted securely to the 

destination, the forensic examination workstation.  

While the U.S. federal and civil rules governing the admission of digital evidence in 

courts appear straightforward, in actuality they are not; and all aspects of the digital forensics 

case can be challenged during a litigation (laws). All produced evidence can be argued not 

trustworthy, and the mechanism for acquiring evidence can be tested with assessments such as 

the Daubert standard. The natural workflow of trials and their uncertainties bring challenges 
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when attempting to solve problems related to digital forensics in the cloud. In this research, the 

final solution must stand up against the Daubert test, and the produced evidence is designed to 

become self-authenticated to an extent in order to attain trustworthiness of U.S. court systems.  

Communication of Research 

As with other information systems related artifacts, the technical solution is just a part 

of the big picture, and understanding the surrounding issues related to processes, standards, 

governance, and other relevant laws and regulations is key to the successful implementation 

and practicing of the matured artifact. The technical specifics of the proposed solution are 

detailed and broken down into various phases to ease its implementation and facilitate easier 

adoption. While this research is heavily focused on constructing the practical methodology 

itself, the big picture of the problem and the existing challenges related to performing successful 

digital forensics in the public cloud are explained with reference to the new methodology.  

The evaluated and generated DF processes, skillset, recommendations, and other 

required knowledge are highlighted and focused on in order for organizational leadership teams 

to determine how and why they can adopt the newly developed artifact, and how it differs from 

the existing solutions.  The research and associated artifact will be published and made available 

via the Dakota State University Beadle Scholar system. This initial publication will make the 

research available to all 550+ Institutions that use the Digital Commons Network. The intent 

for this research is to make it available on as much as possible of the online digital libraries to 

be available in the global knowledge base of digital forensics.  
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CHAPTER FOUR 

IPCFA - IAAS PUBLIC CLOUD FORENSIC ACQUISITION 

The technical details and internal deployments of the various public clouds might differ, 

but they all still share the same high-level characteristics, and almost all offer IaaS. In IaaS, the 

owner can customize and start up virtual machines (computing instances) and containers 

(computing pods), install the desired applications, harden as needed, permit the necessary 

communication flows for inbound and outbound access, and manage the lifecycle of the created 

instances. The proposed acquisition methodology assumes there is a need to acquire as much 

forensic data as possible to extract court-sound evidence that supports the litigation claim. The 

investigation involves one or multiple compromised virtual server(s) that is part of an IaaS 

environment. The investigation could be led by the owner or a delegate of the affected platform 

incident response team, while keeping in mind that litigation is always an option. The core 

concepts that make up the guidelines for the proposed methodology (IPCFA) are depicted in 

Table 8. 

Table 8 - High-Level Guidelines for IaaS Cloud Evidence Acquisition 

Principle Description 

1) Digital seizure When possible, preserve evidence source, and isolate the 

server to a secure location where the only permitted 

access is from the forensic examiner workstation; in order 

to minimize additional changes and lessen the impact on 

the investigated server, the server must be isolated to a 

secure location.  

2) Iterative collection Expect cycles of collection because case-relevant data 

may be located in many places in the cloud environment. 

While the collected data may be analyzed on the forensic 

server, additional data might be required to construct a 

timeline or uncover a relevant event.  
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3) Secure data transfer  If data transfer is required, transfer the data using the 

appropriate transfer mode for the file type (binary/ASCII). 

This makes sure the data is transferred bit by bit without 

losing information. The file transfer should be encrypted 

or local between the forensic workstation and the 

examined server/destination storage.  

4) Audited Acquisition Capture all commands (log/output) throughout the process 

of the acquisition on the forensic workstation. These logs 

are provided alongside the collected evidence as proof of 

the acquisition process followed for documentation 

purposes. This step is crucial to assure the integrity of the 

process.  

5) Trusted forensic tools Use tools compiled from the source prior to being used, 

capturing the calculated executable hashes via the 

continuous auditing mechanism, or tools that are well 

known and trusted within the community (preferably 

certified under NIST CFTT) or natively provided by the 

provider authenticated interface. The authenticity of the 

tools used must be validated and captured via a 

continuous integrity mechanism.   

6) Data and evidence 

integrity 

Calculate the generated output files hashes after the 

execution of every one of the required tools on the 

compromised server. The hash value must be captured and 

referenced via a continuous auditing mechanism. 

7) Data and evidence validity Check all collected evidence with analysis tools to 

validate the hash value, the completeness of the acquired 

data, and the possibility of gathering the needed 

information from the collected data. This is important 

because collected data can be corrupted, inoperable, or 

irrelevant to the ongoing investigation (for the purpose for 

which it was generated).  
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8) After-the-fact integrity 

checks 

Once files have been transferred to the forensic server, 

check the hashes for all collected files against the original 

values. If confirmed, then forensic examiner can carry on 

the forensic analysis. 

9)  Immutable storage Save all artifacts generated from the acquisition process 

directly on a write-once read-many storage. This 

requirement helps ensure the integrity of all artifacts and 

evidentiary data throughout the forensic lifecycle.  

10) Near-event forensic 

examination and analysis 

Store evidence near where the data was collected, and 

perform as much as possible of the forensic examination 

in an isolated network on the investigated public cloud. 

Since the incident occurred in the public cloud and data 

acquisition took place in the public cloud, it makes sense 

to isolate the evidence in order to avoid mishandling of 

the evidence. This measure also helps greatly to reduce 

the amount of data that must traverse the network between 

the customer network and the cloud services provider 

network. This requisition helps reduce the chain of 

custody.  

 

The proposed methodology, IPCFA, has three major phases: initiation, execution, and 

closure. Each phase is composed of multiple processes to be executed. Each phase supports one 

or more of the guidelines in Table 8, indicating how this phase can be executed to help generate 

forensically sound evidence. Some of the proposed phases might be labeled as optional or 

iterative, and they should be determined as required or discretionary during the preparation 

phase of the forensic process. Iterative means this step can be re-executed in the future to collect 

more relevant data, as the investigation progresses. The order of execution of these phases is 

highly dependent on the type of incident, the purpose of the investigation, and the cloud 

provider-enabled capabilities. The specifics of each phase are listed in detail as follows: 
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1. Initiation phase 

1.1. Stand up a forensic server 

Why? A trusted forensic server contributes to the authenticity claim of the generated 

data by making sure the forensic workstation is built from a trusted and pre-built image 

with all required tools pre-installed. This step also involves setting up security policies, 

forensic accounts, isolated networks, and relevant storage. This removes any distrust 

related to where the collected forensic data are being sent and saved for analysis. 

How? Collecting data directly and securely saving the data to the forensic workstation 

with immutable storage can add further credibility to the acquired data’s integrity and 

confidentiality. The forensic workstation needs to be instantiated from a pre-configured 

and hardened cloud image in an isolated network with separate security policies and 

rules. Appropriate access needs to be given to allow only the forensic examiner’s remote 

machine to connect to the specific required ports to operate on the workstation. The 

whole process of setting up the forensic workstation and enabling the required restricted 

communications can be scripted and automated to be executed seamlessly when needed. 

In some instances, the cloud platform might offer cross-account storage and volume 

mounting; in such cases, it is recommended to initiate the forensic workstation in a 

dedicated account to avoid inquiries about the overall security of the account running 

the compromised instance. 

1.2. Enable continuous integrity monitors 

Why? Enabling continuous integrity monitors supports the authenticity claim of the 

evidence by ensuring the complete transparency of the acquisition process as a whole, 

including the collected data and the forensic examiner actions and interactions with the 

various tools. It also plays a vital role in ensuring unquestioned chain of custody.  

How? This phase sets the stage for the whole process, so it must be executed properly. 

As one of the major sub-phases in this methodology, it has direct impact on the 

authenticity, thus the admissibility, of the acquired data. When the preparation phase 

of the chosen digital forensics model is complete (that is, the forensic examiner is 

identified and furnished with an appropriate and secure workstation, the forensic data 

sources have been identified, required documentation has been approved and prepared, 

the preferred tools to perform this acquisition have been chosen, and the forensic 
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examiner is ready to collect and acquire data), then this phase of the methodology 

begins. 

It is not a default behavior for all public cloud components to generate and keep 

logs, thus giving the consumer various options to which logs to collect and how and 

where to store them. As logging in the public cloud is shared responsibility, it is 

important to make sure to enable logging if not already enabled on the Cloud Console 

or management plane and cloud audit/action logs before engaging in the acquisition 

process. While there are many measures that can be taken to maintain the integrity of 

evidence, enabling audit logs on the forensic workstation or server is one of the easiest 

to implement and present in courtrooms.  

No matter which tools the examiner decides to use—browser, command-line, 

or proprietary tool—all supplied commands and interactions must be captured and 

recorded properly. Audit logs capture all actions taken by the examiner during the 

examination timespan (commands entered, clicks, processes executed, exit codes, and 

more). In an audit log, each log line is timestamped to the second using the local time 

zone of the examiner’s computer. This helps jurors and judges reference specific log 

entry during the trial. By having audit logs enabled on the cloud and in the forensic 

workstation with timestamps, fewer doubts can arise about any generated or auto-

generated piece of information or data during the process.  

A secondary measure that can significantly support the evidence to withstand 

scrutiny in courtrooms is to properly take clear screenshots of critical outputs and 

artifacts. The screenshot must show the generated artifacts, the timestamp, as well as 

any calculated hashes. These screenshots later can be referenced later in courtrooms 

and tied together with audit logs to enhance the integrity and validity of the acquisition 

process.  

1.3. Authenticate the forensic tools 

Why? Authenticating the forensic tools contributes to the authenticity claim of the 

generated data by ensuring the integrity of the forensic acquisition tool used throughout 

the process. Using authentic cloud-native tools to generate the forensic evidence helps 

validate the authenticity of the evidence without the need for expert witness in 

courtrooms. 
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How? Many commercial and open-source digital forensic tools can be used for the 

collection and acquisition phases of the investigation. Trust in these tools is based on 

common-use or community feedback, and the collected data have always been thought 

of as trustworthy. This leaves an open area for the defendant to question the authenticity 

and accuracy of the tool used. This setup in the methodology establishes trust in the 

forensic tool and removes possible ambiguities related to the integrity of the tool. To 

achieve full trust in a tool, there are two possible procedures to be followed. If scripts 

are to be used, the first option is applicable: the source code is analyzed to determine 

the security of the source code, and then it can be compiled, and hashes calculated for 

the generated executables. If a community-approved or a commercial tool is used, 

where the source code is not available to download, the second procedure applies: the 

tool should be downloaded from a trusted provider repository and paired with a 

calculated hash provided by the vendor/developer/maintainer of the tool. Once the tool 

has been installed or unarchived, the hash of the binaries should be compared to ensure 

that it is a match with the one provided by the vendor, proving the authenticity and 

integrity of the tool.  

If one of the above-mentioned procedures has been followed, the tool can be 

formally used in the forensic investigation with less doubt about its integrity and the 

integrity of the generated data. For some non-traditional and newer tools, such as the 

public cloud management consoles, these procedures might not be applicable. Most of 

the CSPs furnish their customers with at least four possible means to access and operate 

their cloud environment: a browser-based console, a command-line console, a list of 

exposed APIs, and finally a software development kit console (SDK). In the case of a 

browser-based console, the authenticated account used as well as the digital certificate 

of the website should be validated and captured before executing the forensic 

acquisition. In the case of a command-line console, the access keys used to authenticate 

to the CSP should be validated and compared against the ones recorded on the browser-

based console.  Access keys should also be validated when interacting with the CSP 

via direct API calls or through an SDK. Following such validation schemes can help 

remove concerns about the integrity of tool and its generated data, suppressing possible 

further scrutiny in court. 
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1.4. Capture the architecture and metadata 

Why? Capturing the architecture and metadata contributes to the authenticity claim of 

the generated evidence by ensuring the validity and consistency of data sources and that 

the investigated digital asset matches the identified data sources during the preparation 

phase of the forensic investigation.  

How? The amount of consumer independence and the level of automation differentiate 

the cloud computing environment from traditional computing farms. Most of today’s 

cloud deployment follow a process called DevOps, where developers and operators 

come together to streamline product development and delivery. DevOps involves setting 

up a cloud environment with multiple automated tasks that can start from creating the 

virtual machine all the way to decommissioning it. This process and others can occur 

without any human intervention. There are also processes in the middle that perform 

many tasks on the virtual machines or virtual networks to adapt to changes or workloads. 

Crucial to the success of the investigation is that the customer cloud architecture is 

captured and analyzed. This sometimes requires reading documentation and talking to 

DevOps team members and cloud architects to understand the full scope and possible 

impact of the investigation; it helps greatly to setup appropriate OOV. 

Metadata about a VM hosted in a cloud environment provides data about the 

virtual machine or resource that uniquely identifies it. Documenting the investigated 

instance VM metadata, such as region, hosted zone, hostname, IP address, MAC 

address, instance ID, launch date, signature, associated security policies, auto-scale 

groups, access groups, routing groups, and any other connected attributes is vital before 

starting forensic engagement. Another important factor to be documented is the time 

difference between the systems and the forensic server (time-drift). These 

characteristics help determine how to execute the next phases of the methodology as 

well as confirm the identity of the target. Without capturing metadata, determining 

appropriate order of volatility to prepare for a successful acquisition is not possible. 

Metadata need to be captured via a screen capture tool (or the continuous integrity 

process) and saved as an image or acquired via the cloud API, in a location where the 

image can be viewed at its final destination. The saved metadata file should have its 
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hash calculated and saved. The same information needs to be documented in the 

investigation track book or the case document, including the calculated hash. 

1.5. Define order of volatility (OOV) 

Why? Referencing the metadata and all possible data sources determined during the 

preparation phase, order of volatility should be defined to optimize the collection and 

acquisition of relevant evidence. This helps ensure the completeness and correctness of 

the acquired evidence.  

How? Determining the appropriate sequence for interacting with volatile data is crucial 

to supporting a digital forensic case. Since the focus in this research and the target for 

this methodology is IaaS environments, which are mainly constituted of compute, 

storage, and network resources, following OOV as defined in the Internet Engineering 

Task Force RFC 3227 would suffice the initial volatility imperative for a Windows- or 

Linux-based server. In the public cloud context, a secondary volatility order that needs 

to be taken into consideration is the logging retention defined by SLA or in agreement 

with the cloud provider architecture.  Logs and possible data sources with shorter 

retention periods or log rotations (such as network traffic) need to be captured before 

logs with longer retention and rotation timespans (such as console and account audit 

logs). This part of the volatility order differs per the organization’s contract with the 

CSP, and the default data retention values vary between CSPs. Thus, the order of 

operations for the next phase of the methodology is affected by the outcome of this sub-

phase of the methodology.  

2. Execution phase 

2.1. Volatile data acquisition (Optional, iterative)  

Why? Volatile data acquisition contributes to the operability and completeness of the 

acquired data and supports the generation of the foreseen evidence to defend the 

claimed contentions. Though acquiring ephemeral data might not be required for the 

investigated case, this is completely dependent on the preparations phase and the 

volatility order defined in the previous phases. Thus, if offline investigation is required 

or preferred, all volatile data are lost and there are no other means to recover them as 

related to this instance. 
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How? The prior defined OOV should be followed. By design, all computer programs 

are loaded to the RAM or physical memory-like structure before being passed on to the 

CPU (or cache registers beforehand) to be processed. A complete image of the physical 

memory should be taken, which includes information not limited to the current running 

processes but also including any allocations of memory spaces, network and 

communications statistics, passwords, cryptographic keys, unencrypted data, and also 

some hidden data. While it can be argued that performing this memory acquisition 

might have negligible impact on the investigated server, it is strongly recommended 

that this acquisition occur remotely without logging onto the investigated virtual 

machine to avoid state changes and possible objections during trials. Further, it is 

recommended that the acquisition is performed from the cloud-native API call or 

command-line tools; if that is not possible, then it can occur by utilizing pre-installed 

forensic remote acquisition agents or tools. If neither option is available, then it can be 

accomplished from within the investigated machine while documenting all system 

changes during the course of the acquisition process. The collected image must be 

transferred directly to the forensic workstation immutable storage, with hashes 

calculated and captured via the continuous integrity mechanism.  

2.2. Digital Seizure (Optional, iterative) 

Why? As in a traditional forensic investigation, seizing the actual evidence is a very 

important step of the process. While actual seizure of the digital device or data sources 

is not possible in the public cloud, it is possible to isolate the investigated instance into 

a dedicated, separate, and secure network while following the pre-defined OOV. This 

limits the potential harm from propagating into the network, helps remove any 

maintained or undetected unauthorized access, and assists in maintaining the machine 

state during the various acquisition phases. In some instances, cloud providers furnish 

customers with some ephemeral storage options to be attached to their compute 

instances instead of the regular block and persistent storage; in such cases if the VM 

gets shutdown or terminated, all associated data is lost, not only the commonly known 

volatile information. This makes digital seizure and live acquisition the only options 

for constructing an appropriate case. Console access should be granted specifically to 

the forensic workstation. This sub-phase contributes directly to the preservation phase 
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of the digital forensic model, as well as to ensuring the integrity of the data source and 

the trustworthiness of the acquired data. This sub-phase plays a vital role in the incident 

response effort of an organization.  

How? One of the major selling points of cloud computing—and especially public 

clouds—has been always the elasticity (hitless scalability and dynamic high availability 

operations) of resources. In IaaS deployment, virtual machines or any other type of 

compute resources hosted in the public cloud are part of scaling groups that provide 

greater accessibility and workload adaptability. They can also be set up behind traffic 

load balancers to allow for high availability and load distribution. In such scenarios, if 

an instance is compromised or being investigated, then the auto-scaling function can 

change the instance metadata and sometimes the internal configuration parameters. If 

the investigated VM/server falls under this scenario, it should be removed from scaling 

groups before commencing the actual acquisition. If the examined instance is behind 

load balancers, it should also be removed from the load balancing group to deny the 

active network traffic from reaching the server. Instance metadata should be checked 

before and after the removal from these groups to reconfirm the investigated instance 

identity. 

2.3. Non-volatile data acquisition (Iterative) 

Why? Non-volatile data acquisition contributes to the operability and completeness of 

the acquired data and supports the generation of the foreseen evidence to defend the 

claimed contentions. The disk image is an exact (bit-by-bit image) of the server or 

instance storage that contains all persistent data saved on the disk. Though live forensic 

investigations can take place and some relevant or volatile information can be extracted, 

the disk image might still be needed as a reference at a later stage in the process or might 

need to be examined further to acquire more relevant data or evidence supporting data. 

How? Most of the investigations involving a workstation and servers require a full disk 

image to be investigated by a forensic examiner or to be sent to be processed by 

specialized software for analysis. As referenced in the literature, the common 

methodology of acquiring disk images is by seizing the disk, attaching write-blockers 

to the disk drives, and attempting to perform a bit-by-bit copy of the disk. In a public 

cloud environment, a partially similar approach might be possible, by taking a snapshot 
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of the running instance-associated disk volumes and sending them directly to the 

forensic workstation. This process can be executed and automated via the cloud-native 

API calls and CLI or GUI interfaces. While the generated disk duplicates might not be 

in raw format, they can be mounted with read-only permission in an isolated 

environment, and then, if required, raw format images can be produced using the 

traditional imaging techniques and tools. The complete acquisition process must be 

captured via continuous integrity processes. Metadata about the snapshot as well as the 

produced raw image files (if any) must be captured and saved immediately following 

the completion of collection process, and hashes are calculated for the metadata 

captures. 

2.4. Collect supporting artifacts (Iterative) 

Why? Collecting supporting artifacts contributes to the operability and completeness 

of the acquired data and supports the claimed arguments and the produced evidence. 

Cloud-generated audit logs or events related to network traffic flows, security tools, or 

any underlying infrastructure logs are invaluable to the success of digital forensic 

investigations. Especially with audit logs, the key is to answer special questions such 

as who did what, where, and when. Other important data to collect is DevOp tools and 

gadgets that service the suspected cloud instance. 

How? Though sometimes collecting RAM and disk images can be enough to identify 

the thumbprints and fill the gaps in a cybercriminal case involving IaaS deployments, 

collecting supporting information to complete the picture of how the attack happened 

is also worthwhile. In IaaS, other components in addition to the compromised server 

itself can often generate valuable logs. Audit logs and event logs from load balancers, 

security managers, antivirus software, web application firewalls, web proxies, network 

firewalls, cloud account management consoles, and other related logging facilities 

should be collected and downloaded to the forensic workstation. The logs to be 

collected can be defined during the preparation phase of the forensic investigation, 

when data sources are identified. It is important to plan on collecting relevant logs after 

checking the SLA document.  

The period of retaining logs and events can be from one week to two years, 

depending on the contract signed by the CSP and the customer. A copy of the logs 
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should be downloaded directly in the forensic instance, dating back as far as deemed 

necessary for the investigated case. Saving the logs in raw text format, if possible, is 

recommended; sometimes the CSP allows the logs to be downloaded directly from the 

cloud instance management interface or the command-line interface.  

Some of the main reasons’ businesses are moving to the cloud is to utilize 

DevOps mechanisms to automate workloads and ease deployments of their software 

products. Thus, during forensic investigations it is very important for examiners to take 

a quick look at the mechanisms, code, and gadgets being utilized to make sure there is 

nothing hidden there. Almost all of the actions that can be done via the cloud console 

can also be done in a more efficient faction from the cloud native DevOps tools as well 

as in various integrations with the open-source DevOp tools. Data related to DevOps 

should be captured by downloading involved code or taking screenshots of the cloud 

console of the automation dashboards. This data acquisition process must be captured 

via the continuous integrity mechanism; hashes for all of the downloaded or created 

files must be calculated, and the byte size and last modified timestamp of each file must 

be noted. 

3. Closure phase 

3.1. Complete the continuous integrity process 

Why? Completing the process for continuous integrity contributes to the overall 

integrity of the collected data as well as the forensic methodology followed. This step 

helps ensure that a very short and limited chain of custody is produced, as all 

information and supporting documents reside on the same immutable storage.  

How? At this point in the investigation, the actual acquisition and collection of data is 

completed and documented. Hash values should be computed for all of the generated 

and produced log files and screenshots. These files and hash values should be stored 

directly on the forensic workstation.  

3.2. Validate the collected data  

Why? Validating the collected data contributes to the operability and completeness of 

the collected data. The data have been collected and saved on the forensic workstation. 

The last step in the methodology is validating that the data have been captured properly 
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and are readable by the various digital forensic tools. The acquisition is now complete 

and is passed along to the forensic examiners to continue the analysis.  

How? The necessary data have been collected according to a prepared list of data 

sources; this includes, but is not limited to, physical memory image, disk image, and 

cloud account and underlay logs. All logs and screenshots should be checked for 

readability and accuracy. All log files should be opened in a text editor to validate the 

readability of the files’ contents. The collected artifacts such as disk, memory, cloud 

logs, systems logs, and account access logs should be loaded into the selected forensic 

examination tool to validate the content and operability of the data files. 

As it is crucial to understand the various environments that are used to execute the 

methodology, Figure 7 is a swimlane flowchart depicting the various environments that can act 

as a reference for forensic acquisition processes. The first environment is the forensic examiner 

workstation, where all initial tasks take place, and it is used to connect to the cloud portal. The 

second environment that should be ready is the security environment. The security environment 

is in a separate cloud network or account, with limited and controlled access for the forensic 

and incident response team only. This account is used to host the forensic server and the 

connected immutable storage. The third environment is labeled as a production, and this one 

refers to the network segment or account where the incident took place, or where the suspected 

virtual machine resides. Depending on how the methodology is being adopted, and the required 

evidence, a fourth environment might be required, which is the quarantine or the logical seizer 

environment. This environment can be used to isolate the suspected instance if necessary.  
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Figure 7 - IPCFA Proposed Flowchart 

Assumptions 

IPCFA was designed with today’s rules and regulations in mind and applied to the 

existing leading public cloud providers to demonstrate its efficacy. This makes it subject to 

changes related to both public cloud computing ecosystems and relevant U.S. federal rules and 

regulations that govern digital evidence. Examination of the history of federal rules of evidence, 
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federal rules of civil procedures, and the Daubert standard shows that continuous amendments 

and improvements occur. In the past three decades, these changes have transpired for numerous 

reasons such as gaps found in rules, inconsistency observed between rules, and overall 

enhancements and amendments due to new use cases or relevant legislations. While there are 

many amendments for every rule of federal or civil procedure, which is normal, not all changes 

are equally impactful. For example, FRE 902 was amended eight times between 1987 and 2017, 

but only two amendments are considered impactful improvements (Rule 902, 2011).  

Yet over a similar timeframe, major changes to the computing world have taken place. 

In 1990 the WWW was invented, seven years later cloud computing was defined, and in 1999 

Salesforce offered the first form cloud services (SaaS). In 2006 AWS was launched as the first 

public cloud provider to revolutionize the traditional datacenter and server hosting paradigm 

and offer IaaS, initially. So, this clearly shows the advancement in technology that can take 

place within a short time. Furthermore, the pattern of improvement and amendment to 

technology is likely to continue. Thus, it is probable that legal changes will be necessary in the 

future. Such changes can affect the applicability of IPCFA as described in this research. Table 

nine captures regulatory and technical assumptions that are critical to the successful application 

of IPCFA.  

Table 9 - IPCFA Future Application Assumptions 

Assumption Category 

Federal Rules of Evidence are the relevant regulations for 

evidence admissibility in U.S. courts 

Regulatory 

FRE 902(13) and 902(14) are active, and the definition of self-

authentic evidence is unchanged 

Regulatory 

Daubert standard is the relevant expert witness challenge, and its 

content is unchanged 

Regulatory 

Public CSPs offer APIs to operate (create/update/delete) the 

hosted IaaS recourses such as compute, storage, network, and 

other core services elements 

Technological 

Public CSPs offer APIs to execute remote commands on the 

hosted IaaS components 

Technological 
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Public CSPs offer APIs to collect logs and metrics about the 

hosted IaaS components 

Technological 

Public CSPs offer multiple storage access granularity levels (read, 

write, write-once-read-many, write-append) 

Technological 

Public CSPs offer different types of storage to accommodate the 

various use cases (binary data, OS data, file shares, archive data) 

Technological 

Recommendations 

Each IaaS deployment might have a different set of corporate or compliance body 

policies governing all aspects of security and incident response. They may differ on such items 

as how the instantiated systems must be hardened, what security tools must be installed, and 

what logging and auditing processes and configurations need to be enabled and applied. 

Establishing a strong hardening baseline that helps enable forensic capabilities for each instance 

before being approved to go into production is imperative. Furthermore, and before engaging 

with the CSP, it is vital that the contract states the appropriate Service Level Agreement (SLA) 

terms that permit the customer to investigate cybersecurity incidents on their deployed 

platforms and promote cloud forensic readiness. Below is a list of recommendations and 

preconditions that, if met, can conceivably contribute to yielding a high level of trustworthiness 

in executing the proposed methodology. The list has been constructed from many resources 

based on experienced researchers and skilled practitioners, as well as the researcher’s 

understanding and experience performing forensics in the public cloud throughout the tenure 

of this dissertation (Building a Cloud-Specific Incident Response Plan, 2017; SWGDE Best 

Practices for Digital Evidence Collection, 2018; Gonzales et al., 2007a, 2007b; Grobler & von 

Solmes, 2009; Kent et al., 2006; Killalea & Brezinski, 2002; Orr & White, 2018; Simou et al., 

2016; Stone, 2015; SWGDE, 2014, 2018; Watson & Jones, 2013). 

Table 10 - Recommendations for Cloud Forensic-Enablement 

Cloud Forensics Recommendation Technology Policy SLA 

Have a well-documented digital forensic process. This 

can be part of the incident response policy and 

procedures, but it needs to cover the complete the 
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forensic investigation/evidence lifecycle. The required 

training and expertise of the forensic examiners should 

also be covered under the same policy. 

Establish logging requirements for cloud platforms 

(compute/server, network, or storage) and set the 

severity level, timestamp format, and retention and 

rotation periods. Define where else logs should be sent 

(event correlation tools—SIEM). 

   

Pre-define set of corporate-approved tools to be 

installed as part of any instance deployment in the 

cloud platform, which includes forensic-enablement 

tools. 

   

Build a forensic playbook that describes procedures to 

be followed as part of the corporate incident response 

procedures and policies. 

   

Enable logging and auditing in the cloud environment 

(all pipelines, compute, network, and storage 

instances) by corporate policy. 

   

Enable consistent time synchronization among all 

systems within the private cloud zone or region.    

Establish training requirements for staff members 

handing security incident response and digital 

forensics. Make sure staff has active and valid 

certificates pertaining to their specialty.  

   

Ready forensic server image (forensic acquisition and 

analysis tools, cloud API command-line tools) and 

version it for all deployed CSPs. This includes 

processes on how the IR team obtains the required 

access to be able to carry all of their required 

investigations’ tasks.  
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Acquire and document from the chosen CSP a clear 

process guiding how law enforcement agencies can 

approach the CSP for information requests. 

   

Ensure that the SLA clearly defines the timeframes 

and mechanisms for the CSP to notify consumers 

about data breaches or security incidents to the 

consumer platform or the cloud underlay 

infrastructure. 

   

Define with the CSP which logs from the underlay 

infrastructure can be exposed during forensics 

examinations, if requested, what the request process 

will be, and how long the log retention periods. 

   

Describe the types of logs to be maintained regarding 

the deployed IaaS cloud and the retention periods for 

each type of log. Specify recoverability after deletion 

options for each type of log. 

   

Define ownership of the data residing in the corporate 

cloud instances and any derivatives of it.    
Define data storing location(s) by agreeing with the 

CSP on the corporate authority to decide where all the 

data is stored for the deployed environment (country, 

state, and jurisdiction). 

   

Clarify the process of retrieving encryption keys from 

the CSP (if required or lost) and capture any 

limitations to data decryption. 

   

Define data-volatility recovery options (elastic auto-

scaling groups and resources). What type of data can 

be recovered for each type of the ephemeral resources, 

and what are the associated time constraints? 
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CHAPTER FIVE 

DEMONSTRATION 

To demonstrate and validate the proposed methodology, two use cases were crafted. 

The use cases cover common aspects of highly probable cybercriminal activity that could 

involve the public cloud. The first scenario (Case #1) assumes a public cloud deployment that 

was deliberately compromised (that is, a criminal act takes place in the public cloud), and in 

the second scenario (Case #2) the public cloud deployment is used as a means to compromise 

other non-cloud-based components (in other words, the criminal act takes place outside the 

public cloud). Both cases assume investigation conducted with probable litigation, thus; U.S. 

courts evidence admissibility requirements are kept in mind. In these scenarios it was assumed 

the victims would want to perform their own investigation and forensic exanimation, utilizing 

their in-house resources or hiring external forensic investigators to validate their claims before 

reaching out to law enforcement. The collected data are expected to meet the following 

investigative goals:  

- Determine the chronology of the attack. 

- Identify the source and scope of the impact of malicious activity. 

- Uncover the origin of the attack and tying it back to possible intruder, if any. 

- Enable the client to prosecute the attacker(s) in courts of law. 

The forensic examiner (the researcher) has thirteen years of experience in the field of 

information technology and cybersecurity (M.Sc, CISSP) and network and operating systems 

(CCNP, CCDP). Experienced with cloud computing, the examiner has three years of technical 

hands-on performing digital forensic acquisition in the various major public clouds. All 

qualifications are documented and provided, including diplomas, employment letters of duties, 

and professional certifications. The examiner is familiar about the international, federal, and 

state rules and regulations of digital evidence. The same examiner (the researcher) performs 

acquisition in all presented scenarios. 
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Hypothetical application of SWGDE 2020 – AWS use case 

The forensic examiner prepares for acquisition by obtaining all information related to 

the incident, possible data sources, deployed IaaS architecture, cloud account information, and 

possible timeline of the attack. The input to the forensic examiner is the story from the case 

described in Chapter Three, the architecture of the platform and how it works, the key personnel 

who manage the environment, and any other relevant information such as which security or 

best practices are implemented. The examiner documents all the information in their 

workstation. They create a folder named “Case001 - Dakwa LLC.” The examiner creates an 

Excel file (logbook) or relies on another case management tool with all possible evidence 

resources that might be vital to be acquired and presented for analysis. As this is a sub-phase of 

the whole forensic processes; this logbook can be a part of a larger logbook documenting the 

whole process. At this stage all steps are to be followed on SWGDE (2020) while relying on 

the focus group examiner’s knowledge and expertise. The following steps resample the 

combined steps proposed by the focus group examiners walk-thru of the Dakwa LCC 

acquisition:  

1. Steps to Take Prior to acquisition 

This phase of recommended process corresponds to the preparation phase of the 

many available DF models. Based on the case information, the examiner needs to 

authenticate to the AWS environment where the incident is suspected. The examiner has to 

confirm the architecture and metadata provided by the team and check scaling groups, load 

balancers, networks, databases type and setup, policies, and make sure permissions are in 

place. Based on this review, the examiner can then determine the best path for acquisition 

and the type of data to be collected, as well as how it can be used to extract evidence to 

support the claim. The examiner can determine whether it will be required to have some 

volatile data and disk images of the suspected VMs (snapshots or raw disks), access logs, 

database audit logs, database transactions’ logs, and events logs from the account console. 

AWS logging facilities to be collected by the examiner include CloudTrail, CloudWatch 

Logs, RDS (Relational Database Services) Logs, GuardDuty, and Security Hub logs. It is 

important to document all collected screenshots, accesses, and data sources touched in a 

logbook.  
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Based on the above information, the examiner can decide on the best acquisition 

mechanism, and in this case, it is a combination of cloud native data export tools (cloning 

or snapshots) and other well-known DF tools (open source or commercial). The examiner 

must be very familiar with the AWS architecture and available tools and integrations. The 

destination media must be prepared according to best practices. The examiner could decide 

to have a local media or a remote media on the cloud itself (AWS S3 bucket) with read-

only capabilities and good size to be able to fit all possible data to be collected. Some of the 

tools the examiner can prepare in this phase include but are not limited to EnCase 

Enterprise, AWS_IR (Incident Response), AWS_CLI, AWS Browser Console, and 

Margarita Shotgun.    

The acquisition location in this case is virtual, and acquisition can be performed 

from a trusted and secure environment such as the examiner’s workstation with appropriate 

credentials. There are no physical servers to seize or preserve; all servers are logical. The 

examiner is furnished with all diagrams and information about the setup of the virtual 

private cloud where Dakwa LLC hosts their platform. As the examiner is working directly 

with the company; any encryption keys can be provided.  

2. Steps to Take During acquisition 

The second phase of SWGDE is to execute the selected methodology and use the 

designated tools to collect the needed forensic data. The examiner begins by preparing an 

electronic notebook to document all the processes with actions, timestamp, data source, and 

data type. Photographs and screenshots are also taken to support the written notes. The 

examiner cannot avoid the need for volatile data that might reside on the suspected VMs; 

thus, live acquisition is required. The examiner determines the appropriate OOV, such as 

RAM, running processes, network connections, system settings, and storage media. The 

examiner can launch AWS CLI from their workstation and acquire a lot of information from 

RAM such as hidden processes, network stats, encryption keys, and other relevant data by 

running a tool like AWS_IR or Margarita Shotgun to collect memory dumps of the 

suspected VMs.  

The examiner has the option to take snapshots or clone the VMs, and while these 

are considered a full disk image, they do not include RAM or volatile data. The examiner 

cannot turn the VMs off, as some data might be required from the volatile memory. When 
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it comes to the database, since AWS RDS is being used, the examiner can execute a SQL 

dump tool such as Mysqldump to obtain a complete snapshot of the database. Amazon RDS 

runs on EC2 as well, so the examiner can decide to just take snapshots of the RDS VM 

instances instead. Some data need to be collected manually from the actual environment 

setup, such any existing proxy setup and the use of a Content Delivery Network (CDN) and 

network configuration. All collected snapshots can be downloaded to the forensic examiner 

workstation and saved.  

If the organization has a policy regarding how chain of custody needs to be 

documented, then the examiner follows it. In this case, the company does not have a chain 

of custody specific policy. The examiner documents chain of custody following SWGDE 

recommendations and notes at least the following: the full name and signature of the person 

keeping the forensic data, the full name and signature of the person receiving the data, the 

date of data transfer, the purpose of the data transfer, and the method of the data transfer 

(SWGDE, 2018a). The examiner might decide to deliver the case directly to the forensic 

workstation used for analysis and examination for evidence extraction; this makes fewer 

entries into the chain of custody logbook, which can be beneficial for the court case.  

3. Steps to Take After acquisition 

The examiner collects disk images of VMs, database dumps, and volatile 

information in different files, saves them into the designated media, and calculates hashes 

for each file right after acquisition. This acquisition can take place by executing the disk 

imaging tool directly from AWS CLI, or via indirect SSH access using AWS Systems 

Manager. The same can also be done by taking snapshots of the attached media of the EC2 

instances, basically snapshotting the EBS (Elastic Block Storage) volumes and cloning the 

VM. The hash algorithm used to maintain the integrity of the acquired files is SHA-128 

which is one of the approved hash functions by NIST. The hashes are written to the 

notebook.  

The examiner reviews all acquired data to make sure they cover all possible sources 

of relevant evidence. Dakwa LLC does not have their own policy about documentation of 

forensic cases; thus, the examiner follows best practices. The examiner documents in a 

logbook all outputs from the tools used and makes sure to document any errors and explain 

how they were overcome. All calculated hash values are documented referencing the 
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relevant output files. The generated document contains the following information: a unique 

assets identifier, source of evidence, case number, acquisition type, hash values for each of 

the acquired data, photos of evidence, examiner full name, acquisition date, errors 

encountered, and any other additional information that are relevant to the acquisition 

(SWGDE, 2018a).  

Table 11 - ALR for SWGDE 2020 Application – AWS Walk-Thru 

Criteria Trustworthy  

(6-10) 

Doubtful  

(2-5) 

Untrustworthy  

(1-0) 

General/Legal 

1) Adopted a structured 

and published 

forensic acquisition 

method or process 

- (5) Process followed 

SWGDE, which is 

recent and not 

tested, but 

recommended. 

- 

2) Forensic acquisition 

practitioner certified 

abilities 

(9) Examiner 

abilities are 

certified, but the 

examiner has no 

previous court 

involvement.  

- - 

3) Trustworthy 

capturing of the 

whole acquisition 

process 

(9) The process is 

captured on notes 

and screenshots.  

- - 

4) Provided case-

supporting artifacts 

- 

 

(5) Few supporting 

artifacts are 

collected, while not 

required by 

SWGDE. 

Preservation is not 

discussed.  

- 

5) Very well 

documented and 

validated chain of 

custody 

(9) CoC is 

documented, not 

mentioning DF 

process or stage of 

documentation.  

- - 

Data acquisition 

6) Used trusted 

acquisition tools 

- (5) While the tools 

used are known, 

validation and 

authentication are 

not discussed.  

- 
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7) Data is captured in 

operable format 

(9) Data has been 

captured in operable 

and known formats. 

Data is not 

validated.  

- - 

8) Utilized secure and 

immutable evidence 

storage 

(6) Storage is 

defined and secure. 

Isolation and 

immutability are not 

addressed. 

- - 

9) Validated the 

captured forensic 

data 

(10) SHA-128 is 

calculated for all the 

captured evidence 

data files.  

- - 

Hypothetical application of IPCFA – AWS use case  

Along the same lines, we can apply the methodology proposed in this research to acquire 

forensic data from the Dakwa LLC AWS environment. The story from the hypothetical was 

taken as an input and how the platforms work, and the deployment architecture were captured. 

All relevant management and access data was captured. The examiner documents all the 

information in their workstation. They create a folder named “Case001 - Dakwa LLC.” The 

examiner creates an Excel file (logbook) or relies on another case management tool with all 

possible evidence resources that might be vital to be acquired and presented for analysis. As 

this is a sub-phase of the whole forensic processes, this logbook can be a part of a larger logbook 

documenting the whole process. The following tasks can take place to generate court-sound 

evidence.  

1. Initiation - Stand up a forensic server 

The forensic examiner requests a new environment to be created that is dedicated 

for this forensic case. The account needs to be isolated: it must not reside on any of the 

common networks and must have a security policy to allow it to access the suspected 

environment components; nothing is allowed to access any resources in the environment. 

Then in the created environment the examiner attaches a S3 (Simple Storage Services) 

bucket to be used to upload the forensic workstation image and another immutable storage, 

which could be S3 or Glacier, depending on the configuration. This immutable storage is 

used as a destination for all forensic data as well as the various log sources. The image of 
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the forensic servers is converted into an AMI (Amazon Machine Image) and installed on 

the AWS dedicated environment as an EC2 instance. The immutable storage is attached to 

the forensic server. During this demonstration, any time the examiner is saving forensic data 

to the forensics storage, it can be assumed that the save is to immutable storage, unless 

otherwise stated.  

The various forensic tools are uploaded to the S3 bucket attached to the forensic 

server instance, then downloaded into the server. Tools include a web browser, EnCase 

Enterprise with agent, putty terminal emulator, AWS_IR, AWS CLI, AWS Console, LiMe, 

or MargaritaShotgun, and all prerequisites’ packages and libraries. Tools should not be 

installed at this stage, but binaries should be validated and made available to be installed 

after the continuous integrity mechanism has been deployed and activated. Usually with 

expert forensic examiners, they will have their tools integrated into a forensic server image 

that is ready to be deployed when the need arises. At this stage the forensic server is set up 

securely and ready to conduct the forensic investigation; for this hypothetical scenario, it is 

assumed to be a Windows 2016 server. The last step in the process is for the examiner to 

document the metadata information for the forensic server/EC2, attached S3 buckets, group 

policies, and permissions applied in the investigation logbook.  

2. Initiation - Enable continuous integrity and logging 

The examiner enables AWS CloudWatch and Cloud Trail logs on the forensic server 

and for the environment with logs to be sent to immutable storage. The forensic EC2 

instance is set up with time-synchronizing protocol to be in the same time zone as the 

suspected environment. The examiner installs a screen capture tool with imaging and video-

recording abilities. The tool is set up to capture artifacts with timestamps and location 

tracking and configured to send the captures directly to a designated folder in the immutable 

storage hierarchy. The last tool to be installed and/or enabled is an event- or activity-

tracking tool on the forensic server that captures all clicks and commands and saves the 

output directly on the immutable storage. If the tools capturing a command-line session, the 

output can be extracted at the end of the session and sent directly to the immutable storage.  

In this case the forensic server is Windows based, thus we rely heavily on these tools 

to capture mouse clicks and pop-up actions. The commands and other information are 

captured by the screen capture tool. Throughout the next steps in this process, it is assumed 
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the screen capture tools are enabled and available, and the generated logs/events are being 

sent to the immutable storage. The examiner validates this ability before moving on to the 

next phase. Any screen capture file should have its hash calculated and be saved right after 

the screen has been captured. The same information needs to be documented in the 

investigation logbook or the case management document, including the calculated hash. 

3. Initiation - Authenticate the forensic tools 

Coming into this phase, the forensic server is being monitored and is auditable, so 

it is ready to commence operations. The available forensic tools are installed and configured 

under monitoring provided by the continuous integrity and logging processes initiated in 

the previous phase. Before installation, the integrity of tools downloaded from vendors 

repositories must be validated by comparing the hashes provided by the vendors to the 

actual hashes calculated on the forensic server. If the hash matches, it must be logged in 

screen capture and saved. The screen capture should show the hash on vendor’s website as 

well as the calculated one. For example, this can be applied to the browser and the 

commercial forensic tools, for example. The same process can be applied to open-source 

tools, with an additional step of reviewing the available source code for possible unintended 

features or security flaws. When possible, open-source tools are compiled from sources 

based on the maintainer’s recommended settings. This applies especially to AWS native 

and related tools such as AWS_CLI, AWS_IR, and AWS SDK. All tools must be set up 

with logging enabled and with a default output to a folder on the immutable storage.  

In this scenario, three of the main forensic tools that must be indisputable are the 

command-line or terminal emulators, the internet browsers, and the AWS_CLI and its 

components. The command-line emulator is used for most cases to execute commands 

directly on the cloud relying on some other tools, such as AWS_CLI, thus it is important to 

use a reliable, authentic, auditable, and community-recommended terminal emulator. As 

most cloud providers provide a web console to administer cloud resources, such as AWS 

Console, browsers play a vital role in cloud forensic investigations as the majority of the 

work is carried out by the examiner using the browsers to collect data and validate the cloud 

setup. Finally, the cloud-native tools provided, in this case AWS_CLI and other dependent 

tools such as AWS_IR tools, rely heavily on configuration files that contain cryptographic 

certificates, key pairs, or credentials; thus, it is important these tools are set up properly and 
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functioning as intended. All these tools, configuration files, certificates, and keys must be 

captured during this phase to show the appropriate ones are used to connect to the suspected 

instances with appropriate policies and authorization.  

4. Initiation - Capture architecture and metadata 

While the Dakwa LLC team has already provided the architecture of their platform, 

it is recommended to capture the actual setup directly from the AWS cloud console right 

before starting the forensic acquisition. In this case, the examiner authenticates the AWS 

console and attempts to capture the status of infrastructure deployed, that includes the 

automation and DevOps processes, the interactions between components, the virtual 

network IP schema, the network flows and policies, access management, and any other 

enabled capabilities. Then the focus is on the investigated instances, which includes 

networks, virtual machines, and databases. The VPC network information and information 

such as all egress and ingress point of the VPC is captured; this includes public IP ranges, 

private IP ranges, VPN gateways, transit gateways, and VPC peering.  

The examiner takes a screen capture of the metadata of each EC2 instance that is 

part of the suspected platform. Information in the capture includes but is not limited to the 

AWS region, hosted zone, hostname, and attached storage, types of storage attached, size 

of storage, IP address, MAC address, instance ID, launch date, signature, associated security 

policies, auto-scale groups, access groups, and routing groups. Partially similar metadata is 

captured for the attached RDS MySQL Database instances. The examiner calculates the 

integrity hashes for each screen capture taken or documents generated and saved on the 

immutable storage. These hashes are also saved on the logbook. At this point the Dakwa 

LLC cloud architecture is known to the examiner and documented. The information about 

how the environment components are working together is clearly understood.  

5. Initiation - Define order of volatility (OOV) 

Referencing the metadata and all possible data sources suggested during the 

previous phases, the examiner attempts to put together the best possible course of action. 

Taking into consideration the OOV proposed by SWGDE (2018b) as well as the one 

proposed by (Killalea & Brezinski, 2002), the examiner puts together a recommended OOV. 

The three major sources of volatile data are the memory images of all involved EC2 

instances that host the applications and the RDS databases, the data located in any attached 
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instance stores, and the swap files. The following actions take place, from top-down, to 

guide the rest of the acquisition process:  

1. Acquire full memory dumps from all EC2 instances. 

2. Acquire all data located in the instance stores (Ephemeral storage) attached to the 

EC2 instances.  

3. Acquire all data located in swap files of the EC2 instances. 

4.  Acquire full disk images for all EBS/EFS attached to the EC2 instances. 

5. Acquire full copies for all attached S3 buckets in the environment. 

6. Capture any existing automation, deployment, or delivery code that can be located on 

AWS CodeCommit, CodePipeline, CodeDeploy, or other DevOp tools. 

7. Capture the existing network configurations, security policies, groups, and rules.  

8. Export account and services logs & events that are setup to send logs to CloudWatch, 

CloudTrail, GuardDuty, and AWS Security Hub.  

9. Export other logs that are setup to log locally, this can be any or all the VPC Flow 

logs, ELB logs, S3 bucket logs, CloudFront access logs, and RDS logs.  

6. Execution - Volatile data acquisition 

Following the defined OOV, the examiner has three volatile data sources: RAM, 

instance store, and swap files. The best scenario for acquiring memory images is remotely 

without running or attempting to execute the tool from within the compromised instance. 

The examiner executes a memory dump tool such as MargaritaShotgun which uses SSH 

keys to connect to an EC2 instance and dump the raw memory into a file. This tool can be 

executed straight from the forensic server command-line, and the generated file can be 

named properly and saved directly to the immutable storage. The same process can be 

executed using AWS Systems Manager, which allows one to invoke remote commands over 

SSH via AWS APIs at the remote host without having to authenticate to the host. Once the 

snapshots/disk images have been collected, integrity hashes are to be computed and 

documented via the continuous integrity tools as well as the logbook.  
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The second type of volatile information that the examiner needs to capture is any 

data that is stored on EC2 attached Instance Store volumes. This can be done in multiple 

ways. The examiner can use the AWS CLI to provision a clean EBS volume with disk size 

that is equivalent or larger than the Instance Store that is targeted; then they can copy the 

data into the newly provisioned EBS volume. Another option that is easier if the instance 

store happens to have few files is to use AWS CLI to copy all files and directories directly 

to the forensic server immutable S3 bucket. We assume the examiner has chosen to use the 

second option and has copied all files into a dedicated and pre-defined folder in the 

investigation S3 bucket.  

The last type of volatile data is the swap files, which might contain very important 

information since it is an extension to the memory. Swap files are captured as part of the 

disk image acquisition. Once the copies have been made, integrity hashes are to be 

computed and documented via the continuous integrity tools as well as the logbook. At this 

stage it is unknown to the examiner which one of the EC2 instances has been compromised, 

thus the examiner collects volatile information from all involved servers.  

7. Execution - Digital Seizure (if possible) 

Usually performing digital seizure and isolation is a task for the corporate incident 

and response team when possible, but in this case the corporation does not have an IR team. 

It is also not easy to isolate all involved VMs from the network, as they are production, and 

it is not yet determined which VMs are involved or all of them have been compromised. 

Thus, this step is not executed yet.  

8. Execution - Non-volatile data acquisition 

Following the defined OOV, the examiner collects disk images from all involved 

EC2 instances and their attached storage volumes. The examiner collects volume 

information about each EC2-attached EBS volume, then uses the AWS CLI to attempt to 

perform API calls to create snapshots of the EBS volumes and send them directly to the 

forensics S3 bucket. This operation captures disk images, including swap files that are 

usually stored under the root home or other directories on the associated disk. Sometimes 

swap files are also created and saved on Instance stores; in that case they are captured as 

part of the non-volatile acquisition phase. If swap files are stored on another attached EBS 

volume, then a snapshot of that storage volume is captured. The same mechanism can be 
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used to duplicate data stored in any attached S3 buckets, saving the data and sending it 

directly to the forensic storage.  

The same operations can be done remotely utilizing AWS APIs calls or AWS 

Systems Manager to execute Linux native disk images tool such as dd. With dd, the output 

is 100% raw disk image, which can be read by many digital forensics analysis tools, 

including community, open-source, or commercial tools. In this investigation, the examiner 

only takes snapshots, as they can later be attached to EC2 instances for examination. If there 

is a need to have raw images, they can be recreated from the snapshots as well. The examiner 

calculates the integrity hashes for each screen capture taken or documents generated and 

saved on the immutable storage. These hashes are also saved in the logbook. 

9. Execution - Collect supporting artifacts 

In this phase of the methodology, the remaining items from the predefined OOV are 

collected. The examiner attempts to log in to the suspected environment using a web 

browser and authenticates to the AWS Console. The examiner makes sure they are visiting 

the appropriate console by checking the SSL certificates of the visited URL before 

authenticating. Then authentication takes place, and the examiner captures the SSL 

certificate information, console URL, account number, and username information via the 

continuous logging mechanism, which automatically saves this output to the forensic 

storage. Henceforth, all work is done via the web console and can be commenced via the 

established, authenticated, and encrypted session.  

The examiner navigates to the AWS CodeCommit page (source control), and 

downloads/clones all existing repositories that should contain CloudFormation YAML or 

JSON code that might be used to automate the deployment and delivery for products and 

infrastructure components. The same code can also be used to execute any AWS SDK API 

functions to perform any changes to the environment.   

The next section that the examiner attempts to capture is any configured or setup 

Codebuild projects. AWS CodeBuild allows end users to compile and build infrastructure 

components from source code that is stored in an S3 bucket or other repositories. The 

examiner screen-captures existing projects and the content of each project. Then delivery 

pipelines listed under AWS CodePipeline are captured in a similar manner. The last 

component of the automation to be captured is the AWS CodeDeploy configurations, which 
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might contain instructions to automatically deploy an application or a bundle of 

applications. This completes the acquisition of all DevOp and automations code that might 

be relevant to the incident.  

The next data that need to be captured are the network and security configurations. 

While most of this data is likely to have been captured during the metadata and architecture 

captures, in this phase the examiner validates the data provided by the customer via console 

access. The examiner uses the AWS Console to navigate to the following network 

configuration areas and validate the existing setup against the information provided during 

the metadata and architecture capturing phase, capturing any differences: route tables, 

prefix list, internet gateways, carrier gateways, NAT rules, DHCP options, VPC peering, 

VPC endpoints, Elastic IP addresses, DirectConnect interfaces, transit gateways, and VPNs. 

The same approach is taken to validate security configurations and settings from the 

following areas: identify and access management (IAM), logging and monitoring, Security 

groups, Network ACLs, VPC Flow Logs, and Route53/DNS. At this stage the examiner has 

validated all network and security configurations and settings, capturing any differences.  

The examiner next attempts to capture all possible logs in the environment that 

might contribute to solving the investigation code questions. This phase is highly dependent 

on which log facilities are enabled and being used. From the previous step, assuming the 

environment is set up properly and the main log facilities are enabled, the examiner exports 

logs directly to the forensic S3 bucket for the past 30 days from the following log facilities: 

AWS CloudWatch, CloudTrail, GuardDuty, VPC Flow Logs, and Security Hub. These are 

the main locations where logs are getting aggregated from EC2, RDS, IAM, Automation 

tools, CloudFront, load balancers, and other enabled cloud services or systems. Some other 

logs are captured as part of the EBS snapshots if they are saved on local facilities on EC2 

instances. It is very important for the examiner to notice the retention of logs during the 

previous step in order to determine how far back to go in each one of the log facilities.  

10. Closure - Complete the continuous integrity process 

Reaching this phase in the process means the examiners are confident that they have 

collected all needed data to generate the sought-after evidence. The examiner navigates to 

the immutable storage to make sure every collected file has its hash value calculated. If a 

file is found without a corresponding hash value, a hash value is calculated and saved. All 
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hashes should be calculated using SHA-128 or greater. The examiner then stops all running 

screen capture tools as well as any scripts that were executed to capture keyboard input 

during the forensic process. The final logs from the screen capture tools are moved to the 

immutable storage and their hash values calculated and saved.  

11. Closure - Validate the collected data 

The examiner reviews data sources and makes sure all sought-after data has been 

captured. The examiner opens each collected file using the respective analysis tool to 

validate content, ensuring it is appropriate and not empty or corrupt. All collected logs and 

screenshots are opened for readability and accuracy. A similar approach is taken by the 

examiner to review the collected disk and memory, where the images are loaded into 

examination tools to validate content, timeframes, and data availability.  

Table 12 - ALR for IPCFA Application – AWS Walk-Thru 

Criteria Trustworthy  

(6-10) 

Doubtful  

(2-5) 

Untrustworthy  

(1-0) 

General/Legal 

1) Adopted a structured 

and published 

forensic acquisition 

method or process 

- (2) Process 

followed IPCFA, 

which is not 

published or tested 

yet, but is 

structured. 

- 

2) Forensic acquisition 

practitioner certified 

abilities 

(7) Examiner 

abilities are 

certified, but 

examiner has no 

previous court 

involvement.  

- - 

3) Trustworthy 

capturing of the 

whole acquisition 

process 

(10) The process is 

captured on notes, 

screenshots, and 

screen video for 

multi-process 

operations.  

- - 

4) Provided case-

supporting artifacts 

(10) All possible 

events and logs for 

the cloud platform 

are captured.  

 

- - 
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5) Very well 

documented and 

validated chain of 

custody 

(9) CoC is limited 

to logbook 

initialization, then 

all original forensic 

data resides in the 

immutable storage.  

- - 

Data acquisition 

6) Used trusted 

acquisition tools 

(9) Most tools are 

cloud-native; thus 

authenticity and 

authentication has 

been validated 

before execution.  

- - 

7) Data is captured in 

operable format 

(9) Data is captured 

in operable and 

known formats. 

Data is validated.  

- - 

8) Utilized secure and 

immutable evidence 

storage 

(10) Secure, 

immutable storage 

is used to store all 

forensic data.  

- - 

9) Validated the 

captured forensic 

data 

(10) SHA-128 is 

calculated for all 

captured evidence 

data files.  

- - 

Demonstration of IPCFA –Azure use case 

The initial input to the forensic examiner is the story from the Azure case described in 

Chapter Three. The examiner documents all the preparation information in their workstation 

and creates a folder named “Case001 - Dakwa LLC.” The examiner creates an Excel file 

(logbook) or relies on another case management tool, listing all possible evidence resources 

that might need to be acquired and presented for analysis. Since acquisition is a sub-phase of 

the forensic procedure, this logbook can form part of a larger logbook documenting the entire 

process. The examiner is then is furnished with a copy of IPCFA to be followed to collect data 

that can aid in the investigation of the intrusion. The examiner’s task is to acquire authentic data 

from the fictional Zool Corporation cloud environment and make it available for analysis in a 

forensic server. During the preparation phase of the investigation, the examiner is briefed about 

Zool Corporation, its cloud architecture, and management philosophy. The department head 
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and senior engineer provide an architecture diagram of the production environment where the 

incident took place. They provide the following information to the examiner:  

 The IT team consists of eight engineers: two DevOps (sysadmin, OS, storage, 

automation), one DB admin (SQL servers), two NetOps (network, automation), and 

two SecOps (security, audit, incident response), and a team manager.  

 The platform is designed following Microsoft N-tier architecture (N-Tier 

Architecture Style - Azure Application Architecture Guide, 2018), which allows for 

scalability, modularity and high availability. The platform is designed as a 3-tier 

application (Figure 8).  

 Zool has two environments, production (prod) and development (dev). Dev is a 

replica of prod, with minor changes related to security policies. All infrastructure 

components of a single environment belong to a single Azure resource group to 

allow for ease of deployment, maintenance, and monitoring. The incident took place 

in the production environment.  

 The production environment consists of four different subnets using private 

addresses: management (automation and bastion virtual machine), web (web 

servers), app (application servers), and db (database servers).  

 The IaaS platform consists of six Linux CentOS 7.2 servers (web/app virtual 

machines), and two Windows 2019R2 servers (Azure SQL virtual machines), all in 

availability-sets and different availability zones. This ensures each virtual machine 

is in a separate fault and update domain. The first three Linux servers are dedicated 

for the web interface and located in the DMZ network, which is accessible from the 

Internet. The remaining three Linux servers run the Casino management system 

(CASM), which also allows bidders to play, book tables, and bid on live events 

online. The two Windows servers run on Azure SQL Database systems that hold all 

the application and financial data.  

 All servers are split among three zones hosted in Azure East U.S. Datacenters. This 

provides additional fault tolerance and meets the corporate 99.5% SLA goal.  

 The Azure SQL Servers are hosted in two different zones and active replication is 

established between them. The databases are set up with Always-On architecture, 

so both can transact simultaneously.  
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 All incoming traffic is load balanced between the three front-end webservers via 

prod-frontend-lb; then all traffic from the webservers is load balanced between the 

three application servers via prod-backend-lb. All traffic from applications servers 

targets the active/standby SQL servers directly.  

 All infrastructure is deployed using infrastructure-as-a-code (IaC), utilizing Azure 

PowerShell. All applications, software updates, and OS updates are managed via 

DevOp and automation processes that are hosted in a bastion virtual machine hosted 

in the production environment (prod-mgmt subnet). Access to all IaaS components 

is only permitted from the bastion machine, thus no direct access is permitted.  

 Network Security Groups (NSG) are deployed to allow only the required application 

flows between the various IaaS components; other traffic is implicitly denied.  

 Role-Based Access Control (RBAC) is adopted to manage authentication, auditing, 

and accountability of team members; all actions are logged; and access is only 

permitted to specific areas of the cloud platform. This is enforced by the SecOps 

team.  

 Azure Security Center agents are installed in all virtual machines, and all logs are 

aggregated and sent to the security center. Network Security Group (NSG) flow logs 

are enabled for network traffic actions. Azure Monitor is enabled to all resources in 

the prod resource group.   

 While the department has a set of information technology-related policies, there are 

no policies related to incident response, e-discovery, or data retention.  

 Since the last occurrence of the incident, all engineers have changed their Azure 

Portal logon credentials and created new private keys for the API authentication.   

 Zool suspects the jump server to be compromised; thus, they have decommissioned 

the old one and created a new one from scratch in order to mitigate the unknown 

access to the platform.  

 Zool still notices from time to time that the production environment is using more 

resources than expected, for which they incur extra unplanned charges. They suspect 

there is some unauthorized activity taking place in their environment.  
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Figure 8 - Zool Corp. Production Environment 

Prior to engagement, the examiner should be ready to perform acquisition in the various 

public cloud providers. Being prepared includes but is not limited to having a cloud-agnostic 

or cloud-specific forensic server image with all needed tools to perform acquisition and 

analysis. The forensics image must be in the examiner’s Azure account, AWS account, and 

GCP account for minimum coverage. The examiner should have knowledge of at least the 

various cloud components of the major public clouds that make up the IaaS environment. 

Automation and DevOps scripting knowledge and experience are also very useful for the 

examiner to have. With all this knowledge and these tools available, and while anticipating 

direct interaction with Zool Corp staff, we attempted to follow the IPCFA methodology to 

collect the sought-after data from the emulated IaaS deployment:   

1. Initiation - Stand up a forensic server 

The examiner requested from the corporation IT staff to create a dedicated virtual 

network to accommodate the investigation. The environment would have no access to any other 

virtual networks and would have no roles associated with it. The corporate engineers furnished 

us with a new virtual network “prod-secure”.  The examiner already has an Azure account with 

a forensic image ready for deployment with all tools and gadgets needed to perform a digital 

forensic acquisition and analysis. All tools are located in a folder called “DFIR” and are to be 

authenticated, then installed when continue monitoring is enabled. The image is in the 

examiner’s Azure account image gallery. The examiner shared the images with the Azure 

subscription of Zool Corporation by granting them read-only permissions to the image disk.  
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The examiner provided the Zool Corp. team with an Azure API-based script that 

automatically deploys the forensic image (Windows 10 Pro - generalized) in the new, dedicated 

environment. The script also creates the immutable storage utilizing Azure blob storage with a 

legal hold and timer-based policies, allowing for blob append operations. Furthermore, it 

creates an Azure file share to be mounted directly by the forensic server in order to perform 

other operations in copies of the collected data. The script then connects the immutable blob 

storage to the VM using NFSv3.0 protocol. This allows for all files being written to the 

immutable storage to be unchangeable once written and closed, while allowing for new files to 

be added/copied into the storage. This is basically a cloud write-blocker. 

The examiner asked the team to add an NSG to allow access out from this new forensic 

server to the zoolprod environment on service ports for DNS, SSH, TLS, and RDP. This is 

accomplished via VNet (virtual network) Peering to allow inter-vnet traffic between the prod-

secure and the Zoolprod VNETs. Opening these ports enables the forensic servers to have direct 

access to the IaaS environment to perform the various acquisition operations. The same NSG 

rules are applied on the opposite side to allow for connection establishment. The examiner’s 

workstation public static IP address is the only access permitted on the newly deployed server. 

At this stage the forensic server has been deployed, and the examiner can access it remotely. 

This completes this sub-phase of the process, and the forensic server has been initiated 

successfully.  
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Figure 9 - The forensic server deployment architecture 

2. Initiation - Enable continuous integrity monitoring and logging 

Since the whole acquisition process is executed from the forensic VNet and resources 

group initiated in the previous sub-phase, all actions should be logged and referenceable. The 

following tasks have been executed on the forensics resource group components to enable 

logging, auditability, and action cross-referencing: 

 Created an Azure Log Analytics workspace in the forensics resource group and 

enabled Azure Monitor.  

 Enabled logs for Azure Key Vault and saved the logs container on the same 

forensic storage. Enabled Azure Monitor for Key Vault.   

 Installed Azure log agent on the forensic server and enrolled the forensic server to 

be monitored by Azure monitor and log analytics. The agent captures all logs from 

the forensic server and sends them to the Azure Log Analytics.  

 Enabled Azure Monitor for the Azure blob storage and Azure file share in order 

to capture read, write, and delete actions as well as all authenticated and 

anonymous access. All logs are sent to the forensics Azure Log Analytics 

workspace and Azure Monitor.  



94 

 

 Enabled NSG flow logs to have true visibility on all network activities that traverse 

the VNet. These logs operate at Layer 4 of the OSI model, and they record all 

traffic in and out of an NSG. All logs are sent to the forensics Azure Log Analytics 

workspace. 

Azure Monitor

 

Figure 10 - Azure Monitor logs and metrics 

After enabling comprehensive logging in the cloud forensic environment, additional 

continuous integrity monitoring measures and software packages are included as part of the 

forensic server image. Azure Monitor Agent is installed on the forensic server and reports all 

logs to Azure Monitor. The installers for Greenshot and OBS Studio are also included in the 

forensic server image. Both are open source, lightweight, and feature-rich screen capture 

software tools.  

 

Figure 11 - Capturing all actions on Azure Cloud Shell 

3. Initiation – Authenticate the forensic tools 

The forensic server contains a folder with a plethora of digital forensic tools for acquisition, 

analysis, and presentation. The examiner puts together a list of tools that might be needed for 

this acquisition and validates and installs them. While the examiner’s list might include all 

needed tools, at any point during the investigation the examiner can go back to the tool 

repository and check out other tools following the same process. The examiner initially pre-

selected the following tools to be used for the acquisition:  
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 Provided scripts for disk, memory, and logs acquisition (open source) 

 Greenshot: Screen image capture software (open source) 

 OBS Studio: Screen video capture software (open source) 

 Mozilla Firefox web browser: Azure secure web portal access (open source) 

 azCopy: Tool that copies data between forensics VM and the immutable storage 

 Windows Powershell: Powershell interpreter (native) 

 Python27: Tool that executes Python-based scripts to facilitate the acquisition 

process  

 Volatility: Memory analysis tool (open source) 

 MobaXterm: Bash shell emulator to execute Linux commands and scripts 

 Notepad++: Code editing, log reviewing, and diff tool 

The examiner connected remotely from their workstation to the newly initiated forensic 

server via Remote Desktop. Before installing any of the selected tools, the installer file hash is 

captured, any certificates or public keys fingerprints attached to executables are recorded, and 

the version of the software is logged. The content for all scripts is reviewed, and hash is 

calculated and saved. All hashes and certificates are saved to the Azure Key Vault dedicated as 

part of the forensic environment. The examiner then installed each selected tool and captures 

software versions after each install. Timestamped screenshots are taken and saved to the 

forensic storage showing the authentication of each tool. At this point all acquisition tools are 

installed and ready to be launched.   

4. Initiation - Capture architecture and metadata 

Under a video capture, the examiner begins by launching the Mozilla Firefox browser 

and browsing to the Microsoft Azure portal. The examiner opens the website identity, website 

certificate, and website encryption protocol section before proceeding with the logon. Once 

these actions are validated and captured, the examiner attempts to login to the portal using his 

personal credentials. After successful authentication, the examiner changes the directory to 

assume the role assigned to them on the Zool Corp. subscription. Now the examiner can see 

and interact with all resources within Zool Corp. environments. The examiner opens Azure 

Cloud Shell, switches contexts to Powershell, and enables session logging to a file that saves 

directly to the forensic storage. The examiner first executes a command and a screen image 
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capture of the status and identity information of immutable storage that is crucial during this 

investigation. Then, the examiner uses Azure Powershell to execute a set of commands to 

retrieve the following: Azure subscription information, virtual network, resources groups, all 

resource groups, network topology (capture from GUI), storage topology, and finally Azure 

DevOps repositories’ structure and profiles.  

 

Figure 12 - Zoolprod topology generated from Azure portal 

5. Initiation - Define order of volatility (OOV) 

Once the examiner scrutinizes the data collected in the previous sub-phase, the 

architecture of the zoolprod environment becomes clear; data location and the sizes and types 

of storage containers, log retention periods, and virtual machines are identified. The examiner 

established and presented the proposed OOV to the client to review, explaining the actions that 

will be taken and their impacts, if any, to the production environment. The examiner proposed 

the following OOV to collect data to support the investigation:  

1. Acquire full memory dumps from all virtual machines. 

2. Acquire volatile information from Windows VMs (processes, connections ... etc). 

3. Acquire full disk images for all storage attached to the virtual machines. 

4. Acquire full copies for all attached blob storage in the environment. 

5. Capture all existing automation, deployment, and delivery code in Azure DevOps. 

6. Capture the existing network configurations, security policies, groups, and rules.  

7. Export 90 days (when possible, Azure monitor default is 30) of cloud logs from 

Azure Activity logs, Azure Monitor, Azure Analytics workspaces, and Azure 

Network Watcher logs.  
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8. Export logs from virtual machines—from Windows using Azure Diagnostics 

storage and from Linux via Azure Monitor agents.  

6. Execution - Volatile data acquisition 

Following the defined OOV, the examiner attempted to collect a complete memory 

dump from all VMs within zoolprod environment, this includes all Linux and Windows VMs. 

IPCFA recommends performing the acquisition with the least interaction with the VM as 

possible, while interaction with the VM sometime is not avoidable, the examiner tried to utilize 

the cloud console to remotely execute lightweight tools on the VMs to perform the memory 

dump, then transferred the dump to the immutable storage. For Linux VMs, the examiner 

created a simple Azure Powershell script that connects to the VM via the cloud backplane 

console (Using Azure Cloud Shell), load LiMe, compiles it for the specific kernel, and execute 

it. Once the dump is ready, the script automatically calculates the SHA-256 of the collected 

image and transfer the generated raw image from the VM to the immutable storage.  The 

collected hash values are stored directly onto Azure Vault dedicated on the forensic 

environment.  

The same line of thought is followed for the Windows VMs utilizing Winpmem.exe. The 

applications used to dump memory have been chosen due to their light interaction with the VM 

processes, and their direct functionality of only dumpy the full memory of the VM. Due to the 

nature of memory sharing of the public cloud, acquiring memory images is one of the areas that 

public cloud providers usually restrict access to it, and it requires customers to open support 

cases in order to retrieve memory dumps from their own VMs.  

The examiner moves to the next step of collecting additional volatile data from the 

Windows VMs, as this data will be automatically captured on the Linux memory dump, but not 

the Windows. The examiner tweaks the script Invoke-LiveResponse Powershell from (Green, 

2018) and injects it directly on the VM via Cloud Shell to collect information from both 

Windows VMs such as: running processes, network connection, routing table, Kerberos tokens, 

logon session and more. The collected file then transferred to the immutable storage after its 

hash value gets calculated and stored. This process is executed under the continuous integrity 

monitoring via executing OBS video capturing to show the whole process then the video files 

are saved to the immutable storage.  



98 

 

 

Figure 13 - Collecting data remotely from Windows VMs on Azure 

7. Execution - Non-volatile data acquisition 

While collecting disk images from IaaS deployment is possible using any of the 

traditional forensic tools available today, it requires a lot of attention to the integrity and 

completeness of the collected images.  IPCFA recommend generating complete disk image 

while performing the investigation close to the source, so in this case the forensic examination 

will take place on Azure; thus, it made sense to generate images that can be examined in Azure 

environment. Collecting images that are native to the cloud means the image can be used to 

create a new VM, a replica of the suspected VM, for investigation. It also means we can 

generate raw images if required, as it is basically going to be a matter of covering the mage 

from a custom image to raw image, which can be done using a lot of the community tools.  

The examiner prepared a simple script that uses the Azure Powershell API and Cloud 

shell to execute and create snapshot of the disk image of each one of the VMs. When the disk 

image is created, the script will calculate its hash value, save the hash value to a dedicated and 

encrypted Azure Vault, and then save the collected image to the immutable storage. If the VMs 

were encrypted while in production, encrypted keys can be passed to the script to be used for 

decryption of the VMs to be able to collect snapshots, and the same keys can be used later to 

encrypt the snapshots at rest.   
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The next data to be collected based on the defined OOV is to download blob storage 

content that are attached to the VMs, and in this scenario there was no blob storage used, only 

managed disks, which were captured as part as the snapshots. Then capturing automations tools, 

logs, pipelines, and code archive. This data was captured partially already when the 

management VM snapshot was taken, as it is their automation server. What is missing is to 

capture via Greenshot some images of the Azure DevOps origination settings, projects, 

pipelines, and repos. While it is possible to download repos locally, some organizations will 

not allow external resources to download their private code, if any. As far as capturing network 

topology, NSG, NAT, Route tables, and other Azure configuration items, these items were 

covered initially during the architecture and metadata capturing phase of IPCFA, so it is not 

needed to be captured here again, unless some data was missed. All these processes are executed 

under the continuous integrity monitoring via executing OBS video capturing to show the whole 

process then the video files are saved to the immutable storage. 

8. Execution - Collect supporting artifacts 

Based on the input from Zool Corp team, and the architecture that has been captured, 

all logs are being sent to Azure Monitor and Azure Log Analytics. This includes Azure Activity, 

operating systems logs, and all other application logs configured on the VMs, such as Syslog-

ng driven logs and Windows custom-events. In all large public cloud providers, these logs 

usually can be accessed via the Web Console, Command-line console, and API calls. This is 

the case in Azure Cloud. The examiner invoked simple API calls to Get-azlog and Get-

AzureRmOperationalInsightsDataSource to check the volume and type of logs available, then 

based on that a small script is written and invoked to send all output to multiple files in the 

immutable storage blob. Once the files have been written, the hash values are calculated and 

saved to the Azure Vault. This process is executed under the continue integrity monitoring via 

executing OBS video capturing to show the whole process. The generated video files are saved 

to the immutable storage. 

9. Closure - Complete the continuous integrity 

Once this phase is reached, that means the actual acquisition and collection of data is 

completed and documented. Thus, any running continuous monitoring mechanism must be 

turned off. The examiner navigates to the immutable storage to validate that all files have been 

stored and they do have data and not empty files. The examiner matches the number of files on 
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the immutable storage with the number of hash values calculated and saved in the key Vault. 

Once all is validated, the examiner and under OBS video monitoring, turned off the Azure Shell 

running command-line capturing tool, calculated its hash, and sent the last file to the immutable 

storage. At this stage the actual collection process has been concluded. If any of the phases 

needs to be repeated for any reason, the continuous monitoring will need to be enabled first; 

then the desired phase can be re-executed.  

10. Closure - Validate the collected data 

This is the phase where the collected data is validated to either be passed to the next 

examiner who will perform the analysis, or if the analysis will be carried out by the same 

examiner who completed the acquisition. The examiner starts by opening each screenshot and 

video captured to validate it is readable and operable. Then they open the collected log files 

using Notepad++ to check if the log files contain logs messages with timestamps that are 

readable. The examiner executed Volatility against the collected memory dumps and attempted 

basic operations to make sure the memory dump is functional and not corrupted. The last check 

was for the examiner to spin up test VMs from each collected disk image and be able to browse 

the VM content. Once all these steps have been taken, the forensic data is ready for analysis 

and to continue the rest of the digital forensic process as would with non-cloud acquisition.  

 It is important to note that this demonstration focused on following IPCFA to acquire 

IaaS related forensic data from Azure but did not focus on specific set of tools or technologies. 

The demonstration also did not go into data analysis to extract evidence, as that is not the goal 

behind IPCFA; rather the goal is to collect the intended data from CSP involvement and to 

maintain the integrity and authenticity of the collected data until it is presented in courts of law.  
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CHAPTER SIX 

DISCUSSION 

In this design science-based research, we examined the applicability of the existing 

digital forensic tools and acquisition techniques in acquiring U.S. court-admissible evidence 

from IaaS deployments in the public cloud. The literature showed a lack of cloud-specific 

forensic tools and scholarly work related to acquisition processes and methodologies. The 

published document from SWGDE (2020) that sheds light on acquisition from public cloud 

providers was the only valid reference that directly addresses cloud forensics. This section of 

the research focuses on presenting the findings and results stemming from the demonstration 

and validation of the proposed artifact that attempts to solve the research question.  

As discussed in Chapter Three, the core requirements to determine the artifact’s 

effectiveness are the following: 1) maintaining the integrity of the acquired data and providing 

a trusted, simple, and short chain of custody; 2) maintaining the authenticity of the data by 

adhering to FRE 901/902 and withstanding the Daubert test in courts; and finally, 3) generating 

operable, non-corrupted forensic data that is easily examinable using commonly available tools.  

The artifact should also encompass the functionalities required to acquire forensic data and 

should generate reliable results while being practically useable and cloud-agnostic. These 

requirements and some of the most stringent qualities for digital evidence for U.S. court 

admissibility have been merged to produce the ALR. Because ALR describes the most 

important factors that contribute to digital evidence court admissibility, it has been used to 

quantify the effectiveness of the executed digital forensic methodology or process.  

Core Requirements  

Ensuring the integrity of the evidence and the whole forensic process is crucial to a 

successful forensic acquisition operation. Failing to document a step can render the whole 

lengthy process unreliable. This makes the digital chain of custody the center of the forensic 

process. While the SWGDE 2020 publication does not include any direct reference to chain of 

custody, it references another publication (SWGDE, 2018b) that sheds light on how to 
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document chain of custody. The 2018 publication only states that chain of custody should be 

documented to include personnel information when evidence is transferred from one person to 

another (SWGDE, 2018b), then references another publication for more details. This cross 

reference, while useful, does not make the SWGDE cloud acquisition process clear or complete 

since it relies on a document not created with the complexity of the cloud environment in mind.  

IPCFA, on the other hand, takes another approach in order to guarantee a trusted chain of 

custody and data provenance: IPCFA recommends chain of custody to be as short as possible 

by acquiring the forensic data and sending it directly to secure storage that is read-only. Then 

as many copies can be made as possible for investigators, judges, or any third party who might 

be interested in validating the integrity or authenticity of the collected evidence. This new 

methodology eliminates the need for a long and complicated chain of custody, limiting it to the 

forensic examiner, who maintains access to the secure storage and documents who received 

access for what reason. All this access can be maintained electronically via private keys and 

tokens, thus there is no need for actual documents, as access logs can be extracted from the 

Role-based Access Control system.   

IPCFA adopts the industry standard for validating the integrity of any electronic file, 

which is the hash fingerprint. The hash fingerprint is almost an integral part of any digital 

forensic investigation and is always looked for in connection with chain of custody. Throughout 

the various phases of IPCFA, the forensic examiner is asked to calculate hash values for every 

evidence file they collect as well as for any supporting files. IPCFA recommends calculating 

hash values using approved algorithms and automating the calculation when possible, saving 

all hash values directly to sterilized and immutable storage while capturing the actual 

fingerprinting process via continuous integrity monitoring. While the SWGDE publication does 

direct the practitioner to calculate hash values of the acquired data, it does not refer to an 

approved hash algorithm from NIST, for instance. Computing hash values comes in the final 

step of their proposed three-step acquisition process, which is not appropriate for such a 

paramount requirement of the forensic process. SWGDE does a great job referencing 

organizational policy use, in the cases where that exists, as well as emphasizing reaching out to 

CSPs to see if they are willing to investigate the allegation.  

The next major requirement for the artifact is to generate authentic evidence and in case 

the evidence’s authenticity or the expert’s testimony is challenged, to help pass a Dauber 
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hearing. Confirming the authenticity of electronic evidence usually entails validating the claims 

associated with the evidence, and this can be done in multiple ways. IPCFA includes two 

possible authentication mechanisms. The first one is authenticating a piece of evidence by 

validating its integrity and authenticating its source, and the second is calling an expert witness 

(FRE 702) to independently authenticate the evidence. 

The heart of the proposed methodology is the utilization of the cloud management plane 

to produce the needed forensic data, thus making sure all data that has been produced or 

captured is either generated by an electronic system (FRE 902(13)) or has been copied from an 

electronic device or storage medium (FRE 902(14)). In both cases the generated evidence is 

considered self-authenticating based on the most recent amendment of Federal Rules of 

Evidence 902 and has a great chance of preventing the defense from pursuing a Daubert hearing 

(Federal Rules of Evidence, 2017).  Nevertheless, the defense can still ask for a Daubert hearing 

to challenge the methodology used to acquire to the claimed evidence. This is usually the case 

if there are multiple methodologies that can be followed to generate the evidentiary data. In this 

case the authenticity claim of the evidence produced by the expert witness is challenged via 

Daubert standard.  

The Daubert test is one of the toughest legal challenges the defendant can use to cast 

doubt on the validity of the expert’s testimony, possibly disqualifying it altogether. So, the best 

way to defeat the Daubert test is by avoiding it completely, which, admittedly, is not always 

possible. According to FRE 702, a witness may qualify as an expert on the basis of educational 

and experiential qualifications in a general field closely related to the subject in question (Rule 

702. Testimony by Expert Witnesses, 2011). For those cases when expert witness testimony is 

challenged by Daubert, the Supreme Court has identified five non-exclusive important factors 

to assess the testimony. Though these factors have been delineated, in Kumho Tire Co v. 

Carmichael, the court said all five factors “do not all necessarily apply in every instance in 

which the reliability of scientific testimony is challenged” (Michaels, 2008). According to 

Michaels (2008), federal courts have also taken the position that the Daubert test should not be 

followed a checklist and was “relying instead on the ability of federal judges to properly 

determine admissibility” (p. 16).  
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All these factors have been taken into consideration during the IPCFA design; the 

methodology requires an experienced, certified, and documented forensic examiner to execute 

it. The methodology also gives the examiner control over the process by predefining OOV, and 

the steps required to generate the evidence and document each step rigorously. This helps make 

the process regeneratable by the court or any other expert witness. The aim behind the 

methodology, by design, is that once it gets published, it gains acceptance by the forensic 

community, thus meeting Daubert’s second requirement, which mandates a peer reviewed and 

published methodology. In contrast, none of the expert witness-related scenarios were 

incorporated into the only existing cloud forensic recommendation document from SWGDE.  

The last core requirement for the artifact is that it must be able to generate operable 

forensic data that is not corrupted and is easily examinable using commonly available tools. 

While having operable forensic data is a moot point if evidence generation is required, IPCFA 

makes sure there is a written reference to be followed. IPCFA requires all generated data to be 

checked for operability before moving to the next phase of the digital forensic process. This 

includes reviewing data for operability, correctness, content types, and readability. In SWGDE 

2020’s recommended process, data validation is required only when data is furnished by the 

CSP, and this is during the acquisition phase. After acquisition, there is no reference to data 

validation or correctness checks.  

Current Knowledge 

Before attempting the walk-thru of the hypothetical use case, a small, focused group 

was assembled of highly skilled digital forensic practitioners. Initially it was planned to have a 

focus group of 10 certified examiners, but due to the high level of expertise needed and the 

broad range of other requirements, the group contained only five highly accomplished experts. 

All were provided with the reference documents from Chapter Three (SWGDE, FRE, Daubert) 

and the AWS hypothetical scenario, and were asked to provide their walk-thru step by step in 

three to seven pages in a finalized read-only PDF document. Table 13 shows the credentials 

and qualifications of the focus group members.  

Table 13 - Credentials of the Formed “Existing Knowledge” Focus Group 

Member Experience Qualifications 
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1 20 Years  B.Sc. – Computer Systems and Networking 

 M.Sc. – Information Systems and Assurance 

 CISSP - Certified Information Systems Security 

Professional 

 GCED - GIAC Certified Enterprise Defender  

 GCFE - GIAC Certified Forensic Examiner 

 AWS CSA - Certified Solution Architect 

 AWS CSS - Certified Security Specialist 

 Microsoft Certified Azure Engineer 

2 10 Years  Ph.D – Cybersecurity, incident response 

frameworks 

 SAFA - SANS Advanced Forensics Analyst 

 CEH - Certified Ethical Hacker 

 CDPSE - Certified Data Privacy Solutions 

Engineer 

 CompTIA Security+ 

3 18 Years  BSc - Criminal Justice 

 M.Sc. - Computer Forensics 

 U.S. court expert witness experience 

 California Criminal Investigations Instructor 

 Certified High-Tech Crime Specialist 

4 16 Years  B.Sc. – Computer Science  

 Certified Cyber Threat Management 

 CompTIA Security+ 

 Microsoft Certified Azure Engineer 

5 9 Years  B.Sc. – Management Information Systems 

 CISSP - Certified Information Systems Security 

Professional 

 U.S. court expert witness experience 

An analysis of the feedback-captured output from the focus group participants shows 

that while many common steps were taken and common tools used to acquire the required data, 

discrepancies were also found.  Almost all practitioners attempted to use cloud-native tools and 

AP calls to collect logs and disk images. Three proposed the use of commercial tools to acquire 

memory images, and two proposed the use of open-source tools designed for AWS memory 

acquisition. While tools and data sources were common among the examiners, each participant 

followed a different starting and ending point in the collections process. Furthermore, only two 

of them mentioned chain of custody without stating how it would be securely and accurately 

maintained. Very basic attention was given to capturing additional logging information to 

support the evidence claims.  
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None of the practitioners addressed important admissibility arguments related to issues 

such as write blockers when copying snapshots, specifications for evidence and forensics data 

storage, or data transfer and access to examiners for examinations. While all practitioners were 

furnished with the SWGDE process to follow, the SWGDE provides only high-level guidance; 

major differences were clearly observed in the routes taken by each examiner to satisfy the need 

for court-soundness. This behavior contributed to inconsistent data being collected with missing 

FRE requirements, resulting in the collection of forensic data that might not yield forensically-

sound evidence if presented in courts of law. This very short focus group study supports the 

contention that the field lacks a common practical methodology for cloud forensic acquisition, 

an important gap in the digital forensic knowledgebase shown in the literature.    

ALR Comparison 

This section of the discussion focuses on showing the strengths and weaknesses of both 

SWGDE’s recommendation and IPCFA’s methodology in acquiring forensic data that can lead 

to generating court-sound evidence based on the ALR criteria. This comparison is based on 

hypothetically walking-thru the AWS investigation scenario presented in Chapter Three first 

following SWGDE best practices, and then following IPCFA methodology. 

1) Adopted a structured and published forensic acquisition method or process 

SWGDE’s Best Practices for Digital Evidence Acquisition from Cloud Service 

Providers (2020) is a published document that includes a structured process to be followed to 

collect forensic evidence from cloud providers. Thus, in this important criterion it wins with no 

doubts. Because IPCFA is yet to be published, it could not receive the full points as SWGDE 

did, but rather received partial credit for providing details and a structured approach for the 

acquisition. Keeping in mind that this criterion stems from Daubert’s standard five factors, it is 

very important for the process to be published or adopted by the forensic community, which is 

not yet the case for IPCFA.  

2) Forensic acquisition practitioner certified abilities 

The full points for this criterion are awarded to both SWGDE and IPCFA as both 

acquisitions were performed by researchers with their credentials, qualifications, and 

experience documented before the beginning of the forensic process. Both SWGDE and IPCFA 
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explicitly mention the importance of capturing the digital examiner’s credentials and 

experience. The full points were not given due to the examiner’s lack of real-life court 

experience and not serving as an expert witness before.  

3) Trustworthy capturing of the whole acquisition process 

SWGDE recommends for notes to be taken during the acquisition process, and when 

notes are not possible to be taken, screenshots and photographs are to be taken in lieu. This is 

indeed a very important point mentioned in the recommendation, but the recommendation lacks 

direction on how to maintain these photographs and guarantee their integrity in order to support 

the integrity of the collected evidence. IPCFA calls for a similar approach to be taken, but it 

replaces the notes with images and video captures that are saved directly into immutable storage 

with their hash values calculated. Capturing these hashes is very important as these videos and 

images can also be challenged during court sessions. IPCFA gets the higher points due to 

maintaining the integrity of the captured images.  

4) Provide case-supporting artifacts 

Section 6 of the SWGDE publication provides an overview of the possible acquisition 

methodologies that can be used during the “acquisition” phase of the process. While the 

acquisition process methodology chosen might be case-dependent, the publication does not 

mention the need to acquire any supporting data, leaving it completely up to the practitioner to 

decide what data might be needed. In the case of traditional forensic investigations, the 

supporting data might be very minimal or nonexistent, but in cloud environments it is 

paramount to authenticate any claim of evidentiary data as well as its method of access, 

collection, or transferal. The application of SWGDE on the AWS hypothetical case walk-thru 

shows some logs being collected and stored to support the evidence’s existence, but no proper 

preservation and integrity checks were enforced as they are not recommended by the published 

process. The opposite applies to IPCFA where the methodology mandates specifically the types 

of supporting logs and data that must be captured as part of any IaaS acquisition in the public 

cloud. IPCFA also shows the possible sources of supporting data when applied to the AWS 

case. IPCFA scores the highest score on this criterion while SWGDE gets the second score.  

5) Very well documented and validated chain of custody 
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IPCFA addresses the chain of custody by shortening the length of it, only initializing it 

at the beginning of the process and leaving the rest to be automated via the role-based access 

control imposed on the immutable storage that logs all access, timestamps, and types of 

operations. While this is not the known methodology of documenting chain of custody, it is an 

updated method that can be accepted in courts if expert witnesses are able to testify to the 

trustworthiness of electronically produced CoC. On the other hand, SWGDE does not mention 

CoC in its 2020 publication, but refers to its 2018 forensic acquisition best practice document, 

which recommends that the examiner maintain chain of custody for all collected forensic 

artifacts. For this criterion, SWGDE gets the highest score, but not the full score as this 

recommendation is not directly included in its cloud forensics document. IPCFA gets a very 

close score to SWGDE as it describes the importance of CoC in cloud acquisitions and provides 

an unconventional and shorter CoC.  

6) Used trusted acquisition tools 

This is another area where SWGDE lacks guidance on how the examiner attempts the 

acquisition using the various type of tools (open source, commercial, well-known /tested, and 

cloud-native). There is no motion of forensic tools authentication at all in SWGDE, while the 

publication does mention the use of cloud API as a possible data acquisition venue. In IPCFA, 

tools are categorized, the authentication process of each type of tool is presented, and 

recommendations are proposed—and followed during the AWS case walk-thru. IPCFA also 

recommends using tools that are approved by NIST for the specific acquisition media, when 

possible. IPCFA scores the higher score in this section, while SWGDE gets the middle score 

due to missing tool authentication, which is a possible court hearing showstopper.  

7) Data is captured in operable format 

Both SWGDE and IPCFA recommend capturing the data in operable format, and both 

attempt the same when tested against the AWS use case. While SWGDE does recommend 

obtaining the data in raw format as well, it does not recommend or propose a data validation 

step. Thus, data can be generated in a well-known format, but when examination is attempted, 

it might be corrupted or inoperable. Both IPCFA and SWGDE get equal points for this criterion, 

as IPCFA generates disk images that are operable in AWS, but not raw formats (raw can also 

be generated from the AWS images when needed via any forensic tools such as dd), and 
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SWGDE is missing data validation steps while collecting data in both raw format and AWS 

images.  

8) Utilized secure and immutable evidence storage 

SWGDE recommends evidence preservation and storage to be in sterile, secure, and 

isolated storage, which is the common requirement for digital evidence storage and a best 

practice. While this might be enough in the case of traditional forensics, as well as in some 

cloud forensic cases, access and evidence access beyond the documented chain of custody is 

very difficult to attest to. Having a storage system that is read-only is invaluable to show that 

the data saved in this storage is not editable after storage. Immutable storage makes easy the 

presentation of evidence as authentic as the evidence has the appropriate integrity checks and 

thus is very difficult to be contested. IPCFA clearly states the storage of the digital evidence 

should be immutable and auditable, thus removing any questions relevant to preservation of the 

collected forensic artifacts. IPCFA gets the full points in this area, while SWGDE comes 

second.  

9) Validated the captured forensic data 

This criterion focuses on validating the integrity of all collected forensic data before 

closing the acquisition phase of the forensic process. While this might seem normal to any 

forensic practitioner, SWGDE does not mention validation after complete acquisition takes 

place—the examiner might be calculating hashes on the fly for all sought-after evidence files 

but might miss a file or a few files due to the use of a combination of various acquisition 

techniques. This might be what a defense attorney is looking for—a single evidence file that is 

missing its hash value during a developing court session that can be called inauthentic and 

inadmissible. Furthermore, SWGDE does not mention or recommend hash algorithms that can 

be used, as there are many that are outdated and no longer considered secure. On the other hand, 

IPCFA recommends the use of hash algorithms accepted and tested by NIST. Both IPCFA and 

SWGDE score high scores, but IPCFA gets few points more due to the level and specificities 

of validation it requires.   

SWGDE is indeed a recent and very valuable document that sheds light on cloud 

forensics and provides a process to be followed by practitioners to conduct investigations in the 

realms of cloud service providers. It is broad by design to allow examiners to define their own 
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processes and follow organizations’ documented processes and procedures, which works well 

for larger organizations and corporations. In the case of smaller organizations that do not have 

applicable policies and procedures, the examiner bears the responsibility to define a process 

and follow it, hoping to generate authentic and court-admissible evidence. IPCFA fills in the 

gap, and proffers recommendations, ideas, and strategies for practitioners to keep legal 

evidence-generating in mind from the beginning of the process. In this very short, 

unconventional, and hypothetical comparison, IPCFA shows several advantages over the 

SWGDE publication, and IPCFA scores an overall higher ALR value when taking into 

consideration the challenging nature of cloud evidence.   

Table 14 - ALR Comparison: SWGDE 2020 vs. IPCFA 

Criteria SWGDE  IPCFA 

1) Adopted a structured and published forensic acquisition 

method or process 

5 2 

2) Forensic acquisition practitioner certified abilities 7 7 

3) Trustworthy capturing of the whole acquisition process 9 10 

4) Provided case-supporting artifacts 5 10 

5) Very well documented and validated chain of custody 9 9 

6) Used trusted acquisition tools 5 9 

7) Data is captured in operable format 9 9 

8) Utilized secure and immutable evidence storage 6 10 

9) Validated the captured forensic data 9 10 

IPCFA Demonstration 

During the demonstration, we did not focus on the forensic evidence extraction and 

analysis process, but rather focused on the acquisition of cloud forensic data to demonstrate the 

use of IPCFA in an observational case study. Usually, once the data has been acquired, the 

forensic analysis process can progress in much the same way as it would for non-cloud 

investigations. The demonstration focused on exploring the various cloud tools that can produce 

forensic data that can be considered acceptable in courts of law. The use of these tools in 

conjunction with IPCFA allowed us to generate forensic data that can be thought of as 

admissible due to its integrity, authenticity, and ease of delivery to examiners and judges, if 

needed. The demonstrations involved building a sandbox to simulate the investigated 

environment, as well as creating a forensic server image and hosting it in a different account 

that is assumed to be owned and operated by the external forensic firm. A set of scripts were 
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created to simplify the build and tear down of the sandbox environment to accommodate 

multiple tests and to fix issues encountered during the acquisition process.  

 

Figure 14 - Code snippet to initiate the POC environment 

The demonstration attempted to shed light on the various public cloud tools and 

mechanisms available for the forensic practitioner to use to simplify the acquisition process. 

While most API calls and the made-available interfaces are cloud-specific—in this case Azure-

specific—all public cloud providers have similar interfaces created for various reasons. Some 

cloud providers might offer more or less powerful and useful API calls. For instance, the 

Snapshot API call that allowed us to clone a VM disk has been created for disaster and recovery 

purposes, and that has nothing to do with digital forensics or investigations. The same applies 

to the rest of tools used in this demonstration. These unconventional tools are very effective in 

capturing digital evidence from public cloud deployments as long as they have been executed 

while keeping the integrity and authenticity of the collected data in mind.  

 

Figure 15 - Code snippet to calculate hash values 

We have found that the possibility of creating storage that is immutable until certain 

conditions are met is a feature of almost all of the major public cloud providers, and it is indeed 

a beneficial feature when it comes to cloud forensics. This feature allows for a cloud storage 
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blob to become the most secure storage for digital evidence when it is bundled with role-based 

access control and enabled audit logs. Having storage that can be accessible securely over the 

internet with specific access control lists is invaluable. This allows for access based on what 

Microsoft called SAS tokens (Shared Access Signature), which enables an investigator to 

access, read, or copy the evidence remotely and securely under audit. The access can be granted 

under many conditions including number of access times, allowed operations 

(read/copy/download), and access expiration token.  

 

Figure 16 - Code snippet to create immutable storage 

Actual collection was straightforward, from collecting disk images using the Azure-

provided API calls to obtaining various auditing and server logs. Azure does not provide an 

API to interface with hosted virtual machines’ memory, and explicitly asks forensic examiners 

who want to capture memory dumps to submit an Azure support case and ask for memory dump 

for a specific VM. Other cloud providers such as AWS and GCP are the same; we were able to 

overcome this limitation by injecting a memory extraction tool like LiMe (Linux Memory 

extractor) into the VM command-line and execute the extraction tool with the immutable 

storage designated as a remote destination. This method prevents the direct logon and 

interaction with the virtual machine to run the memory dump tools manually. This was possible 

by utilizing the Azure run-command API calls, which allows for the VM admin to execute 

remote commands on the virtual machines if locked out or unable to login to the machines for 

any reason.  

While the application of IPCFA in this context was on a hypothetical case, it showed 

that a great deal can be accomplished in the realm of IaaS public cloud deployments when it 

comes to digital forensics. The application of IPCFA sheds light on the various capabilities of 

the public clouds that enable forensics investigators to capture authentic forensic data more 
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easily than expected. The proof-of-concept deployment (zoolprod), while experimental, is 

indeed representative of a major deployment highlighted by public cloud providers today—that 

is the, “3-tier architecture” IPCFA was carried out successfully in the Azure context and was 

able to generate forensically-sound data that meets the U.S. federal digital evidence rules as 

well as the best practices recommended for an authentic digital evidence. All this was done by 

utilizing cloud subsystems and components to generate the data copies; thus, it can comply with 

FRE 902(13). All generated data including logs and disk images were directly logged and 

captured from system commands during the generation process. The use of scripted API calls 

would make the application of IPCFA in any cloud provider a replicable process that could be 

re-executed anytime to validate evidence claims and attest to the effectiveness of the 

methodology.  

Implications of Practice 

This research has touched upon numerous areas related to the technological and 

regulatory aspects of cloud forensics. These areas affect all stakeholders involved in the forensic 

process, from large and small businesses and cloud services providers to forensic examiners 

and practitioners, court staff, and policymakers.  

In the past decade, large organizations and enterprises have been proactively preparing 

for the worst, putting comprehensive incident response frameworks and policies in place. An 

integral part of incident response activities is the handling of digital forensics evidence. 

Standards and regulatory bodies such as NIST SP800-86 (Kent et al., 2006), RFC 3227 (Killalea 

& Brezinski, 2002), and ISO 27043:2015 (ISO, 2015) have published guidelines and standards 

to provide organizations with formalized processes and governance activities to reinforce their 

cyber resilience. While these standards have substantially helped organizations to enable 

forensic practitioners to better respond to security incidents requiring digital evidence, the 

standards do not address cloud forensics.  

The present research provides recommendations for organizations of any size on how 

to enable cloud forensics from the technical, legal, and organizational points of view. The 

delivered artifact educates the technical team on the specifications and processes of cloud 

forensics. It also provides the technical and legal knowledge needed for more efficient 
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discussions between the legal and technical sides of the organization. If integrated into one of 

the above standards, the artifact can help fill in the gap of cloud forensic readiness in 

organizations and enterprises.  

While cybersecurity enhancements have always seemed to revolve around large 

businesses, organizations, and enterprises, hackers have begun to realize that they can 

destabilize large businesses by compromising the weak cybersecurity of small businesses. A 

small business can act as a doorway for attackers to be able to gain a foothold in larger 

organizations, as small businesses are always behind when it comes to cybersecurity (Rebner, 

2019). According to the Cyber Readiness Institute (Josue, 2020) only 40% of the small 

businesses that participated in a survey performed in late March 2020 have implemented any 

kind of cybersecurity-related policy. Yet, even without established cybersecurity policies, 

which are the foundation for any cybersecurity efforts, small businesses are still leading the 

industry in the adoption of public cloud services (Lava, 2020). The present research addresses 

the cybersecurity needs of small businesses by providing them with useful guidelines for 

addressing cloud forensics. These guidelines recommend having an incident response policy 

that encompasses digital forensic efforts, explain the legal side of digital forensics in terms 

easily understood by typical IT admins, and propose IPCFA as a practical methodology that 

can be adopted as part of the business’s incident response processes and procedures. IPCFA 

promotes a cost-effective forensic acquisition process by abstracting the legal terms so the 

digital evidence can be acquired by the local IT staff with appropriate background.   

The lack of formal standards among public cloud providers makes the work of forensics 

practitioners very unpredictable. To investigate an incident in the public cloud today, the 

forensics examiner must have detailed knowledge about that specific cloud provider’s 

platforms, architecture, and offered services; otherwise, the examiner will not be able to 

successfully extract sufficient forensic data to provide court-ready evidence. While it might 

seem that providers offer very similar services—for instance, IaaS components are similar—

there are no standards or documents that guide the examiner on how to approach any cloud with 

confidence. IPCFA proposes those generalized procedures, offering a starting point for 

examiners to undertake cloud forensics in any public cloud provider with confidence. While 

IPCFA is high level, it still provides low-level details to help the forensics examiner make 

correct decisions and allocate appropriate data sources. In addition, this work also sheds light 
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on the importance of utilizing cloud-native tools and APIs to acquire data for a forensics case; 

this is one way that public cloud services providers can change their platform to be forensically-

enabled without changing their architecture. Exposing more APIs to the end users and allowing 

them to collect data from the various data sources (volatile, non-volatile, and supporting data) 

helps remove a lot of the burden and challenges related to cloud forensics today.  

In cloud forensics, one challenge is the lack of relevant literature for the court staff 

(Grispos et al., 2012; Simou et al., 2016). During a trial, an expert witness can present evidence 

that has been collected from a cloud system with the possible challenge of having to explain to 

jurors what cloud computing is and how the witness generated the evidence without 

confiscating a physical device. In addition, jurors and judges might not be able to make an 

informed decision without understanding the concept of cloud forensics and how it differs from 

traditional digital forensics. In Australia, Adams et al. (2013) proposed a digital forensic model 

that can be easily explained in court. It uses UML diagrams and textual representations to 

address court staff, making the forensic process clear so judges and juries can make informed 

decisions.  

The present artifact and its research, including IPCFA, can benefit court systems by 

preparing trial staff for litigations involving cloud computing or cloud evidence, more 

specifically the rapidly adopted public cloud computing model. This work provides a simple 

breakdown of the differences between traditional forensics and cloud forensics as well as an 

explanation of those differences. This research also provides IPCFA with a flowchart that 

represents the various stages of the acquisition process and where each process takes place. 

This can be coupled with one of the digital forensics models that puts some emphasis on cloud 

forensics such as Martini and Choo (2012), creating a useful resource to the average juror who 

is usually an individual from the general public who might not have heard of or used cloud 

computing in a business context. Furthermore, the research provides attorneys with the means 

to prepare for trials and cover their bases with respect to their claimed evidence. If ALR is 

executed prior to the court date, attorneys can get a reasonable probability of how court-ready 

their evidence is.  

While this research focused on forensic acquisition carried out by the plaintiff or 

delegated third party, law enforcement agencies (LEAs) and policymakers can also benefit from 
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this study. LEAs can adopt and use IPCFA just as a civilian forensic practitioner would. 

Moreover, having a documented process to follow to perform the acquisition can make a big 

difference in the effort required to train and prepare forensic practitioners. The lack of 

standards, procedures, guidelines, and certified tools related to cloud forensics should also 

encourage LEAs and policymakers to dedicate more resources to fill the gap in this area. This 

research also informs policymakers about the current gap between digital forensics and cloud 

forensics in terms of legislation and digital evidence rules. While federal rules of evidence do 

apply to cloud evidence, these rules should be reviewed and refined to address the cloud as a 

possible source of forensic data as well as cloud chain of custody in order to better articulate 

how to legally handle and authenticate cloud evidence.  
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CHAPTER SEVEN 

CONCLUSION 

This research aimed to study and identify which digital forensic tools and acquisition 

techniques are applicable for court-grade evidence acquisition from IaaS deployments in the 

public cloud. By analyzing the existing digital forensics models, processes, best practices, legal 

requirements for digital evidence, available digital forensic tools libraries, and published 

guidelines from the largest public cloud providers in the US, we conclude that there is a dearth 

of structured methodologies and processes to guide practitioners in digital forensic 

investigations in the realm of public clouds, including IaaS. We have also concluded that there 

is no lack of non-volatile data forensic acquisition tools to for IaaS, rather the opposite, as cloud-

native tools makes the acquisition simple, effective, and efficient. This research proposed an 

IaaS Public Cloud Forensic Acquisition (IPCFA) practical methodology to acquire sound 

forensic evidence from public cloud IaaS deployments. IPCFA provides direction and guidance 

to digital forensic investigators who have cases involving IaaS public cloud environments. 

IPCFA translates the legal needs into technical strategies and tools in order for them to collect 

data considered admissible in courts of law.  

The proposed methodology enables small organizations and private investigators to 

pursue a cloud forensics case while not jeopardizing the authenticity of the collected evidence. 

It enables the extraction of court-grade evidence without going through the cloud service 

provider. Based on the native tools available from the public cloud providers and the existing 

digital forensic tools, we suggest it is possible to execute a forensic acquisition in an IaaS public 

cloud environment, and it can be comparable to a physical acquisition of servers from a 

datacenter. We recommend following a structured methodology, such as the proposed IPCFA, 

that addresses all possible evidence admissibility issues related to evidence authenticity and 

integrity.  
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Research Limitations 

Although this design-based research developed a useful methodology for obtaining 

court-admissible evidence, the research performed does have limitations. The original proposal 

and scope of this research was to develop a practical methodology for IaaS acquisition in public 

clouds and to validate the methodology by sharing it with experts in the field. The validation 

was planned to start from the design phase by sharing the expertise, capturing feedback, and 

adjusting the artifact accordingly until reaching acceptance from the experts. The last bit of 

validation was planned to simulate the methodology application in a real court case to show its 

effectiveness. The validation strategies had to change in response to developments during the 

research process as well as the limited access to resources. The validation shifted to an 

observational case study instead, which is not a strong evaluation methodology.  

Recruiting experts with specific criteria to perform a Delphi study or form a focus group 

was not successful. The candidate pool was not strong enough; there were not enough digital 

forensics, cloud, and practical legal knowledge experts to form strong opinions and receive 

sound feedback to validate our work. Testing the methodology on past cases was not achievable 

during the research timeframe due to our limited access to previously archived forensic cases 

that involved public cloud or IaaS. While there have been some potential cases, access to the 

complete data behind these cases was not available to us so a genuine and effective comparison 

could not be created.  

More changes to the scope of artifact validation and verification were introduced due to 

the publication of SWGDE's Best Practices for Digital Evidence Acquisition from Cloud 

Service Providers (2020). SWGDE (2020) came with acquisition recommendations that were 

very close to the ones proposed by IPCFA phases and the suggested processes; thus, ALR was 

created, and the Azure experimental case study was introduced. While the Azure case study 

focused on the technical application of IPCFA and observed the outcome, ALR integrated the 

various legal requirements for admissible evidence in U.S. courts of law and connected them to 

the technical processes followed and executed by forensic examiners during cybercrime 

forensic investigations.  

As the researchers do not have the practical legal experience nor professional exposure 

to the U.S. court systems, we have relied heavily on the limited literature to highlight the 
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connection between the technical and legal requirements of digital evidence admissibility, and 

thus generated the ALR to quantify technical decisions toward court admissibility. While the 

ALR might not be the sturdiest strategy to perform such an exercise, the literature shows no 

other tool or mechanism available today that attempts to provide a weighted probability of 

digital evidence admissibility.   

Future Research 

Continuation of this research would be beneficial to the digital forensic community; 

thus, addressing the limitations provide a starting point. Applying more rigorous evaluation 

methodologies to IPCFA such as a well-assembled focus group study or a Delphi study would 

help address any gaps that might have missed with the observational study, solidifying the 

generated artifact. Another opportunity to extend this research is to reframe the proposed 

artifact to address any drastic changes underlying technical and legal assumptions. 

Looking forward, expanding on IPCFA to encompass the other cloud services model 

would be beneficial to the digital forensics’ community. While the literatures show some 

research exists in the areas of cloud storage and SaaS, the focus has been on the tooling and 

technical collection only. Adding the legal aspects to such research will help address the gap 

we have today between investigations in the public cloud realm and our court system, which 

demonstrates the real value of digital forensics versus corporate incident response practices. 

IPCFA expansion can also be on the ALR front, as it can be extended and hardened to be able 

to produce a very strong and accurate probability about digital evidence admissibility into the 

U.S. Court system.  

While it was a coincidence that IPCFA and SWGDE (2020) happened to have very 

similar structures with three major phases and similar definitions of each phase, this opens 

opportunities for collaboration. Recommendations and proposed processes from IPCFA and 

SWGDE (2020) can be merged to form a solid cloud forensic acquisition framework that could 

encompass cases of both CSP-involved and CSP-free investigations. This framework could be 

developed as extensible to allow for other public cloud service models such as SaaS or CaaS to 

be integrated. The framework would act as a baseline to allow for faster developments of such 

extensions.    
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From technical perspective, there are still a lot of areas in the public cloud that has been 

untouched to date, such as serverless and PaaS forensics, where the CSP takes care of your 

infrastructure elements, and you only handle your application and code.   This brings with it all 

possible challenges to cloud forensics as your reliance on the cloud providers gets stronger and 

deeper. Another arguable area of research would be investigations that embrace Microservices 

architecture and Containerized platforms (CaaS). While they do run on an IaaS or PaaS layers, 

each container provides a service that might fall within an investigation scope. These are just a 

sample of the open areas of research when it comes to cloud forensics.  
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APPENDICES 

APPENDIX A: EXISTING DF ACQUISITION 

METHODOLOGIES AND PROCEDURES 

Table 15 - Existing DF Acquisition Methodologies and Procedures 

Methodology/Procedure Phases and processes  

“Guidelines for Evidence Collection 

and Archiving” (Killalea & Brezinski, 

2002) 

 

 

- List systems from which the evidence will be 

collected. 

- Establish what is likely to be relevant and 

admissible (collect less, more efficient). 

- Plan order of volatility for each system. 

- Remove external avenues for change. 

- Follow order of volatility; collect the 

evidence with relevant tools. 

- Record the extent of the system's clock drift. 

- Question what else may be evidence to be 

collected.  

- Document each step. 

- Document people present at the crime scene.  

- Generate checksums and cryptographically 

sign the collected evidence. 

"Guide to Integrating Forensic 

Techniques into Incident Response" 

(Kent et al., 2006) 

- Develop a plan for acquisition. 

- Likely value 

- Volatility 

- Amount of effort required  

- Acquire the data. 

- Verify the integrity of the data.  
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“Electronic Crime Scene Investigation: 

A Guide for First Responders, Second 

Edition” (NIJ, 2008) 

- If the computer is powered on, and there is a 

digital evidence seizure trained personnel, do 

not turn it off.  

- Locate and secure all evidence within the 

scope of authority for the specific 

circumstances. 

- Document, log, and photograph all 

computers, devices, connections, cables, and 

power supplies. 

- Log and secure all evidence according to 

agency policies pending forensic 

examination. 

“Digital Forensics Processing and 

Procedures: Meeting the Requirements 

of ISO 17020, ISO 17025, ISO 27001 

and Best Practice Requirements” 

(Watson & Jones, 2013) 

- Inform relevant parties of consequences of 

live capture. 

- Establish remote connectivity. 

- Start acquisition in order of volatility.  

- Take network traffic dumps. 

- Reserve/protect the evidence. 

- Intercept evidence at scene. 

- Create detailed records of scene. 

“SWGDE Best Practices for Digital 

Evidence Collection” (SWGDE, 2018b) 

- Prepare possible acquisition tools, destination 

media, and to collect memory and ancillary 

data.  

- Consider acquisition location, environment, 

encryption, and boot loaders restrictions. 

- Preview the contents of potential data sources 

prior to acquisition to reduce the amount of 

data acquired (triage). 

- Execute the appropriate acquisition method 

(physical, logical, targeted, clone): 
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- If live acquisition is used, tools should 

execute trusted binaries from controlled 

media. 

- If live acquisition is used, software 

should execute at the lowest level of 

privilege needed to ensure all possible 

data is available for acquisition. 

- Validate the integrity of the data as acquired. 

- Document digital evidence acquisition per 

organizational policy. 

- Document chain of custody as required by 

organizational policy. 

“SWGDE Best Practices for Digital 

Evidence Acquisition from Cloud 

Service Providers” (SWGDE, 2020) 

- Prior to acquisition phase: 

- Identify the CSP, data sources, data types, 

timeline, and utilized services. This might be 

billing information for the cloud account, 

DNS records, or privacy policies. 

- Ask the CSP legally to preserve the data 

sought. This can be carried out via the 

involvement of law enforcements.  

- Identify and choose which acquisition 

methodology to use. If the CSP involvement 

is required, contact the CSP via their legal 

means.  

- During acquisition phase: 

- Document all evidentiary data via 

handwritten notes, screen captures, or 

photographs.  

- Acquire and do not omit all attached media, 

local and in the cloud. For media acquisition, 
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follow the acquisition process outlined in 

(SWGDE, 2018a). 

- Confirm if the type of sought data can be 

acquired using the acquisition methodology 

selected before.   

- Acquire the data with the selected 

methodology. If the provider is asked to 

provide the data, keep in mind it might need 

to be unencrypted or transformed into another 

format to be processes.  

- If it was not possible to execute the selected 

methodology, and the acquisition fails, then 

take photographs and screenshots of the 

relevant data.  

- After acquisition phase: 

- Calculate integrity hash values for acquired 

data. If the CSP provided the data, re-check 

the digital signatures.  

- Verify that the executed acquisition 

methodology was able to acquire all required 

data. If data was furnished by the CSP, data 

still needs to be verified.  

- Document the whole process using the 

organization’s defined policies and 

procedures.   

- Document any data received from the CSP in 

digital media or storage.  

- Store all acquired data following the 

organizational policies and procedures that 

address digital evidence storage.  
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APPENDIX B: AZURE ACQUISITION SANDBOX 

Table 16 - Azure Sandbox – Zool Corp. PROD Environment 

Software/Tool name Purpose 

Linux CentOS 7.9 Web & App Linux servers  

Nginx 2.5.6 Web servers – reverse proxy 

WordPress 13.2 App servers – vulnerable CMS (WordPress) 

Microsoft Windows 2016  DB servers 

Microsoft SQL Server 2016 MySQL RDMS 

Azure Load balancers Traffic Load balancer between tiers  

Azure Storage accounts Storage account for all tiers 

 

Table 17 - Azure Sandbox – Forensic Environment 

Component name Purpose 

Microsoft Windows 10 Pro (with DF tools) Forensic Server Image  

Azure Blob storage  Immutable storage for evidence 

Azure Fileshare  A file share to connect to forensic server 

Azure Key Vault Secret vault to save hash values 

 

Table 18 - Azure Sandbox – Scripts to Deploy the Sandbox and Perform the Acquisition 

Script name Purpose 

azDF_pocDeploy.ps1 Deploys the Zoolprod environment 

azDF_pocDeploy.init Cloud-init script 

azDF_DFenvPrep.ps1 Deploys the forensic server environment 

azDF_dsiskSnap.ps1 Acquires disk images 

azDF_lnxMemSnap.ps Acquires Linux memory images with LiMe 

azDF_lnxMemSnap.sh LiMe deployment bash script 

azDF_winMemSnap.ps1 Acquires Windows memory images with WinpMem 

azDF_winMemSnapLocal.ps1 Local execution of WinpMem 

azDF_cloudLogs.ps1 Collect various logs from Azure subscription 

 

All testing scripts can be found in the following GitHub repository: 

https://github.com/azdfir/ipcfa-poc  

 

Sandbox Notes: 

- All scripts have been created for testing purposes only, and they are not part of the 

IPCFA methodology.  

- Requires two Azure pay-as-you-go subscriptions: 

o One hosts the DF image in a Shared Gallery.  

https://github.com/azdfir/ipcfa-poc
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o One is the sandbox to pull the Shared Gallery image. 

- Manually mount Azure File Share onto the forensic server. 

- Manually mount immutable storage using NFS3.0 to the forensic server. 

- Install zCopy in order to send screenshots and video captures to the protected blob. 

- Use Azure Cloud Shell with either Azure PS or CLI to add hash values to the created 

Vault.  
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