
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2022

Secure Storage Model for Digital Forensic Readiness Secure Storage Model for Digital Forensic Readiness

Avinash Singh
University of Pretoria

Richard Adeyemi Ikuesan
Zayed University

Hein Venter
University of Pretoria

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Singh, Avinash; Ikuesan, Richard Adeyemi; and Venter, Hein, "Secure Storage Model for Digital Forensic
Readiness" (2022). All Works. 4883.
https://zuscholars.zu.ac.ae/works/4883

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4883?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Secure Storage Model for Digital
Forensic Readiness

Avinash Singh1, Richard Adeyemi Ikuesan2, and Hein Venter1
1 University of Pretoria, Pretoria, South Africa
2 College of Technological Innovation, Zayed University, Abu Dhabi, UAE.

Corresponding author: Avinash Singh (e-mail: asingh@cs.up.ac.za).

ABSTRACT Securing digital evidence is a key factor that contributes to evidence admissibility during

digital forensic investigations, particularly in establishing the chain of custody of digital evidence.

However, not enough is done to ensure that the environment and access to the evidence are secure.

Attackers can go to extreme lengths to cover up their tracks, which is a serious concern to digital forensics

– particularly digital forensic readiness. If an attacker gains access to the location where evidence is stored,

they could easily alter the evidence (if not remove it altogether). Even though integrity checks can be

performed to ensure that the evidence is sound, the collected evidence may contain sensitive information

that an attacker can easily use for other forms of attack. To this end, this paper proposes a model for

securely storing digital evidence captured pre- and post-incident to achieve reactive forensics. Various

components were considered, such as integrity checks, environment sandboxing, strong encryption, two-

factor authentication, as well as unique random file naming. A proof-of-concept tool was developed to

realize this model and to prove its validity. A series of tests were conducted to check for system security,

performance, and requirements validation, Overall, the results obtained showed that, with minimal effort,

securing forensic artefacts is a relatively inexpensive and reliable feat. This paper aims to standardize

evidence storage, practice high security standards, as well as remove the need to create new systems that

achieve the same purpose.

INDEX TERMS Digital Forensic Readiness; Secure Storage; Integrity Verification; Encryption, Digital

Forensic Soundness

I. INTRODUCTION

The upsurge in cyber-attacks and data exploitation has

made the need for digital investigations paramount [1]–[3].

Standardization and adherence to best practices have

become essential to ensure the least amount of human error

causing inadmissible evidence [4], [5]. Forensic artefacts

are very important when it comes to investigation and

litigation, as they provide the details of an incident [6], [7].

When forensic artefacts are presented in a court of law, they

are subject to scrutiny and require verification and cross-

examination [8], [9]. Digital evidence needs to preserve the

CIA triad [10], namely confidentiality, integrity, and

availability. Confidentiality of digital evidence must be

ensured because the evidence may contain sensitive

information such as credit card information or other

personal identifiers [10]. To protect the evidence, strict

access control needs to be maintained, and/or an encryption

scheme has to be used to ensure that only an investigator or

authorized parties have access to the digital evidence [11].

Ensuring the integrity of the digital evidence is one of the

most important processes of any digital investigation, as an

investigator needs to prove that the evidence was not

fabricated or tampered with in any way. To achieve this, a

forensic copy of the original evidence, as well as the

software logs and the chain of custody, is kept [12]. The

process followed by the investigator to acquire the evidence

also needs to be documented. The forensic hash of the

evidence needs to be calculated at different times – during

the time of collection and storage – to ensure that the

original evidence was not changed, and the process

followed by the investigator was sound and did not modify

the evidence in any way. Therefore, a secure storage model

is needed to improve the investigation process and

safeguard any sensitive information collected. The same

problem affects digital forensic readiness systems, whether

large or small organizations or even individual people.

These systems collect evidence proactively, therefore,

evidence preservation and storage processes are vital to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

ensure that evidence is valid and authentic.

The next section provides some background on digital

forensic readiness and encryption. Thereafter, the proposed

process model is explained, detailing each of the processes

involved, followed by the proof-of-concept prototype tool

that was developed. Next, the tool was evaluated in terms

of usefulness and performance, before the paper is

concluded.

II. BACKGROUND

Digital forensic readiness (DFR) as defined by Tan [13] is

the ability of an organization to maximize its evidence

collection mechanisms whilst aiming to reduce the costs

involved in collection [13]. Therefore, to achieve DFR,

potential digital evidence collection needs to take place

before an incident can occur. DFR is a proactive approach to

digital forensics that is more robust and cost-effective in the

long term. To implement DFR in any organization, its

business operations need to be well defined and understood,

as they may differ from organization to organization. The

ISO/IEC 27043 international standard [14] defines a more

robust guideline about the traditional digital investigation

processes as well as high-level readiness processes. This

encompasses five processes, namely readiness, initialization,

acquisition, investigative, and concurrent processes [14]. It

also ties in with the investigation lifecycle as shown in Figure

1, which consists of planning, acquisition, preservation,

analysis, reporting, dissemination, and chain of custody.

Most research focuses on the acquisition and analysis of

evidence; however, little is done about the preservation of

evidence and its integrity. No comprehensive models or

guidelines are defined for evidence integrity preservation,

specifically in digital forensic readiness. Although ISO/IEC

27037 [15] contains a clause on evidence preservation that

outlines general guidelines on the physical storage and

preservation of evidence, it is not sufficient for

comprehensive evidence integrity preservation in terms of

storage security.

Figure 1. Investigation Lifecycle

Most existing research focuses on using encryption to

secure data that is being stored [16]–[19]. Due to the nature

of the data stored, most common encryption focuses on

symmetric encryption which means that there is a single

encryption key that also serves as the decryption key [11],

[20]. AES (Advanced Encryption Standard) is the dominant

(standard) encryption scheme used by cloud and enterprise

platforms because of its speed and performance [11], [20],

[21]. However, if the decryption key is not stored securely, it

leaves the encrypted data still vulnerable to be stolen or

misused. At the time of writing this paper, no model or

framework provides the best practice on how to securely

store data and ensure its integrity in a digital forensic

environment. In digital forensics, it is essential that the

integrity of the data remains intact to make it reputable and

admissible in a court of law [22], [23]. In DFR, potential

digital evidence (PDE) is defined as information or data

stored or transmitted in binary form, which has not yet been

determined to be relevant to the investigation (through the

process of examination and analysis) [14]. Only after the

PDE has been positively identified as evidence, it is accepted

as digital evidence. To mimic a more real-world application

of PDE with DFR in mind all references to PDE are made to

simplify the explanations. PDE can be seen as small artefacts

(not large disk dumps) that may hold important or sensitive

data. Since PDE could be used to incriminate an individual, it

needs to maintain its integrity and authenticity to be

admissible. Therefore, some processes must be in place to

ensure the correct steps and processes are followed, to ensure

the integrity of the PDE. To date, no processes or models

exist to address the integrity constraint, especially with DFR.

There are also no tools that focus solely on the storage of

PDE. On the contrary, these tools focus on the extraction and

collection of PDE, and it is up to the investigator or

organization to safeguard and preserve the PDE according to

their policies [24].

Anti-forensics is cumbersome in cloud environments, and

attackers are always trying to cover up their footprints [25].

They usually move laterally in a network to find

vulnerabilities and exploit them by removing any traces of

the attack from the logs and computers. Therefore, having a

secure environment is important, and sensitive information

should be secured and encrypted. While several cloud service

providers do provide encryption, it often comes at a huge

cost or additional overhead and attackers can easily bypass

the service providers’ countermeasures by targeting less

secure Virtual Machines (VMs) [25]. While several studies

have explored readiness in the cloud [15], [26]–[28], the

more fundamental problem is providing secure storage for

the PDE artifacts that are collected. To that end, this research

developed a secure storage system to store digitally forensic

ready PDE artifacts in a forensically sound manner. The next

section explains the developed process model, namely Secure

Readiness Storage (SecureRS), in accordance with security

standards and the digital forensic investigation lifecycle.

III. SecureRS PROCESS MODEL

To address the lack of an automated mechanism for

preserving evidence and maintaining integrity, a model was

developed targeting the various security and forensic

aspects during the investigation lifecycle. This model is an

improvement of the authors’ previous work [29]. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

SecureRS model ties in with some of the readiness

processes addressed in ISO/IEC 27043 [14]. For instance,

the planning process group of ISO/IEC 27043 [14] involves

the “Planning pre-incident collection, storage, and handling

of data representing potential digital evidence” [14]. It

discusses the criteria of collection and storage, but nothing

is provided on how storage and evidence preservation

should be carried out. Therefore, the proposed model

consists of four high-level processes, namely data ingestion,

forensic soundness assurance, PDE storage, and forensic

soundness verification (see Figure 2).

The data ingestion process acts as a mechanism for data to

be fed into the secure system. It ensures a controlled

environment because it is common practice to make use of

a Web API. The SecureRS model makes use of a

Representational State Transfer (REST) API to allow a

multitude of data ingestion formats as well as a consistent

endpoint with a lower bandwidth than other API types.

When questioning the integrity of a storage engine or

system, it is important to understand what processes the

data undergoes. To ensure that the system or a user does not

modify any information, integrity checksums are calculated

before and after to ensure nothing was changed. Since the

collection of evidence does not fall within the scope of the

current research, it is assumed that data collected and sent

to the model is forensically sound already. The PDE storage

process is built for security, based on the CIA triad. During

the final stage – the verification process – the integrity

before and after storage is checked to ensure nothing has

been modified, thus ensuring forensic soundness. The four

processes followed in the model are discussed next in more

detail. The four phases are outlined, and how each aids the

security as well as forensic aspects that a piece of evidence

needs to possess for the evidence to be admissible in a court

of law.

A. DATA INGESTION PROCESS

The data ingestion process comprises seven steps as seen

in Figure 2. This process starts with Potential Digital

Evidence (PDE) (i.e., small artefacts or pieces of data that

may have forensic value) and the PDE’s metadata, which

helps the system identify the origin and purpose of the

PDE. The collection of PDE is not considered part of the

scope of this research, as it is a vast research area on its

own and only the storage processes are explored in this

research. PDE metadata that is needed includes the user or

origin, IP address, computer name, rank, file name, and

hash checksum. This information is necessary, particularly

in an organization, to know where the PDE originates from

and to manage the data.

The next stage involves using a transport protocol so that

the data from the origin can be received by the system.

Different protocols are available; however, the most used

and common transport protocol, which is the foundation of

the internet, is TCP/IP. Using the TCP/IP method for data

transport makes it reliable for data ingestions. The transport

method also needs to be secured to prevent eavesdroppers

or man-in-the-middle attacks. The transport encryption

layer that is chosen involves making use of the secure

socket layer (SSL). This SSL layer, coupled with TCP/IP

together with HTTP and its application layer protocol,

provides HTTPS. An HTTPS connection provides a secure

means of communication that is encrypted between two

parties, namely the client and server. Using TLS (Transport

Layer Security)/SSL is an industry best practice and

standard as a move towards a more secure internet. If data

is intercepted (by a man-in-the-middle attack, for example),

it will be potentially unusable to an attacker as all data

would be encrypted [30]. In the SecureRS model, it was

decided to make use of a web REST API for data transfer

and logic processing. Web APIs are portable and the most

modular method of easily ingesting data, requiring minimal

Figure 2. SecureRS Process Model

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

effort to set up. To make the ingestion process faster and

more standardized, a known standardized API endpoint

(similar to a URL path) is exposed on the webserver for

data to be ingested. Furthermore, allowing only the HTTP

POST method ensures that data remains secure and

encrypted in the body of the request. This method also

allows large files to be sent – as opposed to the HTTP GET

method. The data transferred in the POST method prevents

the webserver from logging the request information as what

can be seen from GET requests in server logs. Such

webserver logging could prove harmful as the GET request

parameters would be passed through the URL, which may

contain sensitive information. For simplicity, the data

format that is supported for ingestion is form data, as this

allows both textual information and file upload.

To ensure that only authorized parties can push data to

the storage engine, an API key and prefix key are generated

through a system admin account for each device/user within

the organization. The API key is hashed before it is stored,

therefore, the key is only displayed and available at the time

it is created. The API prefix furthermore serves as a unique

identifier. The API token is used in conjunction with the

prefix key to add another layer of security. The prefix key

and API key are then verified and, once successful, the

metadata is sanitized. This sanitization removes any

malicious data, SQL, or JS injections from cross-site

scripting (XSS) (from the metadata only). The PDE itself is

treated as a read-only file and not displayed in the system,

thereby removing the need to perform any sanitization, and

so ensuring the integrity of the PDE. The metadata

sanitization is performed to ensure that no exploits and

vulnerabilities are exposed by the system itself and to

conform to best web security practices. The metadata

collected about the PDE is shown in Figure 3, which is kept

separate from the PDE. After data has been sanitized to

ensure system security, the next process is data validation.

The validation process ensures that the data expected is the

data received and that the data is parsed with the correct

data structure and format. Once the data has been

successfully validated, it gets sent on to the next phase for

forensic assurance.

B. FORENSIC SOUNDNESS ASSURANCE PROCESS

For digital evidence to be forensically sound and to be

held admissible in a court of law, its collection, storing, and

analysis must be documented in a legally acceptable

manner [16], [17], [31]. Therefore, assurance is needed to

prove that the evidence has not been corrupted or destroyed

during the investigation process, whether by accident or

intentionally. This process furthermore generates the

relevant information (such as hash checksums) to prove the

forensic soundness of the collected data once the data has

been received. Since this system is simply a storage engine,

it is assumed that the data that was collected before the

system ingestion was forensically sound. However, since

nothing has been written to disk or the database as yet, this

process is done in-memory. This is to ensure the data was

not modified while being written to the disk, whether by

another process or due to human error.

The ability to ensure forensic soundness is achieved by

taking an in-memory hash (H1) of the PDE using an MD5

hash algorithm as an integrity measure. It is then compared

to the metadata md5sum field received from the HTTP

POST request to ensure the data sent by the origin is indeed

what is received by the API. This serves a dual purpose,

namely, to ensure data was not lost or intercepted along the

way, and to maintain the integrity of the PDE. Although

MD5 is typically seen as an insecure hashing algorithm, it

is very suitable as an integrity measure due to its efficiency

in computing a hash as opposed to securing hashing

algorithms. The next step is to secure the PDE by

performing symmetric key encryption. This is to ensure that

data stored on the disk is not subject to being read by

another system or person, as a PDE file could contain

sensitive information. After PDE encryption, another hash

(H2) is generated of the encrypted PDE. This new hash is

used as input to the process of forensic soundness

verification. The next process involves the storage of the

encrypted PDE to disk.

C. PDE STORAGE PROCESS

The storage process starts by taking the encrypted PDE

from memory and generating a unique filename of 60

alpha-numeric characters to ensure that the system is

immune to URL manipulation. This unique filename

prevents a PDE from being easily identified by a system

admin since there would just be random encrypted files.

The PDE is stored to disk with read-only permissions on

the file system, such that no process or human error can

accidentally change it, thereby violating the PDE’s

integrity. After setting the permissions, the file is now Figure 3. SecureRS http request example

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

safely stored in the secure storage within the protected

directory in the virtual environment, ready for verification

and integrity confirmation. Changing the extrinsic metadata

of the PDE (such as the file name or permissions) does not

change the data of the PDE itself, hence the hash and

integrity remain intact [18], [32]. Details of the forensic

verification and assurance process are presented next.

D. FORENSIC SOUNDNESS VERIFICATION PROCESS

This process involves ensuring that the integrity of the

evidence is indeed intact and unaltered, thus adhering to

standard forensic practice. To ensure that the integrity of

the stored PDE remains intact, a hash (H3) is computed on

the stored and encrypted PDE. This adds a verification

layer which ensures that the forensic soundness of the PDE

is maintained from the point of encryption to the storage of

the PDE.

To ensure forensic soundness, the in-memory hash of the

encrypted PDE (H2) is then compared to (H3). If H2 and

H3 are the same, no deliberate or accidental manipulation

of the PDE occurred, and it is verified as forensically

sound. When the verification was successful, the entry is

inserted into the database for reference. This entry contains

the metadata of the PDE itself, such as the location of the

stored PDE, and not the actual PDE itself. Storing a

reference to a file location in a database – as opposed to

storing the entire file – conforms to best practices, due to

the inefficiency of storing binary data in a relational

database [19]. This also makes it difficult for an attacker as

it expands the attack vector by abstracting the PDE itself

from the metadata. For example, if an attacker gets

unauthorized access to the database, the only information

that can be extracted is the metadata which on its own does

not give enough information for malicious intent. To further

protect the entry in the database, the original hash and PDE

location are encrypted by the system, adding a layer of

security, and thereby making it impossible for an attacker

or system admin to relate PDE to its metadata outside the

system. If the hashes in the verification process are not

identical, it can be assumed that external modification could

have occurred or that something unconventional originated,

such as electricity spikes or bad disk sectors, thus resulting

in invalidating the forensic soundness. Such an instance

would be rare and uncontrolled, and a system admin would

be notified to manually investigate what the cause could

have been. This investigation is a manual process, as the

violation would have occurred under unknown

circumstances and was not part of the scope of this

research.

E. PDE DOWNLOAD PROCESS

The downloading of PDE is also an important aspect of

the system to ensure that only authorized parties are

allowed to download the PDE. To protect the PDE, the

system first verifies the session of the logged-in user and

then prompts the user for the 2FA pin. Once the pin and the

session have been successfully validated, then only does the

system decrypt the PDE. Thereafter, another hash (H4) is

generated and then compared to the original hash (H1) to

ensure that nothing has happened to the PDE during storage

as well as to verify the integrity of the forensic copy that

will be downloaded by the investigator. In the event the

hashes do not match, the system will alert the administrator

to manually investigate the issue. Therefore, the

downloaded PDE that the investigator will receive is safe

and its integrity is maintained from ingestion into the

system to download, thereby minimizing any human error

that can occur as well as serving as a secure backup to PDE.

The hash is also given to the investigator if further

corroboration or verification is needed. The next section

discusses the reference implementation of the proposed

SecureRS model.

IV. SecureRS TOOL

To show that the proposed SecureRS process model (see

Figure 2) would work and is valid, a proof-of-concept tool

was created using agile software development methodology

[33]. The requirement specification and usability are the

core functions for any software following agile principles.

To ensure that the proposed SecureRS proof-of-concept

tool adheres to standards and good software practice and

principles, the tool was tested using the testing processes of

the Computer Forensics Tool Testing (CFTT) program [34]

of the National Institute of Standards and Technology

(NIST) [35].

A. SecureRS SYSTEM REQUIREMENTS

SPECIFICATION

The system requirements are divided into two categories,

namely secure storage core requirements (SS-CR) (see

Table 1) and secure storage optional requirements (SS-OR)

(see Table 2). For example, in Table 1 the label column

provides a reference number which will be used in Section

C. The description, on the other hand, provides the

requirements for the tool, for example, SS-CR-01 says that

the tool shall ingest data from an API endpoint, which

specifies the functionality of the tool.

Table 1. Secure Storage Core Requirements (SS-CR)

Label Description

SS-CR-01 Data should be ingested through an API

endpoint

SS-CR-02 All activities performed within the tool

should be logged for auditability

SS-CR-03 Data should be able to be ingested

concurrently

SS-CR-04 Data storage should be consistent with data

received by the system

SS-CR-05 PDE data must be hashed for integrity

verification

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

SS-CR-06 Metadata must be sanitized for security

purposes

SS-CR-07 PDE and sensitive metadata must be

encrypted using strong encryption

SS-CR-08 The hash digest and metadata should be

viewable by an investigator

SS-CR-09 The tool must provide digests of the

encrypted PDE to ensure its forensic

soundness

SS-CR-10 Each PDE should be distinguishable from

another anonymously

SS-CR-11 Ingested data collected should be displayed

SS-CR-12 Ingested data must be validated for

correctness

SS-CR-13 Authorization and authentication must be

implemented fully for access control

SS-CR-14 An investigator should be able to securely

download the PDE

Table 2. Secure Storage Optional Requirements (SS-OR)

Label Description

SS-OR-01 All metadata data should be encrypted for

anonymity

SS-OR-02 PDE can only be decrypted on a successful

session and 2FA validation

SS-OR-03 All stored PDE for specific user

permissions should be viewable

SS-OR-04 Malicious data should not be ingested and

stored as PDE

SS-OR-05 PDE should not be subject to URL

manipulation

B. SecureRS SYSTEM IMPLEMENTATION

Now that the requirements have been defined, the tool

was implemented using a modular approach and applying

agile principles. The programming language that was

chosen to implement this tool was Python, due to its

flexibility and built-in frameworks and libraries. In order to

make a web platform and allow easy management, Django

web framework [36] was chosen. The tool uses Django

REST framework [37] as it provides a mechanism for

applying RESTful API functionality fairly easily. This

framework furthermore provides authentication based on a

secure API key, which is created from the admin panel on

the system, allowing easy management and revoking of

keys. Each key is unique and serves as an authentication

mechanism for making an HTTP POST request to the API

endpoint. The security sanitization process followed uses

Django’s default security middleware as well as custom

sanitization middleware to remove special characters and

tags from the metadata. The different middlewares used

include: SecurityMiddleware, SessionMiddleware,

CsrfViewMiddleware, AuthenticationMiddleware,

XFrameOptionsMiddleware, OTPMiddleware,

SessionSecurityMiddleware. The tool also made use of

encrypted fields in Django models to further protect the

sensitive metadata. This was done to prevent the misuse of

data due to unauthorized access or misconduct.

To secure the PDE file, a Django-encrypted file field

was chosen, which uses the Fernet encryption scheme [38].

The latter is a symmetric key algorithm that makes sure that

the encrypted message cannot be manipulated, brute-forced,

or read without a password key. This key is URL safe

encoded with base64 so that any reserved, unprintable, or

non-ASCII characters are replaced. It ensures that no errors

occur when handling the keys that an attacker could

potentially exploit. Fernet also makes use of advanced

encryption standard (AES) 128-bit cipher block chaining

(CBC) mode and public-key cryptographic standards

number 7 (PKCS7) padding. This means that the cipher is

in multiples of 128-bits, with PKCS7 padding to fill the

remaining bits. The password key makes use of a hash-

based message authentication code (HMAC). The HMAC

serves a dual purpose and simultaneously verifies the

integrity and authenticity of a message. This is done to

ensure better security, as HMAC was used in conjunction

with a simple hashing algorithm (SHA) of 256 bits

(SHA256) [38]. All symmetric encryption keys are on the

system itself, either as a setting in the Django configuration

or managed by the Django framework itself.

Portability was one of the contributing factors for

making use of Docker [39] (a containerized approach to

hosting services). Using Docker makes the system easily

scalable as well as platform independent, and it provides

load balancing. The high-level flow chart showing the

lifecycle of SecureRS is shown in Figure 4. The lifecycle

starts with ensuring that the system is installed successfully,

and subsequently initializes the system. The setup does not

require much besides creating a superuser (a feature of the

Django framework) and it provides admin functionality

such as creating users, setting access roles, creating API

keys, etc.

Once the system has been initialized, the next step is

account creation, which involves two-factor authentication

(2FA), and the creation of API keys. From a design

perspective, it was decided that (for more security and

traceability) only an admin user can create users and API

keys. The 2FA system catered for email, SMS, and

YubiKey [40]. 2FA is required for logging in and also to

ensure safe download of a PDE file. Token generators make

use of the time-based one-time pin (TOTP) algorithm [41]

that generates 6-8 unique digits based on the current time

and some secret key that is added when the account is

registered. By design, these tokens are regenerated every 30

seconds to prevent attackers from brute-forcing the token or

launching phishing attacks. Backup tokens are also enabled

if devices used for TOTP are not available. These backup

tokens can only be used once, thereby allowing recovery

and security. User credentials are stored using Django's

default password field, which uses PBKDF2 with strong

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

Figure 4. High-level Lifecycle of SecureRS

SHA 256-bit hashing and a random salt [36]. This password

stretching mechanism is recommended by NIST [35].

When an investigator selects a PDE file to be investigated

further, several checks occur. Firstly, the session is checked

to see if it is still active and if the logged-in user has the

required permissions. This is achieved by verifying that the

inactivity time of the user has not passed the threshold and

that 2FA is enabled. A user is warned after three minutes of

inactivity and consequently logged out after ten minutes of

inactivity. These thresholds are configurable in the settings.

After the session and 2FA process have been successfully

validated, the PDE will be decrypted by the system and

available for the investigator to download for further

manual investigation to corroborate findings. The

implementation of SecureRS platform can be found at:

https://github.com/AvinashSingh786/SecureRS

C. SECURE STORAGE VALIDATION

This section details the testing of the tool in terms of its

implementation correctness and determines if the tool has

met the requirements defined in Section A. This complies

with the NIST validation cycle and is structured as follows:

secure storage core test assertions (SS-CA) (see Table 3),

secure storage test cases (SS-TC) (see Table 4), and the

secure storage compliance matrix (SSCM) (see Table 5).

Table 3. Secure Storage Core Test Assertions (SS-CA)

Label Description

SS-CA-01 All PDE files should be encrypted.

Justification: To preserve sensitive

information and confidentiality and to

prevent unauthorized access to the PDE.

SS-CA-02 Hash digests of the PDE should occur

before and after PDE encryption.

Justification: To maintain the integrity of

the PDE as well as to ensure no errors

occur or modifications are made to the

PDE itself.

SS-CA-03 Audit logging of all activity is

maintained.

Justification: This ensures that the chain

of custody is maintained and that the

process followed is reliable and

verifiable.

SS-CA-04 Metadata sanitization of ingested data.

Justification: To ensure good security

practices and prevent potential system

attacks. This reduces the attack vectors

from injection attacks like XSS, SQL

injection, and parsing attacks.

Table 4. Secure Storage Test Cases (SS-TC)

Label Description

SS-TC-01 Make a POST request with correct and

relevant data, to verify that the PDE and

metadata were successfully added.

SS-TC-02 Make a malicious POST request with

XSS and SQL injection payloads and

see if they are sanitized and averted.

SS-TC-03 Make a POST request with an incorrect

API token and check if the POST

request is denied.

SS-TC-04 Send multiple instances of invalid data

to test the validation process.

SS-TC-05 Manually hash the PDE before

encryption and test if the hash digests

match.

SS-TC-06 Download the PDE and see if it matches

the original database hash digest.

SS-TC-07 Verify the timestamp of the database

and the file timestamp.

SS-TC-08 Perform URL manipulation to attempt

to download PDE.

SS-TC-09 Try to download PDE without 2FA

authentication enabled.

SS-TC-10 Verify if 2FA works as expected.

A compliance matrix simply states the requirements, the

test case(s) that tested the specific requirement, and the

https://github.com/AvinashSingh786/SecureRS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

result, which is a core test assertion or a manual check. For

example, if a core test assertion was met, that test assertion

is specified in the result column. However, if a manual

check was performed, it is indicated with '--check--',

indicating that the check result is compliant. The

compliance matrix determines if the tool met the

requirements and is compliant. The compliance matrix for

secure storage is presented in Table 5. The compliance

matrix confirms that the results from the test assertions

have been fulfilled, therefore implying that all the

requirements defined have been met and are successfully

tested and compliant.

Table 5. Secure Storage Compliance Matrix

Requirement Test case Result

1 SS-CR-01 SS-TC-01 --check--

2 SS-CR-02 SS-TC-02 SS-CA-01

3 SS-CR-03 SS-TC-01 --check--

4 SS-CR-04 SS-TC-02, SS-TC-

08, SS-TC-04

SS-CA-01,

SS-CA-02,

SS-CA-03,

SS-CA-04

5 SS-CR-05 SS-TC-05 SS-CA-02

6 SS-CR-06 SS-TC-02 SS-CA-04

7 SS-CR-07 --check-- --check--

8 SS-CR-08 SS-TC-01 SS-CA-03

9 SS-CR-09 SS-TC-02 SS-CA-01

10 SS-CR-10 SS-TC-05, SS-TC-

06

SS-CA-03, -

-check--

11 SS-CR-11 SS-TC-01 --check--

12 SS-CR-12 SS-TC-02, SS-TC-

03, SS-TC-07, SS-

TC-08

SS-CA-03,

SS-CA-04

13 SS-CR-13 SS-TC-09 --check--

14 SS-CR-14 SS-TC-01 --check--

15 SS-OR-01 SS-TC-05 --check--

16 SS-OR-02 SS-TC-06 SS-CA-03

17 SS-OR-03 --check-- --check--

18 SS-OR-04 SS-TC-03 SS-CA-02

19 SS-OR-05 SS-TC-08 --check--

Now that the tool has been validated and satisfies the NIST

CFTT [34], the next phase is to evaluate the tool to

determine the performance of the system and its model.

V. SecureRS PERFORMANCE EVALUATION

Given that the prototype system has been validated

through the NIST CFTT [34], it is important to gauge the

performance of the system. To determine the performance

of the system, several factors were considered – the speed

of data ingestion; the amount of data ingested; processor

and memory utilization; the time until the data was stored.

Table 6 shows the system specification that was used to

benchmark the application of SecureRS. Organizations

typically would run the system on the same network;

therefore, to rule out network speeds and latency, the

system was tested in ideal circumstances where the data

ingested was sourced from the same host, i.e., 'localhost'.

Table 6. Benchmarking System Specifications

Item Description Specification

CPU Intel Core i7 I7-7700HQ @ 2.8GHz

RAM DDR4 24 GB @ 2400MHz

DISK NVME SSD 1 TB @ Read: 3500

MB/s, Write: 3000 MB/s OS Windows 10

It is also important to determine a baseline of the

SecureRS systems memory and processor utilization so that

when data is being ingested, the overall performance

difference can be determined. Table 7 shows the idle

baseline values for the system. From this table, an

approximate value of 36 MB of memory utilization and

about 1% of processor utilization are used, showing that

when no data is being ingested and stored, the system does

not utilize many resources.

Table 7. Baseline Processor and Memory Utilization of SecureRS

Item Baseline values

Idle memory consumption ~ 36 MB

Idle processor utilization ~ 1%

The testing phase consisted of a 1 GB PDE and 100 MB

payload that contained methodically generated ASCII data.

In DFR, the size of a PDE is context-dependent and relies

on the kind of data that is stored. It is quite difficult to get

an accurate representation of the maximum size of a PDE

payload. However, this research is aimed at DFR, so large

PDE files would be extremely rare. To that end, tests were

performed on the perceived worst-case and best-case size of

a PDE to determine the effects on performance. For this

study, the worst case chosen was a large payload of 1 GB

and the average case was 100 MB. These values were

chosen based on some existing DFR literature [42]–[45]. To

make the performance evaluation as comprehensive as

possible, the system was tested under various

circumstances, namely single, multiple, and concurrent

HTTP requests. In the case of single requests, only one

HTTP POST request was made, and the performance

indicators were observed. Multiple HTTP requests were

sent synchronously, meaning that after one request was

sent, another was initiated. To get an average, a set of 10

requests was made. The reason for testing synchronously

was to determine the implications of the hashing process

conducted by the system and to see if it would be able to

handle the load without using many resources. The final

evaluation was based on sending concurrent requests to the

system to see how its performance would be affected and to

show the robustness of the system. Table 8 shows the

performance of a single request with a 1 GB PDE payload.

The results in parentheses show the performance at the time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

of hashing and encryption. From these results, an average

of 3.6% processor utilization was used while 19.6% was

used during hashing and encryption. We observed a higher

memory utilization during hashing and encryption,

apparently because parts of the file must be read into

memory before it can be encrypted and hashed. Overall, for

the worst case of a 1 GB PDE, a total time of 36.76s was

observed to ingest, validate, secure, and store. Where an

investigator would perform the process manually, it would

take roughly 2m 11s, based on one manual attempt

conducted by the authors.

When comparing Table 8 and Table 9, there is not much

difference in the performance. This was expected since the

requests were sent synchronously. An average time of

36.21s was observed from the time the PDE was sent to the

storage engine until the time it was successfully stored

following the forensic assurance processes. Table 10 shows

the performance for concurrent requests, and a slight

decrease in ingestion speed and an increase in CPU usage

could be observed. This was expected, as requests were

performed in parallel.

Table 8. Performance of 1 GB PDE with Single Request

Item (1 GB PDE)

Single request

(during encryption)

Speed of data ingestion 102 MB/s

Amount of data ingested 1.33 GB

Processor utilization 3.6% (19.6%)

Memory utilization 30.2 MB (4.3 GB)

Time 36.76s (16.3s)

Table 9. Performance of 1GB PDE with Multiple Requests

Item (1 GB PDE) Multiple single requests

{10} (during encryption)

Average speed of data

ingestion

110 MB/s

Total amount of data

ingested

14.6 GB

Average. processor

utilization

3.4% (16.2%)

Average memory

utilization

36.6 MB (5.2 GB)

Average time per request 36.21s (18.9s)

Table 10. Performance of 1GB PDE with Concurrent Requests

Item (1 GB PDE) Concurrent request

{10} (during

encryption)

Average speed of data

ingestion

108 MB/s

Total amount of data

ingested

13.3 GB

Average processor

utilization

16.4% (46.5%)

Average memory utilization 33.5 MB (6.6 GB)

Total average time 1m 34s (22.3s)

Table 11 to Table 13 show that where a smaller PDE

was used, a corresponding insignificant difference in

performance was observed. This implies that the system can

still perform well under high load without a significant time

utilization; however, as expected, it does consume more

resources. The bottleneck occurs when hashing and

encryption are performed, since this is a computationally

expensive task. Even though during the concurrent requests

there was more processor and memory utilization, the

system still performed well given the process each PDE had

to undergo. Results from Table 8 to Table 13 clearly show

that SecureRS can still ingest data relatively well and is

able to handle the load without much resource usage.

Moreover, forensic soundness is ensured through the

defined processes.

Table 11. Performance of 100 MB PDE with Single Request

Item (100 MB PDE) Single request

(during encryption)

Speed of data ingestion 40.3 MB/s

Amount of data ingested 133 MB

Processor utilization 1.6% (10.6%)

Memory utilization 30.2 MB (144 MB)

Time 5.02 (4.4s)

Table 12. Performance of 100 MB PDE with Multiple Requests

Item (100 MB PDE) Multiple single requests

{10} (during encryption)

Average speed of data

ingestion

50.1 MB/s

Total amount of data

ingested

1.33 GB

Average processor

utilization

4.4% (13.2%)

Average memory

utilization

43.6 MB (117 MB)

Average time per request 7.21s (6.1s)

Table 13. Performance of 100 MB PDE with Concurrent Requests

Item (100 MB PDE) Concurrent request {10}

(during encryption)

Average speed of data

ingestion

99 MB/s

Total amount of data

ingested

1.3 GB

Average processor

utilization

14.4% (43.5%)

Average memory

utilization

43.5 MB (2.1 GB)

Total average time 11.3s (3.4s)

To further illustrate the effectiveness of SecureRS, a

graphical depiction of Table 8 to 13 is illustrated in Figure

5. From this figure, the observed speed of data ingestion

remained relatively consistent with relation to the PDE size

and operation. The memory consumption remained

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

somewhat consistent over the tests excluding the encryption

state. The concurrent processor utilization for both the 1GB

and 100MB PDE remained in a same range between 14-

16% whereas the time was significantly better with the

larger PDE. This is on the assumption that 1GB test is 10

times that of the 100MB test. This therefore suggests that if

the 100MB concurrent test took 11.3s, the 1GB one would

be estimated around 113s, and the actual value was 94s.

This therefore demonstrates the efficacy of the SecureRS

system. A similar deduction can be made when looking at

the speed of data ingestion for the concurrent tests factoring

in the network limitations.

A test was conducted utilizing a larger PDE of 10 GB

and the overall time taken was 2m 24s. The average CPU

was 12%, with the total amount of data stored being

13.3 GB. Although this system was developed with small

artifacts in mind, it can cater for file sizes as large as the

system’s memory, due to the limitations of the Fernet

encryption python library. This limitation can easily be

addressed by file-streaming the information instead;

however, this falls outside of the scope of DFR and the

research at hand. The next section discusses what the

proposed model achieved and how this can aid the forensic

investigation lifecycle.

VI. DISCUSSION AND CASE SCENARIO

In traditional digital forensic processes, investigators

are often expected to follow the correct procedure and

protocol. However, human error can occur. For example,

several litigation proceedings have resulted in exculpatory

outcomes due to digital evidence mishandling [46], [47].

However, automating and providing a storage engine with

forensics and security in place, significantly aids an

investigator. For instance, the investigator does not need to

be concerned about safely securing artefacts or data that

contains sensitive information. Furthermore, the threat of

privacy concerns and integrity violation, which has been

associated with poor digital evidence handling, can be

reduced when human elements are restricted. Therefore, the

forensic storage process developed in this study can be

defined as the potential steps towards addressing these

challenges. This system works well for digital forensic

readiness whereby potential digital evidence is collected on

the fly.

A case scenario of the use of the SecureRS model is to be

a plugin into a collection model. For example, the previous

work by the authors involved the collection of forensic

artefacts from a ransomware attack using digital forensic

readiness [48]. Such previous work involved collecting

small-sized PDE files and storing them for further

investigation. While the collection on its own is a major

contribution, the authors did not ensure the extra measures

to protect the PDE and ensure that it was forensically sound

and admissible in a court of law. The SecureRS model

solves this problem and helps other research within DFR to

the extent that developed frameworks or systems do not

need to be concerned about the storage and preservation of

the potential digital evidence collected. However,

integrating this peculiar notion of secure storage for digital

investigation was quoted as potential future research.

SecureRS can aid in ensuring the integrity of the collected

PDE. Furthermore, the model developed in [43] asserts that

the use of security standards like encryption and hashing

can be used to achieve confidentiality and integrity. Based

on the performance evaluation, the model developed in [43]

has a low impact on a system whilst providing a core and

essential service. Extending this previous study, SecureRS

provides a feasibility and proof-of-concept implementation

of automated evidence storage. By integrating a reliable

forensic process and practice, SecureRS provides a

platform for developing a limited human interaction with

potential digital evidence.

VII. SECURITY ANALYSIS

To further evaluate the developed SecureRS tool and

model, a threat modelling and security analysis process was

followed (see Table 14). In this model, several security

features were used to protect and maintain the integrity and

forensic soundness of the data stored. This was achieved by

using the CIA triad and several security requirements. For

instance, threats due to filename change or deletion was

addressed in SecureRS using randomization of file name,

and permission-based access control such that only

permitted action (by the authorized entity) is allowed.

Furthermore, the log of such an action is provided for each

instance. This further addressed the need for accountability

Figure 5. Comparison of performance tests

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

(system audit process) within the system. The SecureRS

thus provide a forensic platform that can mitigate such a

threat. Similarly, to ensure confidentiality and prevent the

potential of sensitive information leakage, SecureRS

leverages an encryption algorithm with stronger immunity.

Table 14. Threat-Solution model using the CIA triad

Threat Solution Method

Access to

sensitive

information

Implementing

encryption

(Confidentiality

and Authorization)

Fernet encryption

Attacker

changes

filenames or

deleting files

Applying

permissions

(Integrity,

Availability, and

Authorization)

Random file

names and read-

only permissions

Attacker

changes

contents of

PDE data in

memory

Implementing

hashing

(Confidentiality,

Integrity, and

Authorization)

MD5 hashing is

used to compare

source MD5 of the

PDE file and

received PDE file.

Also, OS memory

protection is used

Attacker

finds

credentials

and can login

Implementing 2FA

(Confidentiality,

Authenticity, and

Authorization)

TOTP is used for

PDE downloading

Attacker

gains

physical

access to a

computer

after

investigator

goes outside

Implementing

session timeouts

(Confidentiality,

Availability, and

Authenticity)

Customizable

activity and

session timers are

used to prevent

unauthorized

access

XSS and

injection

attacks

Implementing data

sanitization

(Confidentiality,

Integrity, and

Availability)

Django

middleware and

HSTS + secure

cookies

Investigator

denying PDE

download

Implementing logs

(Confidentiality

and

Nonrepudiation)

Audit logs and

emails are used to

verify activity and

download PDE

Interception

of PDE in

transit

Implementing

HTTPS and API

Keys

(Confidentiality,

Integrity,

Authenticity, and

Nonrepudiation)

Using SSL and

API keys that are

unique reduces the

risk of data

exposure.

VIII. FUTURE WORK

Future work will consider extending the platform to

provide lossless compression [49] and storage optimization,

developing novel methods for data ingestion, and well as

develop novel methods for PDE relevance categorization.

Also, potential approaches towards cloud-based evidence

storage in a readiness manner will be further considered as

well as extending to other sub-domains of digital forensics.

As asserted in recent studies within the forensic community

[50], [51], the development of a generic platform of

SecureRS can be a potential solution to the lack of

standardized evidence representation, as well as unified

metrics towards evidence reliability evaluation/testing,

IX. CONCLUSION

In conclusion, this paper developed a model and a

platform to secure Potential Digital Evidence (PDE) and to

ensure the forensic soundness of the stored PDE. The

platform was evaluated and shown to render good

performance, despite having to go through all the forensic

processes defined by the proposed model (SecureRS).

Having a process in place to secure evidence can help

prevent unauthorized access and comply with regulations

and privacy policies, due to the nature of the data being

stored. Having this model in place also helps to verify and

validate the stored PDE and make it admissible in a court of

law. By leveraging encryption and hashing, the SecureRS

model makes good use of current security standards and

therefore will aid forensic investigation in general. The

model also helps to detect evidence tampering. This paper

suggests a method of ensuring forensically sound digital

evidence for DFR as well as for digital forensics processes

in general. So far, this aspect of forensics investigation has

been widely overlooked and it was often considered to be

the sole responsibility of the forensic investigator. The

focus and scope of this study involved smaller artefacts for

performance evaluation. With SecureRS an investigator

does not need to be concerned about verification and

authenticity of evidence when performing a digital

investigation. The SecureRS platform furthermore acts as a

backup of evidence that is securely and safely stored.

REFERENCES

[1] D. Gonzalez and T. Hayajneh, “Detection and

prevention of crypto-ransomware,” in 2017 IEEE

8th Annual Ubiquitous Computing, Electronics and

Mobile Communication Conference, UEMCON

2017, 2018, vol. 2018-January, doi:

10.1109/UEMCON.2017.8249052.

[2] R. Von Solms and J. Van Niekerk, “From

information security to cyber security,” Computers

and Security, 2013, doi:

10.1016/j.cose.2013.04.004.

[3] H. de Bruijn and M. Janssen, “Building

Cybersecurity Awareness: The need for evidence-

based framing strategies,” Government Information

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

Quarterly, vol. 34, no. 1, pp. 1–7, 2017, doi:

10.1016/j.giq.2017.02.007.

[4] A. M. Maigida, S. M. Abdulhamid, M. Olalere, J.

K. Alhassan, H. Chiroma, and E. G. Dada,

“Systematic literature review and metadata analysis

of ransomware attacks and detection mechanisms,”

Journal of Reliable Intelligent Environments, vol.

5, no. 2, pp. 67–89, 2019, doi: 10.1007/s40860-019-

00080-3.

[5] E. Casey, “Error, Uncertainty, and Loss in Digital

Evidence,” International Journal of Digital

Evidence, 2002.

[6] C. Altheide and H. Carvey, “Windows Systems and

Artifacts,” in Digital Forensics with Open Source

Tools, 2011.

[7] N. C. Rowe, “Associating Drives Based on Their

Artifact and Metadata Distributions,” in Lecture

Notes of the Institute for Computer Sciences,

Social-Informatics and Telecommunications

Engineering, LNICST, 2019, vol. 259, pp. 165–182,

doi: 10.1007/978-3-030-05487-8_9.

[8] D. Lillis, B. Becker, T. O’Sullivan, and M. Scanlon,

“Current Challenges and Future Research Areas for

Digital Forensic Investigation,” 2016, [Online].

Available: http://arxiv.org/abs/1604.03850.

[9] J. Dokko and M. Shin, “A Digital Forensic

Investigation and Verification Model for Industrial

Espionage,” in Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and

Telecommunications Engineering, LNICST, vol.

259, 2019, pp. 128–146.

[10] A. Shabtai, Y. Elovici, and L. Rokach,

“Introduction to Information Security,” in

SpringerBriefs in Computer Science, 2012.

[11] R. Bhanot and R. Hans, “A review and comparative

analysis of various encryption algorithms,”

International Journal of Security and its

Applications, 2015, doi: 10.14257/ijsia.2015.9.4.27.

[12] M. Kohn, M. S. Olivier, and J. H. P. Eloff,

“Framework for a Digital Forensic Investigation.,”

Communications, 2006.

[13] J. Tan, “Forensic readiness,” Cambridge, pp. 1–23,

2001, doi: 10.1.1.644.9645.

[14] ISO 27043, “INTERNATIONAL STANDARD

ISO / IEC 27043: Information technology —

Security techniques — Incident investigation

principles and processes,” vol. 2015, 2015.

[15] S. M. Makura, H. S. Venter, R. A. Ikuesan, V. R.

Kebande, and N. M. Karie, “Proactive Forensics:

Keystroke Logging from the Cloud as Potential

Digital Evidence for Forensic Readiness Purposes,”

2020 IEEE International Conference on

Informatics, IoT, and Enabling Technologies, ICIoT

2020, pp. 200–205, 2020, doi:

10.1109/ICIoT48696.2020.9089494.

[16] S. Vömel and J. Stüttgen, “An evaluation platform

for forensic memory acquisition software,” in

Digital Investigation, 2013, vol. 10, no. SUPPL.,

pp. S30–S40, doi: 10.1016/j.diin.2013.06.004.

[17] M. Gruhn and F. C. Freiling, “Evaluating atomicity,

and integrity of correct memory acquisition

methods,” Digital Investigation, vol. 16, pp. S1–

S10, 2016, doi: 10.1016/j.diin.2016.01.003.

[18] M. Harran, W. Farrelly, and K. Curran, “A method

for verifying integrity & authenticating digital

media,” Applied Computing and Informatics, 2018,

doi: 10.1016/j.aci.2017.05.006.

[19] R. Sears, C. Van Ingen, and J. Gray, “To BLOB or

Not To BLOB: Large Object Storage in a Database

or a Filesystem?,” Microsoft Research, pp. 1–11,

Jan. 2007, [Online]. Available:

http://arxiv.org/abs/cs/0701168.

[20] S. Pandey and M. Farik, “Best Symmetric Key

Encryption - A Review,” International Journal of

Scientific & Technology Research, vol. 6, no. 6, pp.

310–312, 2017.

[21] D. S. Abd Elminaam, H. M. A. Kader, and M. M.

Hadhoud, “Evaluating the performance of

symmetric encryption algorithms,” International

Journal of Network Security, vol. 10, no. 3, pp.

213–219, 2010, doi:

10.6633/IJNS.201005.10(3).06.

[22] J. Van der Walt and R. Luke, “The storage of

forensic evidence at the Forensic Science

Laboratory in Pretoria, South Africa,” Journal of

Transport and Supply Chain Management, vol. 5,

no. 1, pp. 202–220, 2011, doi:

10.4102/jtscm.v5i1.74.

[23] A. Valjarevic, H. Venter, and R. Petrovic,

“ISO/IEC 27043:2015 - Role and application,” 24th

Telecommunications Forum, TELFOR 2016, pp. 1–

4, 2017, doi: 10.1109/TELFOR.2016.7818718.

[24] X. Du, N.-A. Le-Khac, and M. Scanlon,

“Evaluation of Digital Forensic Process Models

with Respect to Digital Forensics as a Service,”

2017, [Online]. Available:

http://arxiv.org/abs/1708.01730.

[25] D. R. Rani and G. Geethakumari, “Secure data

transmission and detection of anti-forensic attacks

in cloud environment using MECC and DLMNN,”

Computer Communications, vol. 150, no.

November 2019, pp. 799–810, 2020, doi:

10.1016/j.comcom.2019.11.048.

[26] P. M. Trenwith and H. S. Venter, “Digital forensic

readiness in the cloud,” in 2013 Information

Security for South Africa, Aug. 2013, pp. 1–5, doi:

10.1109/ISSA.2013.6641055.

[27] B. K. S. P. K. Raju and G. Geethakumari, “An

advanced forensic readiness model for the cloud

environment,” Proceeding - IEEE International

Conference on Computing, Communication and

Automation, ICCCA 2016, pp. 765–771, 2017, doi:

10.1109/CCAA.2016.7813819.

[28] V. R. Kebande and H. S. Venter, “A Cloud

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

Forensic Readiness Model Using a Botnet as a

Service,” in The International Conference on

Digital Security and Forensics (DigitalSec2014),

2014, pp. 23–32, doi: 10.13140/2.1.4880.2249.

[29] A. Singh, “A Digital Forensic Readiness Approach

for Ransomware Forensics,” UP Space, no. August,

2019, [Online]. Available:

https://repository.up.ac.za/bitstream/handle/2263/75

610/Singh_Digital_2019.pdf.

[30] M. L. Das and N. Samdaria, “On the security of

SSL/TLS-enabled applications,” Applied

Computing and Informatics, 2014, doi:

10.1016/j.aci.2014.02.001.

[31] S. Omeleze and H. S. Venter, “Proof of concept of

the online neighbourhood watch system,” in

Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and

Telecommunications Engineering, LNICST, 2016,

vol. 171, pp. 78–93, doi: 10.1007/978-3-319-

43696-8_9.

[32] L. Chi and X. Zhu, “Hashing Techniques: A Survey

and Taxonomy,” ACM Computing Surveys (CSUR),

2017, doi: 10.1145/3047307.

[33] E. M. Schön, J. Thomaschewski, and M. J.

Escalona, “Agile Requirements Engineering: A

systematic literature review,” Computer Standards

and Interfaces, vol. 49, pp. 79–91, 2017, doi:

10.1016/j.csi.2016.08.011.

[34] NIST, “Computer Forensics Tool Testing

Program,” 2014.

http://www.cftt.nist.gov/disk_imaging.htm

(accessed Oct. 12, 2017).

[35] NIST, “NIST,” 2019. https://www.nist.gov/

(accessed Oct. 12, 2019).

[36] DjangoProject, “Django Auth.”

https://docs.djangoproject.com/en/2.2/topics/auth/p

asswords/ (accessed Oct. 04, 2019).

[37] “Django REST framework,” 2019.

http://www.django-rest-framework.org/#django-

rest-framework (accessed Feb. 14, 2019).

[38] P. Dijesh, S. Babu, and Y. Vijayalakshmi,

“Enhancement of e-commerce security through

asymmetric key algorithm,” Computer

Communications, vol. 153, pp. 125–134, Mar.

2020, doi: 10.1016/j.comcom.2020.01.033.

[39] T. Combe, A. Martin, and R. Di Pietro, “To Docker

or Not to Docker: A Security Perspective,” IEEE

Cloud Computing, 2016, doi:

10.1109/MCC.2016.100.

[40] B. Schneier, “Two-factor authentication: Too little,

too late,” Communications of the ACM, vol. 48, no.

4, p. 136, 2005, doi: 10.1145/1053291.1053327.

[41] J. R. D. M’Raihi, S. Machani, M. Pei, “TOTP:

Time-Based One-Time Password Algorithm,”

Journal of Chemical Information and Modeling,

2013, doi: 10.1017/CBO9781107415324.004.

[42] S. Philomin, A. Singh, A. Ikuesan, and H. Venter,

“Digital forensic readiness framework for smart

homes,” 2020, doi: 10.34190/ICCWS.20.047.

[43] A. Singh, A. Ikuesan, and H. Venter, “A context-

aware trigger mechanism for ransomware

forensics,” in 14th International Conference on

Cyber Warfare and Security, ICCWS 2019, 2019,

pp. 629–638.

[44] M. Lagrasse, A. Singh, H. Munkhondya, A.

Ikuesan, and H. Venter, “Digital forensic readiness

framework for software-defined networks using a

trigger-based collection mechanism,” in

Proceedings of the 15th International Conference

on Cyber Warfare and Security, ICCWS 2020,

2020, pp. 296–305, doi: 10.34190/ICCWS.20.045.

[45] H. Munkhondya, A. Ikuesan, and H. Venter,

“Digital Forensic Readiness Approach for Potential

Evidence Preservation in Software-Defined

Networks,” 2015.

[46] S. E. Goodison, R. C. Davis, and B. A. Jackson,

“Digital evidence and the U.S. criminal justice

system,” Priority Criminal Justice Needs Initiative,

pp. 1–32, 2015.

[47] H. Arshad, A. Bin Jantan, and O. I. Abiodun,

“Digital forensics: Review of issues in scientific

validation of digital evidence,” Journal of

Information Processing Systems, vol. 14, no. 2, pp.

346–376, 2018, doi: 10.3745/JIPS.03.0095.

[48] A. Singh, A. R. Ikuesan, and H. S. Venter, “Digital

Forensic Readiness Framework for Ransomware

Investigation,” Digital Forensics and Cyber Crime,

vol. 259, pp. 91–105, 2019, doi: 10.1007/978-3-

030-05487-8_5.

[49] A. Moffat, “Lossless Compression,” The Computer

Journal, 1997, doi: 10.1093/comjnl/40.2_and_3.65.

[50] A. Al-Dhaqm, S. Razak, K. Siddique, R. A.

Ikuesan, and V. R. Kebande, “Towards the

Development of an Integrated Incident Response

Model for Database Forensic Investigation Field,”

IEEE Access, p. 1, 2020, doi:

10.1109/ACCESS.2020.3008696.

[51] A. Al-Dhaqm, S. A. Razak, R. A. Ikuesan, V. R.

Kebande, and K. Siddique, “A Review of Mobile

Forensic Investigation Process Models,” IEEE

Access, vol. 8, pp. 173359–173375, 2020, doi:

10.1109/access.2020.3014615.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3151403, IEEE Access

VOLUME XX, 2021 2

AVINASH SINGH is a researcher in the Digital

Forensic space, focusing on Ransomware and

Malware Forensics as well as on Digital

Forensic Readiness. He obtained both the BSc
Hons and MSc in Computer Science with

distinction from the University of Pretoria. He is

currently a lecturer in the Department of
Computer Science and is pursuing a PhD.

Avinash participated in numerous international

conferences and has published in various
journals. He is a member of the review committee for the Information

Security South Africa (ISSA) conference, a member of the Golden Key

Society, IITPSA, and the Digital Forensic Science (DigiForS) Research
Group. He also heads the recently established Intelligent Cyber Forensic

Lab (ICFL) at the University of Pretoria.

RICHARD ADEYEMI IKUESAN is an active

researcher who currently pioneers a digital

policing and forensic project for developing

nations, using Nigeria and South Africa as a hub

for West Africa and Southern Africa

respectively. He obtained the MSc and PhD
degrees in Computer Science with distinction

from the Universiti Teknologi Malaysia and is

currently an Assistant Professor in the Cyber
Security section of the IT department at the

Community College of Qatar.

HEIN VENTER has established an international

research reputation in cyber security and cyber

forensics. Over the past 13 years, he has focused
mainly on cyber forensics research. Hein is the

research group leader for the Digital Forensic

Science (DigiForS) research group at the
University of Pretoria where he collectively

supervises more than 40 Computer Science

postgraduate students. He authored and co-

authored more than 260 publications. He is also

general chair of the Information Security for South Africa (ISSA)

conference. Hein recently served on a panel that was tasked by the South
African Department of Science and Technology (DST) to come up with a

national cyber security research agenda. The main topics identified for this

research agenda include cyber security and digital forensics.

	Secure Storage Model for Digital Forensic Readiness
	Recommended Citation

	Secure Storage Model for Digital Forensic Readiness

