1,515 research outputs found

    Towards Better Availability and Accountability for IoT Updates by means of a Blockchain

    Get PDF
    International audienceBuilding the Internet of Things requires deploying a huge number of devices with full or limited connectivity to the Internet. Given that these devices are exposed to attackers and generally not secured-by-design, it is essential to be able to update them, to patch their vulnerabilities and to prevent hackers from enrolling them into botnets. Ideally, the update infrastructure should implement the CIA triad properties, i.e., confidentiality, integrity and availability. In this work, we investigate how the use of a blockchain infrastructure can meet these requirements, with a focus on availability

    The Applications of Blockchain To Cybersecurity

    Get PDF
    A blockchain is a decentralized public ledger facilitating secure transactions between untrusted network nodes. It has garnered significant recognition for its pivotal role in cryptocurrency systems, where it ensures secure and decentralized transaction records. Over the past decade, blockchain has attracted considerable attention from various industries, as it holds the potential to revolutionize multiple sectors, including cybersecurity. However, this field of study is relatively new, and numerous questions remain unanswered regarding the effectiveness of blockchain in cybersecurity. This research adopted a qualitative research design to investigate the current implementations of blockchain-based security and their applicability in the current cybersecurity context. Additionally, this work explored the mechanisms employed by blockchain to uphold the security triad. Findings indicate that blockchain exhibits substantial potential in addressing existing challenges in cybersecurity, particularly those related to the Internet of Things, data integrity and ownership, and network security. Nonetheless, widespread adoption faces limitations due to technological immaturity, high-cost complexity, and regulatory hurdles. Therefore, utilizing blockchain-based solutions in cybersecurity necessitates a thorough analysis of their applicability to an organization\u27s specific needs, a clear definition of implementation goals, and careful navigation of challenges

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Toward Identification and Characterization of IoT Software Update Practices

    Full text link
    Software update systems are critical for ensuring systems remain free of bugs and vulnerabilities while they are in service. While many Internet of Things (IoT) devices are capable of outlasting desktops and mobile phones, their software update practices are not yet well understood. This paper discusses efforts toward characterizing the IoT software update landscape through network analysis of IoT device traffic. Our results suggest that vendors do not currently follow security best practices, and that software update standards, while available, are not being deployed. We discuss our findings and give a research agenda for improving the overall security and transparency of software updates on IoT.Comment: 11 pages, 6 figure

    Blockchain-enhanced Roots-of-Trust

    Get PDF
    Establishing a root-of-trust is a key early step in establishing trust throughout the lifecycle of a device, notably by attesting the running software. A key technique is to use hardware security in the form of specialised modules or hardware functions such as TPMs. However, even if a device supports such features, other steps exist that can compromise the overall trust model between devices being manufactured until decommissioning. In this paper, we discuss how blockchains, and smart contracts in particular, can be used to harden the overall security management both in the case of existing hardware enhanced security or when only software attestation is possible

    Chapter Blockchain Applications in Cybersecurity

    Get PDF
    Blockchain has been widely known thanks to Bitcoin and the cryptocurrencies. In this chapter, we analyze different aspects that relate to the application of blockchain with techniques commonly used in the field of cybersecurity. Beginning by introducing the use of blockchain technology as a secure infrastructure, the document delves into how blockchain can be useful to achieve several security requirements, common to most applications. The document has been focused on some specific cybersecurity disciplines to maintain simplicity: backup and recovery, threat intelligence and content delivery networks. As illustrated, some projects and initiatives are in the process of joining these two fields to provide solutions to existing problems
    corecore