22 research outputs found

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Synergistic policy and virtual machine consolidation in cloud data centers

    Get PDF
    In modern Cloud Data Centers (DC)s, correct implementation of network policies is crucial to provide secure, efficient and high performance services for tenants. It is reported that the inefficient management of network policies accounts for 78% of DC downtime, challenged by the dynamically changing network characteristics and by the effects of dynamic Virtual Machine (VM) consolidation. While there has been significant research in policy and VM management, they have so far been treated as disjoint research problems. In this paper, we explore the simultaneous, dynamic VM and policy consolidation, and formulate the Policy-VM Consolidation (PVC) problem, which is shown to be NP-Hard. We then propose Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines. Extensive evaluation results and a testbed implementation of our controller show that policy and VM migration under Sync significantly reduces flow end-to-end delay by nearly 40%, and network-wide communication cost by 50% within few seconds, while adhering strictly to the requirements of network policies

    Enforcing network policy in heterogeneous network function box environment

    Get PDF
    Data center operators deploy a variety of both physical and virtual network functions boxes (NFBs) to take advantages of inherent efficiency offered by physical NFBs with the agility and flexibility of virtual ones. However, such heterogeneity faces great challenges in correct, efficient and dynamic network policy implementation because, firstly, existing schemes are limited to exclusively physical or virtual NFBs and not a mix, and secondly, NFBs can co-exist at various locations in the network as a result of emerging technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). In this paper, we propose a Heterogeneous netwOrk pOlicy enforCement scheme (HOOC) to overcome these challenges. We first formulate and model HOOC, which is shown be to NP-Hard by reducing from the Multiple Knapsack Problem (MKP). We then propose an efficient online algorithm that can achieve optimal latency-wise NF service chaining amongst heterogenous NFBs. In addition, we also provide a greedy algorithm when operators prefer smaller run-time than optimality. Our simulation results show that HOOC is efficient and scalable whilst testbed implementation demonstrates that HOOC can be easily deployed in the data center environments

    Optimization of Network Service Chain Provisioning

    Get PDF
    International audienceSoftware-Defined Networking is a new approach to the design and management of networks. It decouples the software-based control plane from the hardware-based data plane while abstracting the underlying network infrastructure and moving the network intelligence to a centralized software-based controller where network services are deployed. The challenge is then to efficiently provision the service chain requests, while finding the best compromise between the bandwidth requirements, the number of locations for hosting Virtual Network Functions (VNFs), and the number of chain occurrences. We propose two ILP (Integer Linear Programming) models for routing service chain requests, one of them with a decomposition modeling. We conduct extensive numerical experiments, and show we can solve exactly the routing of service chain requests in a few minutes for networks with up to 50 nodes, and traffic requests between all pairs of nodes. We investigate the best compromise between the bandwidth requirements and the number of VNF nodes

    PLAN: Joint policy- and network-aware VM management for cloud data centers

    Get PDF
    Policies play an important role in network configuration and therefore in offering secure and high performance services especially over multi-tenant Cloud Data Center (DC) environments. At the same time, elastic resource provisioning through virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN, a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that PLAN can reduce topology-wide communication cost by 38 percent over diverse aggregate traffic and configuration policies

    Enabling heterogeneous network function chaining

    Get PDF
    Today's data center operators deploy network policies in both physical (e.g., middleboxes, switches) and virtualized (e.g., virtual machines on general purpose servers) network function boxes (NFBs), which reside in different points of the network, to exploit their efficiency and agility respectively. Nevertheless, such heterogeneity has resulted in a great number of independent network nodes that can dynamically generate and implement inconsistent and conflicting network policies, making correct policy implementation a difficult problem to solve. Since these nodes have varying capabilities, services running atop are also faced with profound performance unpredictability. In this paper, we propose a Heterogeneous netwOrk Policy Enforcement (HOPE) scheme to overcome these challenges. HOPE guarantees that network functions (NFs) that implement a policy chain are optimally placed onto heterogeneous NFBs such that the network cost of the policy is minimized. We first experimentally demonstrate that the processing capacity of NFBs is the dominant performance factor. This observation is then used to formulate the Heterogeneous Network Policy Placement problem, which is shown to be NP-Hard. To solve the problem efficiently, an online algorithm is proposed. Our experimental results demonstrate that HOPE achieves the same optimality as Branch-and-bound optimization but is 3 orders of magnitude more efficient

    Synergistic policy and virtual machine consolidation in cloud data centers

    Get PDF
    In modern Cloud Data Centers (DC)s, correct implementation of network policies is crucial to provide secure, efficient and high performance services for tenants. It is reported that the inefficient management of network policies accounts for 78% of DC downtime, challenged by the dynamically changing network characteristics and by the effects of dynamic Virtual Machine (VM) consolidation. While there has been significant research in policy and VM management, they have so far been treated as disjoint research problems. In this paper, we explore the simultaneous, dynamic VM and policy consolidation, and formulate the Policy-VM Consolidation (PVC) problem, which is shown to be NP-Hard. We then propose Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines. Extensive evaluation results and a testbed implementation of our controller show that policy and VM migration under Sync significantly reduces flow end-to-end delay by nearly 40%, and network-wide communication cost by 50% within few seconds, while adhering strictly to the requirements of network policies

    A middlebox-cooperative TCP for a non end-to-end Internet. In

    Get PDF
    ABSTRACT Understanding, measuring, and debugging IP networks, particularly across administrative domains, is challenging. One particularly daunting aspect of the challenge is the presence of transparent middleboxes-which are now common in today's Internet. In-path middleboxes that modify packet headers are typically transparent to a TCP, yet can impact end-to-end performance or cause blackholes. We develop TCP HICCUPS to reveal packet header manipulation to both endpoints of a TCP connection. HICCUPS permits endpoints to cooperate with currently opaque middleboxes without prior knowledge of their behavior. For example, with visibility into end-to-end behavior, a TCP can selectively enable or disable performance enhancing options. This cooperation enables protocol innovation by allowing new IP or TCP functionality (e.g., ECN, SACK, Multipath TCP, Tcpcrypt) to be deployed without fear of such functionality being misconstrued, modified, or blocked along a path. HICCUPS is incrementally deployable and introduces no new options. We implement and deploy TCP HICCUPS across thousands of disparate Internet paths, highlighting the breadth and scope of subtle and hard to detect middlebox behaviors encountered. We then show how path diagnostic capabilities provided by HICCUPS can benefit applications and the network
    corecore