
Enforcing Network Policy in Heterogeneous Network
Function Box Environment

Lin Cuia, Fung Po Tsob,∗, Weijia Jiac

aDepartment of Computer Science, Jinan University, Guangzhou, China
bDepartment of Computer Science, Loughborough University, LE11 3TU, UK

cDepartment of Computer and Information Science, University of Macau, China

Abstract

Data center operators deploy a variety of both physical and virtual network func-

tions boxes (NFBs) to take advantages of inherent efficiency offered by physical

NFBs with the agility and flexibility of virtual ones. However, such hetero-

geneity faces great challenges in correct, efficient and dynamic network policy

implementation because, firstly, existing schemes are limited to exclusively phys-

ical or virtual NFBs and not a mix, and secondly, NFBs can co-exist at various

locations in the network as a result of emerging technologies such as Software

Defined Networking (SDN) and network function virtualization (NFV).

In this paper, we propose a Heterogeneous netwOrk pOlicy enforCement

scheme (HOOC) to overcome these challenges. We first formulate and model

HOOC, which is shown be to NP-Hard by reducing from the Multiple Knap-

sack Problem (MKP). We then propose an efficient online algorithm that can

achieve optimal latency-wise NF service chaining amongst heterogenous NFBs.

In addition, we also provide a greedy algorithm when operators prefer smaller

run-time than optimality.Our simulation results show that HOOC is efficient

and scalable whilst testbed implementation demonstrates that HOOC can be

easily deployed in the data center environments.

Keywords: Data Center, Network Policy Management, Middleboxes, Network

Function Virtualization (NFV), SDN Switches, Network Service Chaining

∗Corresponding author
Email address: p.tso@lboro.ac.uk (Fung Po Tso)

Preprint submitted to Journal of Computer Networks June 13, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288360992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Data center operators deploy a great variety of network functions (NFs)

such as firewall (FWs), content filter, intrusion prevention/detection system

(IPS/IDS), deep packet inspection (DPI), network address translation (NAT),

HTTP/TCP performance optimizer, load balancer (LB), and etc., at various5

points in the network topology to safeguard networks and improve application

performance [1]. Each network function is responsible for specific treatment

of received packets, including forwarding, dropping, rate-limiting, inspecting,

and/or modifying packets. In practice, various permutations of or subsets of

these functions form an ordered composition (or service chain) – as defined by10

a network policy [2] – that must be applied to packets in uni-directional or

bi-directional manner. This process is also known as network service chaining

[3]. Hence, network policy enforcement implies correct and efficient chaining of

network functions.

Nowadays, network functions are either embedded in purpose-built propri-15

etary hardware, i.e., middleboxes (MBs), or appear as virtual instances running

on top of commodity servers through NFV (Network Function Virtualization).

We term both hardware middleboxes and NFV servers as Network Function

Boxes (NFBs). Physical NFBs are more efficient because they are built with

dedicate hardware for optimizing the performance of specific functions but are20

proprietary and hence less extensible. On the other hand, virtualized NFBs

have the agility for rapid on-demand deployment and greater degree of pro-

grammability for software automation but are less efficient due to virtualization

overhead, resource sharing, and general-purpose hardware [4].

In addition to hardware middleboxes and general-purpose NFV servers, with25

the power of SDN (Software Defined Networking), some simple network function

such as firewall and NAT can also be easily and efficiently implemented in SDN

switches [5].

Obviously, except purpose-built physical NFBs, a network function can be

2

independently allocated to different servers and SDN switches in the network30

or collocated with other network functions within a switch or server [3][6].

In fact, today’s data center operators adopt mixture of both physical and

virtual NFBs to captialize on the efficiency of physical ones and the agility and

flexibility of virtual ones [3].

Nevertheless, coming with this hybrid heterogeneous paradigm are signif-35

icant challenges on the correct implementation of network policies in today’s

data centers: (1) Support for deployment of network policies is limited exclu-

sively to either physical or virtualized NFBs. There is no existing mechanisms

for supporting simultaneous use of both form factors [2][7][8][9]; (2) Large va-

riety of NFBs at distinct network locations means that the choices for correct40

service chaining has grown exponentially. We show that large variation in round

trip times (RTTs) can be observed for NFBs with different capacity (detailed

in Section 2). Given most data center workloads are latency-sensitive and are

prone to unpredictable slowdown along the end-to-end links [10][11], how could

we ensure that latency for all policy chains is optimal?45

In this paper, we propose a Heterogeneous netwOrk pOlicy enforCement

scheme (HOOC), which is an adaptive network policy implementation scheme

that will not only support the use of both physical and virtual NFBs but also

minimize latency along the policy path (i.e. service chain) such that end-to-end

delay will become more predictable. Our experimental evaluation demonstrates50

that HOOC can achieve optimal placement of network functions amongst het-

erogeneous NFBs.

The contribution of this paper is fourfold.

1. We experimentally show that performance heterogeneity for running same

network functions on different NFBs.55

2. We formulate HOOC and prove that it is NP-Hard, by reducing from the

Multiple Knapsack Problem (MKP).

3. We model the heterogeneity of NFBs by constructing cost network graphs

and propose an efficient online Shortest Service Chain Path (SSP)

3

algorithm for finding the shortest path (minimal latency) for any given60

policy in a cost network graph.

4. Our simulation results show that the HOOC scheme is efficient and scal-

able. Our testbed results show that the HOOC scheme is practical.

The remainder of this paper is structured as follows. Section 2 presents

our simple experiments on revealing performance heterogeneity across the same65

network function on different NFBs of various capacity. Section 3 describes

the problem formulation and the model of HOOC. Efficient schemes for HOOC

are proposed in Section 4, followed by testbed implementation the performance

evaluation of HOOC in Section 5 and Section 6 respectively. Section 7 out-

lines related works, and Section 8 concludes the paper and indicates the future70

direction of this work.

2. NFB Performance Heterogeneity

In order to understand the extent to which the performance heterogeneity

existing amongst the same network functions on different NFB configurations,

we have carried out a set of simple experiments using three commodity servers75

and one Pronto 3295 SDN switch. Each server is configured with an Intel’s

Xeon E5-1604 4 cores CPU, 16GB RAM and a dual port 1 Gbps NIC (Network

Interface Card), and with Ubuntu 14.04 as operating system. One server has

been used as virtualised NFB, with KVM (Kernel-based Virtual Machine) as

the hypervisor. The other two servers have been used for running iPerf [12]80

client and server respectively. Both the client and server were connected to the

NFB directly via 1 Gbp/s links. We have also used a Pronto 3295 SDN switch

to emulate a hardware NFB.

We have used two popular open-sourced software – Firewall (pfSense v2.3.1

[13]) and IDS/IPS (Snort v2.9.8 [14]) – as our network functions. For firewall85

experiments, a NAT has been created and used, meaning that the client and

server resided in two different networks. For IDS/IPS experiments, both client

4

0 0.5 1 1.5

Round Trip Time (s) 10
-3

0

0.2

0.4

0.6

0.8

1

C
D

F

pfSense 1 vCPU

pfSense 2 vCPUs

Hardware (Pronto 3295)

(a) NAT on virtual NFB

0 0.5 1 1.5 2 2.5

Round Trip Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Snort 1 vCPU

Snort 2 vCPUs

(b) IDS/IPS on virtual NFB

Figure 1: CDF of RTTs for pfSense and Snort NFBs with different numbers of allocated

virtual CPU.

and server were in the same network, meaning that the two physical network

ports on the NFB were bridged by software bridge. IDS/IPS rules used were

default rules pulled from Snort website. In addition to virtualized firewall, we90

have also programmed the SDN controller to write some static flow entries to

the Pronto switch to make it a simple hardware-based NAT.

In all experiments, we have used iPerf to stress the server with TCP requests

and record the traffic with tcpdump on both client and server. Since we are par-

ticularly interested in the end-to-end latency, we have used Wireshark (tshark)95

to compute packet round-trip-time (RTT) from recorded traffic streams.

2.1. Correlation with number of CPUs

We first study the correlation of performance heterogeneity of network func-

tion with different number of allocated CPUs on NFB. In this set of experiments,

we have first allocated only one vCPU (1 vCPUs, 2GB RAM) for both pfSense100

and Snort servers and then increased the number of vCPUs to two, while keeping

the memory (2 vCPUs, 2GB RAM) and other configurations unchanged.

The computed RTT from the recorded traffic has been demonstrated in Fig-

ure 1. Since no links in this setup are over-subscribed, the likelihood of traffic

congestion is low. Thus, processing delay accounts for significant portion of end-105

to-end latency. Clearly, Figure 1a shows that having twice as much hardware

5

0 0.5 1 1.5 2

Round Trip Time (s) 10
-3

0

0.2

0.4

0.6

0.8

1

C
D

F

pfSense 1 vCPU 2GB RAM

pfSense 1 vCPU 4GB RAM

(a) NAT on virtual NFB

0 0.5 1 1.5 2 2.5

Round Trip Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Snort 1 vCPU 2 GB RAM

Snort 1 vCPU 4 GB RAM

(b) IDS/IPS on virtual NFB

Figure 2: CDF of RTTs for pfSense and Snort NFBs with different sizes of allocated memory.

resource does not significantly improve RTT as there is only about 5% improve-

ment at the region above 80 percentile. In comparison, the hardware switch

implementation has much smaller and predictable RTT, even at 99 percentile.

Figure 1b shows more diverse performance results amongst two configurations110

for Snort IDS/IPS in which 2 vCPUs could give significantly better performance

up to as much as 100%. The steps observed in figures are attributed to the dif-

ferent computation demands required by various intrusion detection rules. This

means some packets are scrutinized more heavily whereas some are less.

In addition, we have also noticed that the magnitude of RTT for Snort is115

two orders higher than that of pfSense. This is because the pfSense’s workload

was mainly on examining the packet header for NAT translation, whereas for

IDS/IPS the workload was mainly on deep packet inspection.

2.2. Correlation with size of memory

In this set of experiments, we have only altered the configuration (1 vCPU,120

2GB RAM) to increase the size of memory from 1GB to 4GB (1 vCPU, 4GB

RAM). The results shown in Figure 2 exhibit only small differences in perfor-

mance across two configurations. Clearly, this set of experiments has revealed

that the performance of network function is largely limited by NFB’s process-

ing capacity rather than its amount of memory (as long as it meets minimum125

requirements).

6

3. Problem Modeling

Table 1: Notations and Parameters

Symbol Description

B, bi B is set of all NFBs, bi ∈ B

Cap(bi), T ypeSet(bi) maximum capability and supported NF types of bi

N, ni N is set of all NFs, ni ∈ N

Type(ni), Req(ni), Loc(ni) function type of ni, processing requirement of ni and

the NFB hosts ni

P, pi P is set of all network policies, pi ∈ P

srci, dsti source and destination of pi

Len(pi) number of NFs in pi

Pi all possible sequence of pi with re-ordering

D(ni, nj) dealy between ni and nj

tis, t
i
w service time and average waiting time of ni

λi packet arrival rate of ni

tp(ni) processing delay of ni

T (pi) expected delay for the flow constrained by pi

Bj nodes in the jth tier of the service chain network

In this section, we will describe the heterogeneous network policy problem.

Table 1 summaries notations used in the paper.

3.1. Overview130

In this paper, as opposed to existing works which only consider homoge-

neous NFBs deployment, we consider a heterogeneous environment. Network

functions can be implemented at various network locations, either in-network or

7

at-edge, and on different kinds of NFBs such as hardware middleboxes, commod-

ity servers, and (SDN) switches/routers. These NFBs are distinctively different135

in the following ways:

• Hardware middbleboxes are vendor specific, proprietary boxes for providing

specific network functions. Their designs are often optimized for perfor-

mance and are less extensible. On the contrary,

• NFV servers are virtualized that can run multiple, and theoretically, any140

types of virtual network functions. As they are built on virtualization,

better agility can be guaranteed.

• Some simple network functions can also be implemented on switches or

routers such as VPN, simple firewalls which can only perform packet fil-

tering, and load balancers. They are amongst hardware middleboxes.145

However, SDN can allow us to exploit the OpenFlow switches to increase

the performance of service chain by installing some rules (i.e., network

function) to their flow tables [5].

Since each types of NFs implementations above have their own advantages, we

anticipate that the heterogeneous implementation of network functions will exist150

for the foreseeable future.

Denote B = {b1, b2, . . .} to be the set of all NFBs in a data center. For a

NFB bi, Cap(bi) denotes the maximum processing capability of bi, measuring

in number of packets per second (pps), e.g., 3800 pps [15]. TypeSet(bi) specifies

the set of supported network function types on bi. NFV servers, theoretically,155

support all types of network function, while hardware MBs and switches can

only support one or few types of network functions. Without loss of generality,

we assume that the memory space of NFBs are enough to accommodate states

information of all network functions, i.e., bottleneck is the processing capacity

as shown in Section 2.160

Let N = {n1, n2, . . .} be the set of all network function instances in data

center. The Type(ni) defines the function of ni, e.g., IPS/IDS, LB, or FW.

8

Req(ni) is essentially the requirement of ni on the processing capacity of NFBs

in pps. Loc(ni) is the NFB that currently hosts ni. One main objective in this

paper is to find an appropriated NFB for Loc(ni).165

The set of network functions in N may belong to different applications, and

are deployed and configured by a centralized Policy Controller [9]. The central-

ized Policy Controller monitors and controls the liveness of network functions

and NFBs, including addition, failure/removal or migration of a network func-

tion. Network administrators can specify and update policies through the Policy170

Controller.

The set of network policies is P, which can be defined by users or admin-

istrators. In reality, one policy can be applied to multiple flows and a single

flow can be subject to the governance of multiple policies. For each pi ∈ P,

srci and dsti specify the source and destination of pi respectively. All packets175

matched to them should be constrained by pi. The ordered list contained in pi

defines the sequence of NFs that all flows matching policy pi should traverse

in order, and pi[j] refers to the jth NF. For example, pi = (n1, n2, n3), where

Type(n1) = FW,Type(n2) = IPS, Type(n3) = Proxy. And Len(pi) is number

of NFs of pi.180

All NFs in pi must be assigned to appropriate NFBs beforehand, and we

assume there are enough NFBs to accommodate all required network functions

in data center. Since we consider heterogeneous network functions, there are

various possible locations for each network function in pi. For example, in

the above example of pi, Loc(n1) could be a core router, Loc(n2) could be a185

hardware NFB, and Loc(n3) could be a NFV server. An example of service

chain is given in Figure 3. Next, we will consider the problem of heterogeneous

policy placement.

3.2. Delays with network functions

There are many metrics to measure the efficiency of network function place-190

ment (service function chaining) for a policy such as communication cost [16][17].

In this paper, we mainly focus on the latency of a policy flow. However, the

9

LB
NF instances

Original path

Re-scheduled path

(with re-orderiing)

NFV server

OpenFlow switch

Physical middlebox

NFBs:

IDS

Mon

LB

Source Destination

IDS

Mon

Figure 3: Service chain example for heterogeneous environment: red arrow shows original

service chain path: Source→ LB → IDS → Monitor → Destination, green dash arrow shows

the optimized path with re-ordering (Mon and IDS)

main idea in this paper can be easily applied to other metrics.

The total delay of a flow includes the transmission delay among adjacent

network functions in the service chain and processing delay of network functions.195

3.2.1. Transmission delays

In order to steer traffic to the service chain, either Policy Based Routing

(PBR) or VLAN stitching can be used in data centers [3]. For either case,

the intended solution in this paper should be unaware of these schemes and is

general and applicable to the schemes. So, we do not consider the detailed200

routing between two NFBs.

Since, in production data centers, the transmission delay of links in its path

are relatively stable and can be easily obtained/estimated through large-scale

measurement [18], we assume the transmission delay between two network func-

tions is known and can be obtained through the controller.205

The controller will maintain a transmission delay matrix D, D(ni, nj) =

D(nj , ni) is the delay between ni an nj . D(ni, nj) = −1 if the delay is unknown

10

or they are unreachable. In either cases, paths with D(ni, nj) = −1 will not be

considered for arrangement of service chains.

3.2.2. Processing delays of network functions210

We define service time tis as the time that ni takes to process a packet. Since

that many network functions such as proxies, firewalls and load balancers only

process packet headers of which sizes are fixed, ignoring variable length data

payloads. Thus, the service time tis is a constant [19]. Specially, considering the

processing capacity Req(ni) of ni, t
i
s = 1/Req(ni).215

If packets arrival rates is smaller than the processing capacity of network

function, the processing delay is equal to the service time. Otherwise, packets

will be queued. For simplicity, we consider a M/D/1 queue, and network func-

tions process packets in a First-Come-First-Service (FCFS) discipline. Then,

the processing delay is the summation of waiting time and service time. The220

packet arrival rate for ni is the total rates of all flows that need to be processed

by ni, which is denoted by λi. The utilization ρi = λi ∗ tis. The average waiting

time tiw of ni is

tiw =
tis ∗ ρ

2(1− ρ)
=

λi ∗ tis
2

2(1− λi ∗ tis)
(1)

Thus, the processing delay of ni is:

tp(ni) =

t
i
s λi ≤ Req(ni)

tiw + tis λi > Req(ni)

(2)

3.3. NF Behavior and Re-ordering of Service Chain225

We have surveyed a wide range of common network functions and service

chains to understand their common behaviors and properties. Most of these NFs

perform limited types of processing on packets, e.g., watching flows but making

no modification, changing packet headers and/or payload. For example, in

the simplest case, a flow monitor (FlowMon) obtains operational visibility into230

the network to characterize network and application performance, and it never

11

modify packet and flows [3]. Some NFs, e.g., IDS, will check packet headers

and payload, and raise alerts to the system administrator. Some NFs (such

as firewalls and IPS) do not change packet headers and payload, but they use

packet header information to make decision on whether to drop the packet or235

forward it. Some NFs (such as NAT and LB) may check IP/port fields in

packet headers and rewrite these fields [7]. Others (such as traffic shaper) do

not modify packet headers and payloads, but may perform traffic shaping tasks

such as active queue management or rate limiting [20].

For a service chain, certain ordering requirement of NFs naturally exists due240

to the nature of the functions applied. For instance, for a service chain applied

to North-South traffic in datacenters, a Web Optimization Control (WOC) is

not effective on VPN traffic, requiring VPN termination prior to WOC [3]. For

other service chain with IDS and FlowMon, since IDS never change the packet

content, FlowMon can be applied to the traffic after IDS or placed prior to IDS.245

If the order of some NFs in a service chain is allowed to be re-organized, there

could be more opportunities to improve performance by reducing the length of

the service chain path such as the example shown in Figure 3.

In order to model these properties of NFs and leverage these properties, we

can classify NFs into several classes according to their behaviors:250

• Modifier (M): NFs that may modify the content of a packet (header or

payload), e.g., NAT, Proxy;

• Shaper (Sh): NFs that perform traffic shaping tasks such as active queue

management or rate limiting, e.g., rate limiter.

• Dropper: NFs that may drop packets of flows, but never modify header255

of payload of packets, e.g., firewall.

• Static : NFs do not modify the packet or its forwarding path, and in

general do not belong to the classes above, e.g., FlowMon, IDS.

Table 2 summarizes the dynamic actions performed by different NFs that are

commonly used today.260

12

Table 2: Examples of the dynamic actions performed by different NFs that are commonly

used today [7]

Network Functions Input Actions Type

FlowMon Header No change Static

IDS Header, Payload No change Static

Firewall Header Drop? Dropper

IPS Header, Payload Drop? Dropper

NAT Header Rewrite header Modifier

Load balancer Header Rewrite header Modifier

Redundancy eliminator Payload Rewrite payload Modifier

To preserve the correctness of service chain, users can specify constraints

on the order of NFs in service chains. For example, we can change the order

of static NFs, and move static NFs before Dropper NFs. However, we cannot

move static NFs across Modifiers, as this might lead to incorrect operation.

In the example shown in Figure 3, the service chain is LB → IDS →265

Monitor and the total service chain path from the source to destination has

10 hops. Since that both IDS and Monitor are static NFs and do not modify

packets, their orders can be switched. By switching the position of IDS and

Monitor, the new service chain path (green dashed arrow in the figure) only has

8 hops. Furthermore, with heterogeneous NFBs (e.g., hardware or virtualized),270

there would be more opportunity for improving performance if re-ordering is

allowed.

Considering the re-ordering of service chain, we define Pi to be a set of

all possible NFs sequence of the service chain, i.e., Pi = {l1, l2, . . .}. For ex-

ample, suppose the service chain of pi is Firewall1 → IDS1 → FlowMon1,275

and the position of IDS1 and FlowMon1 can be swapped. Then, Pi = {l1 =

(Firewall1, IDS1, F lowMon1), l2 = (Firewall1, F lowMon1, IDS1)}. NFs of

13

pi can be organized according to any sequence defined in Pi.

The policy pi is called satisfied if and only if the following condition holds:

pi[j] == l[j],∀j = 1, 2 . . . , Len(pi),∃l ∈ Pi (3)

The final assigned sequence of pi must be equal to l, where l can be any accepted280

list in Pi with re-ordering.

3.4. Heterogeneous network policy enforcement problem

The expected delay for the flow constrained by policy pi is defined as:

T (pi) = D(srci, pi)

+

len(pi)−1∑
j=1

(D(pi[j], pi[j + 1]) + tp(pi[j]))

+D(pi[Len(pi)], dsti)

(4)

We aims to reduce the total delay by efficiently placing network functions

onto heterogeneous NFBs while strictly adhering to network policies. Denote285

A(ni) to be the NFB which hosts ni, and H(bj) is the set of network functions

hosted by bj .

The Heterogeneous Network Policy Enforcement problem is defined as fol-

lows:

Definition 1. Given the set of policies P, NFBs B and delay matrix D, we need290

to find an appropriate allocation of network functions, which that minimizes the

total expected end-to-end delays of the network:

min
∑
pk∈P

T (pk)

s.t. pk is satisfied,∀pk ∈ P

A(ni) 6= ∅ && |A(ni)| = 1,∀ni ∈ pk,∀pk ∈ P∑
ni∈H(bj)

Req(ni) < Cap(bj),∀bj ∈ B

(5)

The first constraint ensure that network functions of all service chains are

appropriately accommodated by one NFB. The second constraint is the capacity

constraint of all NFBs.295

14

The above problem can be easily proven to be NP-Hard :

Proof. To show that Heterogeneous Network Policy Enforcement problem is NP-

Hard, we will show that the Multiple Knapsack Problem (MKP) [21], whose

decision version has already been proven to be strongly NP complete, can be

reduced to this problem in polynomial time.300

Consider a special case of Heterogeneous Policy Enforcement problem that

the service chain of all policies contain only one network function. Assume

that transmission delays between servers and NFBs are the same and there are

enough NFBs, meaning that no NFBs are saturated.

Consider each network function ni to be an item, where its requirement305

Req(ni) is item size. Each NFB bj is a knapsack with limited capacity Cap(bj).

The profit of assigning ni to each NFB is the negative of the delays. Then the

Heterogeneous Network Policy Enforcement problem becomes finding an alloca-

tion of all network functions to NFBs, maximizing the total profit. Therefore,

the MKP problem is reducible to the Heterogeneous Policy Enforcement problem310

in polynomial time, and hence the Heterogeneous Policy Enforcement problem

is NP-hard.

4. Heterogeneous Policy Enforcement

In this section, we introduce HOOC, a Heterogeneous netwOrk pOlicy enforCement

scheme.315

4.1. Service chain network

We consider an online solution which process one service chain at a time

when a new policy requirement arrives.

For each policy pi, we need to find appropriate NFBs to accommodate all

network functions in pi with an objective to minimize its total expected delay320

T (pi). Considering re-ordering of service chain, for each candidate service chain

l ∈ Pi, we construct a graph Gl, which is a m-tier directed graph (m = Len(pi)).

15

Nodes in the jth tier are NFBs defined by Bj :

Bj = {bk|l[j] ∈ TypeSet(bk) and∑
n∈A(bk)

Req(n) +Req(l[j]) ≤ Cap(bk),∀bk ∈ B} (6)

For a node x in jth (j ≤ m−1) tier and y in (j+1)th tier, there is a directed edges

from x to y if y is reachable from x and the weight of the edge is D(x, y)+ tp(y).325

It is possible that both x and y are the same NFB. In this case, D(x, y) = 0.

Then, for each l ∈ Pi, we can construct a graph Gl, and all those graphs

can be merged into one single graph G. During the merge operation, for any

l1 ∈ Pi and l2 ∈ Pi (l1 6= l2), if l1[j] = l2[j], nodes in j-th tier of Gl1 can be

merged with nodes of j-th tier in Gl2 accordingly. If two neighbor nodes x and330

y in Gl1 are merged to neighbor nodes x′ and y′ in Gl2 , the link between them

must have the same weight and can be merged too.

Flow originates from the source (srci) and terminate at the sink (dsti).

For a node x in 1st tier, the weight of the directed edges from srci to x is

D(srci, x)+ tp(s). For a node y in lth tier, the weight of the directed edges from335

y to dsti is D(y, dsti).

The resulted graph G is called the Service Chain Network of pi. An example

of service chain network is given in Figure 4.

bx

bybj

bi

bn

bm

Source

(src)

Sink

(dst)

D(b
x , dst)

..
.

..
.

..
.

D
(b
y
, d
st
)

D(bm, bx)+tp(bx)

D(
src
, b i
)+t

p(b
i)

D(src, b
x)+tp(b

j)

D(bi, bm)+tp(bm)

D
(b
i , b
m)+t

p (b
n)

D
(b
j,
b m
)+
t p(
b m
)

D
(b
m , b

y)+t
p (b
y)

D
(b
n
, b
x
)+
t p(
b x
)

D(bj, bn)+tp(bn) D(bn, by)+tp(by)

Figure 4: Example of service chain network with length of 3.

16

4.2. Shortest service chain path

According to the construction process of service chain networks, any paths340

from source to sink need to traverse all tiers, i.e., all NFs in the service chain.

Edges among different tiers ensure that all those NFs are in correct order that are

acceptable in Pi. And weights of edges are their corresponding delay. Thus, it is

clear that the route with the smallest expected latency for a flow is the shortest

path from source to sink. We referred this path as ssp (Shortest service chain345

path). However, since nodes in different tiers of the service chain network can

be the same NFB with limited capacity, we can not simply re-use traditional

shortest first path algorithms, e.g., Dijkstra, Floyd-Warshall.

The difficulty here is that two nodes that belong to different tiers in the

service chain network, say x and y, may be in the same NFB and share the350

same capacity. If we assign pi to x, it may saturate the NFB such that y can

not further accept pi. In this case, we call them conflict nodes. A path from

the source will be blocked by the latter one of the conflict nodes.

Hence, we design the SSP (Shortest Service Chain Path) algorithm to find

the shortest path in this situation, as shown in Algorithm 1. The d(v) is used355

to maintain the distance from source to vertex v. It is initialized to be infinite

and will be relaxed during the course of the algorithm. The set S contains

all vertices whose final shortest distance from the source have already been

determined. Conflict nodes are handled in line 14. The shortest service chain

path are maintained in prev and can be obtained through getPath().360

Obviously, the shortest service chain path in Algorithm 1 is a variant of

the Single-Source Shortest Path (SSSP) problem [22]. We have adapted it to

handle the conflict nodes during discovering the optimal path and it can be easily

proven to be able to always find the optimal path. And the complexity of the

algorithm depends on the way of finding the vertex v with the smallest distance365

d(v), i.e., the argmin operation. Because paths with conflict nodes failed to

reach the destination, not all vertices and edges are checked in Algorithm 1.

Thus, each vertex v ∈ V is added to set S at most once (line 6 ∼ 10), and

each edge in E is examined in the for loop of lines 12 ∼ 20 at most once

17

during the course of the algorithm. A priority queue, which is a data structure370

consisting of a set of item-key pairs, can be implemented for efficient operation

of distanc for each vertex. Operations supported by priority queue can be

used to implement Algorithm 1: insert, e.g., implicit in line 2; extract-min,

returning the vertex with the minimum distance in line 6, i.e., the argmin

operation; and decrease-key, decreasing the distance of a given vertex in line 15.375

Furthermore, Fibonacci heaps [23] implement insert and decrease-key in O(1)

amortized time, and extract-min (i.e., argmin) in O(log n) amortized time,

where n is the number of elements in the priority queue [22]. So, by using

Fibonacci heaps, the running time of Algorithm 1 is O(|E|+ |V | log |V |), where

|E| is the number of edges and |V | is the number of vertices in the cost network.380

Network policy is often stable and is not transient. However, we reckon the

fact that traffic demand could change slowly over time and it is necessary to

adapt to the changes. This can be easily achieved in HOOC through SDN mech-

anism: the Policy Controller can periodically poll switches for traffic statistics

to look for changes in traffic demand in specific part of network topology, and385

then trigger HOOC to re-optimize the policies that have been affected.

4.3. Greedy Approach

Algorithm 1 ensures the optimality of the service chain path. However, it

has one major drawback that its O(|E|+ |V | log |V |) time complexity. Thus, we

also propose a greedy approach, which trades off small accuracy for significantly390

faster speed.

The greedy approach of HOOC is described in Algorithm 3. The main idea

of Greedy is that: for each element in the service chain, the algorithm will

choose a NFBs with the smallest delay to the source or previous NF in the

service chain. If current path is blocked by a conflict node, the algorithm will395

fall back to previous NF and choose the NFB with 2nd smallest delay. This

process will continue until the destination is reached, or there is no available

path. If multiple candidated service chain are available in Pi, the Bj contains

acceptable NFBs defined in Equation 6. Specially, for any l1 ∈ Pi and l2 ∈ Pi

18

0 1 2 3 4 5 6 7

RTT (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

S1 to S16

 S16 to S1

Figure 5: An example RTT for server pair (s1,s16)

(l1 6= l2), if l1[j] = l2[j], same NFBs obtained for l1 and l2 will be merged as a400

single node, otherwise, they will be treated as different nodes.

5. Implementation

5.1. Testbed

We have implemented on a proof-of-concept testbed consists of 16 Raspberry

Pis (Model 2B) [24], two Pronto 3295 SDN (2x48 ports) switches and a Ryu405

SDN controller running on an Intel’s Xeon E5-1604 4 cores CPU and 16GB

RAM. We constructed a fat-tree topology (k = 4) by logically slicing [25] two

pronto switches into 20 4-port SDN switches. As a result of slicing, we had to

manually construct the topology graph in the Ryu controller. However, we note

that Ryu has a built-in feature that can automatically learn network topologies410

if regular switches are used. Our example NFs are mainly simple container-

based firewalls [26]. We have also attached an IDS/IPS used in Section 2 to one

of spare SDN switch ports and is seen as a hardware NFB.

19

4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Factor K

A
v
e
ra

g
e
 L

a
te

n
c
y
 o

f
S

e
rv

ic
e
 C

h
a
in

 (
m

s
)

HOOC − SSP

HOOC − Greedy

BruteForce

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency of service chain (ms)

C
D

F

HOOC − SSP

HOOC − Greedy

BruteForce

(b)

1 2 3 4
0

2

4

6

8

10

12

14

16

Length of service chain

A
v
e

ra
g

e
 l
a

te
n

c
y
 o

f
s
e

rv
ic

e
 c

h
a

in
 (

m
s
)

HOOC − SSP

HOOC − Greedy

BruteForce

(c)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency of service chain (ms)

C
D

F

HOOC − SSP

HOOC − Greedy

(d)

Figure 6: Comparison of latency of service chain: (a) Average latency for various network

scale; (b) Latency of service chain for k = 20; (c) Average latency for various length of service

chain; (d) Latency of service chain for length = 4

5.2. Link latency

In order to obtain needed link latency we have implemented a reduced ver-415

sion of Pingmesh Agent [18] using C++ for better performance and accuracy.

This Pingmesh Agent pings all servers (i.e. Raspberry Pis) using TCPing, and

measures round-trip-time (RTT) from the TCP-SYN/SYN-ACK intervals. An

example server pair (s1, s16) RTT is shown in Figure 5. The average memory

footprint is less than 2MB, and the average CPU usage is less than 1%. Ping420

traffic is very small and ping interval is configurable according to actual needs.

The ping results are uploaded to the controller periodically for constructing

20

all pairs end-to-end latency table which can be queried using host IP address.

This is because we assume that most of deployed NFs will run in commodity

servers. There are also some in-network hardware NFBs, as defined in 3.1,425

that are either SDN switches or attached directly to the switches. Hence the

delay from/to these particular devices can be queried through OpenFlow’s port

statistics APIs or other technique such as OpenNetMon [27].

The processing delay of network functions is obtained from tis, which is

inverse proportional to NF’s capacity. We did not consider queueing delay in430

our testbed implementation because our algorithm ensures that NFBs are not

overloaded. We also note here that there are also some other techniques that

are useful for monitoring processing capacities such sFlow [28].

5.3. Policy controller

The policy controller is implemented as an application module in Ryu. We435

have chosen Ryu because it has a built in integration for Snort [14] that enables

bidirectional communication using unix domain socket. The controller interacts

with NFBs that host firewalls using OpenFlow protocol. Although frameworks

such as OpenNF [9] can also be added to enrich functionality of the controller, we

note that the scope of this paper is to provide a proof-of-concept implementation440

rather than a full-blown testbed.

In addition to managing NFBs, the controller is also responsible for collect-

ing link latency from Pingmesh Agent and maintaining an in-memory all-pair

unidirectional end-to-end latency table which is essential to the HOOC scheme.

6. Evaluation445

6.1. Evaluation environment and setup

In order to study the performance of HOOC scheme at scale, we have ex-

tensively evaluated it via ns-3 simulations in a fat-tree topology with factor

k ranged from 4 to 20 meaning that there are at most 2000 servers and 500

switches in these setups. The same controller which we use for testbed has been450

used during simulation via ns-3’s OpenFlow module.

21

Each NFB in our simulations is modeled with random residual capacity

(number of packets it can process per second) and a set of network function

types that it supports. Therefore, a NFB can accept a network function as long

as it has sufficient residual capacity and the network function’s type is amongst455

its support list. We also note that NFV servers can support any types of network

functions. All NFBs are deployed in the network, including OpenFlow switches,

hardware middleboxes and NFV servers.

In all experiments, traffic flows are randomly generated to transmit packets

between two servers. Each flow is required to traverse a sequence of various net-460

work functions – the service chain – before being forwarded to their destination

as specified by policies. In our experiments, the service chains are comprised

of 1∼4 network functions (normal distribution) including FW, IPS, RE, LB,

IDS and (traffic) Monitor [3]. A centralized controller is implemented to collect

all network information that is needed, as defined in Section 3 to perform the465

HOOC scheme.

Both optimal and greedy approaches for HOOC are implemented. For sim-

plicity, the scheme using SSP to achieve optimal schedule for a service chain is

referred as HOOC-SSP, and the greedy approach is referred as HOOC-Greedy.

In order to compare and contrast the performance of HOOC, we have also im-470

plemented a Brute-force approach: By using a DFS (Depth-first search) method,

Brute-force approach exhaustively search all NFBs and all possible service chain

allocation paths to find the one with smallest latency. Brute-force will give the

optimal results but it is not suitable for large-scale network as the cost for

searching all permutations will become prohibitively expensive as the search475

space grows.

6.2. Evaluation results

We first study the performance of HOOC with regard to the latency of service

chain as demonstrated in Figure 6. Figure 6a shows the average latency of all

service chain under different network scales with the factor k of fat-tree ranging480

from 4 to 20. It shows that on average HOOC-SSP can always find a service

22

chain path with the same latency as that of Brute-force, which is optimal. In

comparison, the HOOC-Greedy approach cloud fall behind both HOOC-SSP

and Brute-force by up to 23%.

We further show a detailed breakdown view in Figure 6b that HOOC-SSP485

and Brute-force schemes have identical CDF of latency for all policies for a large

scale network when k = 20. Particularly, they can outperform HOOC-Greedy

scheme by 38% at 99 percentile.

Figure 6c reveals that average latency increases linearly with the length of

service chain when all NFBs have sufficient capacity for accommodating all490

network functions. The breakdown of CDF for latency of service chain whose

length is comprised of four network functions shown in Figure 6d. It unveils that

amongst HOOC’s two algorithms, HOOC-SSP can outperform HOOC-Greedy

by 21%.

Next we study the performance of different schemes in term of system run-495

ning time. This is essentially to test the performance of HOOC controller for

its efficiency and scalability in cloud data center environment. Figure 7 shows

the average total running time to process a policy increases exponentially for

all schemes. Nevertheless, as we can see from this figure that HOOC-Greedy

is the most efficient methods, consuming only 2.8s and 3.7s for k = 18 and500

k = 20 respectively to complete a cycle. This is because HOOC-Greedy scheme

has the smallest search space. On the contrary, HOOC-SSP can complete one

NFs placement cycle for k = 18 and k = 20 at 10s and 23s respectively, and

Brute-force takes up to 149s and 232s for k = 18 and k = 20 respectively.

The results indicate that HOOC-SSP and HOOC-Greedy can be nearly 9 and505

61 times faster than Brute-force. Among HOOC-SSP and HOOC-Greedy, the

latter is 5 times more efficient that the former one.

As we have already presented in Section 4 that HOOC-SSP is comprised of

constructing a service chain network and finding shortest service chain paths.

Figure 7 also demonstrates that 63% of HOOC-SSP time are consumed on510

constructing the service chain network, whereas finding shortest service chain

paths merely accounts for 37% of the time. Clearly, this indicates that in order

23

4 6 8 10 12 14 16 18 20

Factor K

10
-2

10
-1

10
0

10
1

10
2

10
3

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
)

HOOC-Greedy

HOOC-SSP

Brute-force

Constructing Service Chain Network

Figure 7: Performance comparison on running time

to further improve the efficiency of HOOC-SSP whilst retaining optimality, we

should investigate into optimizing the efficiency of constructing service chain

network. We will leave this as part of our future work. However, Figure 7515

demonstrates that when efficiency becomes the foremost consideration HOOC-

Greedy can strike a good balance between efficiency and its approximation to

the optimal.

7. Related Works

The configuration of network connectivity is governed by network policies.520

When deployed, a policy is translated and implemented as one or more packet

processing rules in a diverse range of “middleboxes” (MBs) such as firewalls

(e.g. ALLOW TCP 80), load balancers, Intrusion Detection and Prevention

Systems (IDS/IPS), and application acceleration boxes [29]. With network pro-

grammability enabled by SDN and NFV technologies, such rules can also be525

implemented outside of traditional “middleboxes” in network switches [30] as

well as end-hosts [31]. One of the design requirements for today’s cloud data

24

centres is to support the insertion of new middleboxes [32].

Recent studies have focused primarily on exploiting SDN and NFV to en-

sure correct policy compositions and enforcement [2][7][8], consolidating policy530

rules to end hosts [31] and network switches [33], or providing a framework

for migrating middleboxes states [9], or policy-aware application placement to

incorporate policy requirements [16][29][34].

Nevertheless, this body of work has only partially addressed the problem

since, with SDN and NFV, both the number of entities that generate and imple-535

ment policies independently and dynamically have increased manyfold. Given

the large variety of network function entities in terms of both types and loca-

tions, inappropriate selections not only eliminate the advantage of SDN and

NFV but could also cause severe consequences including data centre outage.

Many data centre applications are sensitive to latencies. One source of la-540

tency is network congestion as throughput-intensive applications causes queue-

ing at switches that delays traffic from latency-sensitive applications. Existing

techniques to combat queueing are to prioritise flows such that packets from

latency-sensitive flows can “jump” the queue [11]; to centrally schedule all flows

for every server so no flows will have to queue [35]; or to pace end host packets545

to achieve guaranteed bandwidth for guaranteed queueing [10].

These techniques assume shortest path forwarding. Today’s data centre fab-

rics have rich path-redundancy in nature, non-shortest paths can be exploited to

use path redundancy and spare capacity for mitigating network congestion [36].

As policy rules chaining can effectively shape the network traffic (packets need550

to follow policy path), they can be chained over non-shortest paths to mitigate

congestion-led queueing since propagation delay on physical links are predictable

and smaller than queueing delay.

A primary study on heterogeneous network function boxes environment is

provided in our previous work [37] and a HOPE scheme is proposed. However,555

HOOC is different with previous work in the following ways: Firstly, a thor-

ough test-bed experiments are also performed to show the heterogeneity among

different NFB implementations; Secondly, the service chain re-ordering is consid-

25

ered, where NFs can be opportunistically re-ordered for improving performance.

Thirdly, The detailed implementation of the Greedy version is introduced in this560

paper; Finally, a proof-of-concept testbed and some issues of implementations

in practice are discussed.

8. Conclusion

Network policies and service chains are important for the security and reli-

ability of data center network today. In practice, network functions of policies565

can be deployed in different environment, e.g., OpenFlow switches, hardware

middleboxes and NFV servers. Such heterogeneous environment for policy al-

location remain unexplored in previous research works. In this paper, we study

the Heterogeneous Policy Enforcement Problem with a focus on the latency. We

first prove that the optimization problem is NP-Hard, then simplified the prob-570

lem and proposed HOOC, which is proved to be able to find the optimal service

chain path for each policy. Extensive simulation results and comparisons with

Brute-force approach have demonstrated high effectiveness and optimality of

HOOC. The future direction of this work will be to investigate efficient service

chain network construction.575

Acknowledgements

The work has been partially supported in part by Chinese National Re-

search Fund (NSFC) No. 61772235 and 61402200; the Fundamental Research

Funds for the Central Universities (21617409); the UK Engineering and Physical

Sciences Research Council (EPSRC) grants EP/P004407/2 and EP/P004024/1;580

DCT-MoST Joint-project No. (025/2015/AMJ); University of Macau Funds No.

CPG2018-00032-FST & SRG2018-00111-FST; NSFC Key Project No. 61532013;

National China 973 Project No. 2015CB352401; Shanghai Scientific Innovation

Act of STCSM No.15JC1402400 and 985 Project of Shanghai Jiao Tong Uni-

versity: WF220103001.585

26

References

[1] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,

R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,

et al., Steering: A software-defined networking for inline service chaining,

in: Network Protocols (ICNP), 2013 21st IEEE International Conference590

on, IEEE, 2013, pp. 1–10.

[2] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,

Y. Ma, P. Sharma, Y. Zhang, PGA: Using graphs to express and automat-

ically reconcile network policies, in: ACM SIGCOMM, 2015.

[3] Surendra, M. Tufail, S. Majee, C. Captari, S. Homma, Service function595

chaining use cases in data centers, Tech. Rep. draft-ietf-sfc-dc-use-cases-05,

IETF SFC WG (August 2016).

[4] B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network function virtualiza-

tion: Challenges and opportunities for innovations, IEEE Communications

Magazine 53 (2) (2015) 90–97. doi:10.1109/MCOM.2015.7045396.600

[5] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, T. Lakshman, Application-

aware data plane processing in sdn, in: HotSDN, ACM, 2014.

[6] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, G. Shi, Design and imple-

mentation of a consolidated middlebox architecture., in: NSDI, 2012, pp.

323–336.605

[7] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu, Simple-fying

middlebox policy enforcement using SDN, ACM SIGCOMM Computer

Communication Review 43 (4) (2013) 27–38.

[8] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, J. C. Mogul, Enforcing

network-wide policies in the presence of dynamic middlebox actions using610

flowtags, in: Proc. USENIX NSDI, 2014.

27

http://dx.doi.org/10.1109/MCOM.2015.7045396

[9] A. Gember-Jacobson, C. P. Raajay Viswanathan, R. Grandl, J. Khalid,

S. Das, A. Akella, OpenNF: enabling innovation in network function con-

trol, in: Proc. of ACM SIGCOMM, 2014, pp. 163–174.

[10] K. Jang, J. Sherry, H. Ballani, T. Moncaster, Silo: predictable message615

latency in the cloud, ACM SIGCOMM Computer Communication Review

45 (4) (2015) 435–448.

[11] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,

S. Hand, J. Crowcroft, Queues dont matter when you can jump them!, in:

NSDI 2015.620

[12] iperf.

URL https://iperf.fr

[13] Electric Sheep Fencing LLC, pfsense.

URL https://blog.pfsense.org/

[14] Cisco, Snort.625

URL https://www.snort.org

[15] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, J. Li, Towards efficient load

distribution in big data cloud, in: IEEE ICNC, 2015, pp. 117–122.

[16] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, W. Zho, Policy-aware virtual

machine management in data center networks, IEEE ICDCS 2015.630

[17] L. Cui, R. Cziva, F. P. Tso, D. P. Pezaros, Synergistic policy and virtual

machine consolidation in cloud data centers, IEEE INFOCOM 2016.

[18] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,

B. Pang, H. Chen, et al., Pingmesh: A large-scale system for data cen-

ter network latency measurement and analysis, in: Proceedings of the635

2015 ACM Conference on Special Interest Group on Data Communication,

ACM, 2015, pp. 139–152.

28

https://iperf.fr
https://iperf.fr
https://blog.pfsense.org/
https://blog.pfsense.org/
https://www.snort.org
https://www.snort.org

[19] P. Duan, Q. Li, Y. Jiang, S.-T. Xia, Toward latency-aware dynamic mid-

dlebox scheduling, in: Computer Communication and Networks (ICCCN),

2015 24th International Conference on, IEEE, 2015, pp. 1–8.640

[20] A. Bremler-Barr, Y. Harchol, D. Hay, Openbox: A software-defined frame-

work for developing, deploying, and managing network functions, in: Pro-

ceedings of the 2016 conference on ACM SIGCOMM 2016 Conference,

ACM, 2016, pp. 511–524.

[21] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer Verlag,645

2004.

[22] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Vol. 24,

Springer Science & Business Media, 2002.

[23] M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in improved

network optimization algorithms, Journal of the ACM (JACM) 34 (3)650

(1987) 596–615.

[24] F. P. Tso, D. R. White, S. Jouet, J. Singer, D. P. Pezaros, The glasgow

raspberry pi cloud: A scale model for cloud computing infrastructures,

in: 2013 IEEE 33rd International Conference on Distributed Computing

Systems Workshops, 2013, pp. 108–112. doi:10.1109/ICDCSW.2013.25.655

[25] Z. Bozakov, P. Papadimitriou, Autoslice: automated and scalable slicing

for software-defined networks, in: Proceedings of the 2012 ACM conference

on CoNEXT student workshop, ACM, 2012, pp. 3–4.

[26] R. Cziva, S. Jouet, D. Pezaros, Container-based network function virtual-

ization for software-defined networks, in: Computers and Communications660

(ISCC), 2015 IEEE 20th International Symposium on, 2015.

[27] N. L. Van Adrichem, C. Doerr, F. A. Kuipers, Opennetmon: Network

monitoring in openflow software-defined networks, in: 2014 IEEE Network

Operations and Management Symposium (NOMS), IEEE, 2014, pp. 1–8.

29

http://dx.doi.org/10.1109/ICDCSW.2013.25

[28] P. Phaal, S. Panchen, N. McKee, Inmon corporations sflow: A method for665

monitoring traffic in switched and routed networks, Tech. rep., RFC 3176

(2001).

[29] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R. Yang,

C. Guo, PACE: Policy-aware application cloud embedding, in: Proceedings

of 32nd IEEE INFOCOM, 2013.670

[30] A. Gember, P. Prabhu, Z. Ghadiyali, A. Akella, Toward software-defined

middlebox networking, in: Proceedings of the 11th ACM Workshop on Hot

Topics in Networks, ACM, 2012, pp. 7–12.

[31] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, I. Stoica, CloudPolice: taking

access control out of the network, in: ACM SIGCOMM Workshop on Hot675

Topics in Networks, 2010.

[32] L. Avramov, M. Portolani, The Policy Driven Data Center with ACI: Ar-

chitecture, Concepts, and Methodology, Cisco Press, 2014.

[33] M. Moshref, M. Yu, A. B. Sharma, R. Govindan, Scalable rule management

for data centers., in: USNIX NSDI, 2013.680

[34] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, Plan: A policy-aware vm man-

agement scheme for cloud data centres, IEEE/ACM Utility & Cloud Com-

puting (UCC) 2015.

[35] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, H. Fugal, Fastpass: A

centralized zero-queue datacenter network, in: ACM SIGCOMM 2014.685

[36] F. P. Tso, G. Hamilton, R. Weber, C. S. Perkins, D. P. Pezaros, Longer

is better: exploiting path diversity in data center networks, IEEE ICDCS

2013.

[37] L. Cui, F. P. Tso, W. Jia, Heterogeneous network policy enforcement in

data centers, in: Integrated Network and Service Management (IM), 2017690

IFIP/IEEE Symposium on, IEEE, 2017, pp. 552–555.

30

Lin Cui is currently with the Department of Com-

puter Science at Jinan University, Guangzhou, China.

He received the Ph.D. degree from City University of

Hong Kong in 2013. He has broad interests in network-695

ing systems, with focuses on the following topics: cloud

data center resource management, data center network-

ing, software defined networking (SDN), virtualization,

distributed systems as well as wireless networking.

Fung Po Tso received his BEng, MPhil and PhD de-700

grees from City University of Hong Kong in 2006, 2007

and 2011 respectively. He is currently lecturer in the

Department of Computer Science at the Loughborough

University. Prior to joining Loughborough, he worked as

SICSA Next Generation Internet Fellow at the School of705

Computing Science, University of Glasgow during 2011-2014 and lecturer in

Liverpool John Moores University during 2014-2017. He has published more

than 20 research articles in top venues and outlets. His research interests in-

clude: network policy management, network measurement and optimisation,

cloud data centre resource management, data centre networking, software de-710

fined networking (SDN), distributed systems as well as mobile computing and

system.

Weijia Jia is currently a chair Professor at Univer-

sity of Macaua. He is leading currently several large

projects on next-generation Internet of Things, environ-715

mental sensing, smart cities and cyberspace sensing and

associations etc. He received BSc and MSc from Center

South University, China in 82 and 84 and PhD from Poly-

technic Faculty of Mons, Belgium in 1993 respectively. He worked in German

National Research Center for Information Science (GMD) from 93 to 95 as a720

31

research fellow. From 95 to 13, he has worked in City University of Hong Kong

as a full professor. From 14 to 17, he has worked as a Chair Professor in Shang-

hai Jiaotong University. He has published over 400 papers in various IEEE

Transactions and prestige international conference proceedings.

32

Algorithm 1 SSP:Shortest Service Chain Path

Input: Service chain Network G(V,E), pi, B,N, D

Output: Shortest service chain path to dsti

1: S ← ∅

2: d(v)←∞,∀v ∈ V

3: prev[v]← undefined, ∀v ∈ V

4: d(srci)← 0

5: while S 6= V do

6: u← argminv∈V \S d(v)

7: if u = dsti then

8: break

9: end if

10: S ← S ∩ {u}

11: nk ← network function in pi that will be placed in u

12: for each neighbor v of u do

13: if d(v) > d(u) +D(u, v) then

14: if v 6∈ getPath(prev, u) or
∑

nj∈H(v)Req(nj) + Req(nk) ≤

Cap(v) then

15: d(v)← d(u) +D(u, v)

16: prev[v]← u

17: prev[v].nf ← nk

18: end if

19: end if

20: end for

21: end while

22: return getPath(prev, dsti)

33

Algorithm 2 getPath(prev, dst)

1: ssp← ∅

2: l← ∅

3: u← dst

4: while prev[u] is defined do

5: insert u at the beginning of ssp

6: insert prev[u].nf at the beginning of l

7: u← prev[u]

8: end while

9: insert u at the beginning of ssp

10: return ssp and l

34

Algorithm 3 Greedy

Input: pi, B,N, D

Output: Service chain path to dsti

1: path← ∅

2: B′j ← Bj ,∀j = 1, 2 . . . ,Len(pi)

3: j ← 1

4: while j ≤Len(pi) do

5: if B′j = ∅ then

6: j ← j − 1

7: if j < 1 then

8: path← ∅ . no available path

9: break

10: end if

11: remove last node in path

12: B′j+1 ← Bj+1

13: continue

14: end if

15: u← argminv∈B′
j
D(path[end], v)

16: B′j ← B′j \ {u}

17: nk ← network function in pi that will be placed in u

18: if u 6∈ path or
∑

n′∈H(u)Req(n
′) +Req(nk) ≤ Cap(u) then

19: append u at the end of path

20: if j =Len(pi) then

21: break

22: else

23: j ← j + 1

24: end if

25: end if

26: end while

27: return path

35

	Introduction
	NFB Performance Heterogeneity
	Correlation with number of CPUs
	Correlation with size of memory

	Problem Modeling
	Overview
	Delays with network functions
	Transmission delays
	Processing delays of network functions

	NF Behavior and Re-ordering of Service Chain
	Heterogeneous network policy enforcement problem

	Heterogeneous Policy Enforcement
	Service chain network
	Shortest service chain path
	Greedy Approach

	Implementation
	Testbed
	Link latency
	Policy controller

	Evaluation
	Evaluation environment and setup
	Evaluation results

	Related Works
	Conclusion

