3 research outputs found

    Consensus and meta-analysis regulatory networks for combining multiple microarray gene expression datasets

    Get PDF
    Microarray data is a key source of experimental data for modelling gene regulatory interactions from expression levels. With the rapid increase of publicly available microarray data comes the opportunity to produce regulatory network models based on multiple datasets. Such models are potentially more robust with greater confidence, and place less reliance on a single dataset. However, combining datasets directly can be difficult as experiments are often conducted on different microarray platforms, and in different laboratories leading to inherent biases in the data that are not always removed through pre-processing such as normalisation. In this paper we compare two frameworks for combining microarray datasets to model regulatory networks: pre- and post-learning aggregation. In pre-learning approaches, such as using simple scale-normalisation prior to the concatenation of datasets, a model is learnt from a combined dataset, whilst in post-learning aggregation individual models are learnt from each dataset and the models are combined. We present two novel approaches for post-learning aggregation, each based on aggregating high-level features of Bayesian network models that have been generated from different microarray expression datasets. Meta-analysis Bayesian networks are based on combining statistical confidences attached to network edges whilst Consensus Bayesian networks identify consistent network features across all datasets. We apply both approaches to multiple datasets from synthetic and real (Escherichia coli and yeast) networks and demonstrate that both methods can improve on networks learnt from a single dataset or an aggregated dataset formed using a standard scale-normalisation

    Combining heterogeneous sources of data for the reverse-engineering of gene regulatory networks

    Get PDF
    Gene Regulatory Networks (GRNs) represent how genes interact in various cellular processes by describing how the expression level, or activity, of genes can affect the expression of the other genes. Reverse-engineering GRN models can help biologists understand and gain insight into genetic conditions and diseases. Recently, the increasingly widespread use of DNA microarrays, a high-throughput technology that allows the expression of thousands of genes to be measured simultaneously in biological experiments, has led to many datasets of gene expression measurements becoming publicly available and a subsequent explosion of research in the reverse-engineering of GRN models. However, microarray technology has a number of limitations as a data source for the modelling of GRNs, due to concerns over its reliability and the reproducibility of experimental results. The underlying theme of the research presented in this thesis is the incorporation of multiple sources and different types of data into techniques for reverse-engineering or learning GRNs from data. By drawing on many data sources, the resulting network models should be more robust, accurate and reliable than models that have been learnt using a single data source. This is achieved by focusing on two main strands of research. First, the thesis presents some of the earliest work in the incorporation of prior knowledge that has been generated from a large body of scientific papers, for Bayesian network based GRN models. Second, novel methods for the use of multiple microarray datasets to produce Bayesian network based GRN models are introduced. Empirical evaluations are used to show that the incorporation of literature-based prior knowledge and combining multiple microarray datasets can provide an improvement, when compared to the use of a single microarray dataset, for the reverse-engineering of Bayesian network based GRN models.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore