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Abstract

Gene Regulatory Networks (GRNs) represent how genes interact in

various cellular processes by describing how the expression level, or

activity, of genes can affect the expression of the other genes. Reverse-

engineering GRN models can help biologists understand and gain in-

sight into genetic conditions and diseases. Recently, the increasingly

widespread use of DNA microarrays, a high-throughput technology

that allows the expression of thousands of genes to be measured si-

multaneously in biological experiments, has led to many datasets of

gene expression measurements becoming publicly available and a sub-

sequent explosion of research in the reverse-engineering of GRN mod-

els. However, microarray technology has a number of limitations as

a data source for the modelling of GRNs, due to concerns over its

reliability and the reproducibility of experimental results.

The underlying theme of the research presented in this thesis is the

incorporation of multiple sources and different types of data into tech-

niques for reverse-engineering or learning GRNs from data. By draw-

ing on many data sources, the resulting network models should be

more robust, accurate and reliable than models that have been learnt

using a single data source. This is achieved by focusing on two main

strands of research. First, the thesis presents some of the earliest work

in the incorporation of prior knowledge that has been generated from

a large body of scientific papers, for Bayesian network based GRN

models. Second, novel methods for the use of multiple microarray

datasets to produce Bayesian network based GRN models are intro-

duced. Empirical evaluations are used to show that the incorporation

of literature-based prior knowledge and combining multiple microar-

ray datasets can provide an improvement, when compared to the use

of a single microarray dataset, for the reverse-engineering of Bayesian

network based GRN models.
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Chapter 1

Introduction

Over the past couple of decades the face of biological research has changed

from time-consuming, relatively small-scale experiments (the ‘white coat’ era) to

automated experiments that generate reams and reams of data. Biology-related

datasets are now more diverse, originating from different sources (for example,

experiments and textual sources) and are massively larger due to an increase

in the speed of data capture (through automated experimental procedures and

increased paper publication rates) and the size of data storage. Bioinformatics —

which focuses on the analysis of biological data using computers — has grown out

of the need to effectively analyse such data. Its emphasis is on developing robust

and efficient data analysis techniques and algorithms to extract more knowledge

from these large and complex sets of experimental data.

A current ‘hot topic’ in Bioinformatics research is the modelling of Gene

Regulatory Networks (GRNs). GRNs describe how genes interact in various

cellular processes. A GRN model indicates which genes affect the activity of

other genes, for example gene A influences gene B and then in turn gene B

may influence gene C. Constructing network models that represent how genes

interact can provide insight into genetic diseases. For example, a number of

human genetic disorders (e.g. muscular dystrophy) result from the absence or

malfunction of certain genes, which can cause a disruption in the usual patterns

of gene interactions in some cells. Therefore, building gene network models can
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1.1 Reverse-engineering gene regulatory network models

help scientists understand and gain insight into genetic conditions, for example

by highlighting particular genes of interest for further investigation.

The underlying theme of the research presented in this thesis is the incorpo-

ration of multiple sources and different types of data into techniques for reverse-

engineering, or learning, GRN models. By drawing on many data sources, the

resulting network models should be more robust, accurate and reliable than mod-

els that have been learnt using a single data source. In the remainder of this

introductory chapter, the motivations, aims and contributions of this thesis are

presented fully. An overview of GRNs and the limitations of data sources and

current modelling techniques is presented in Section 1.1. Following this, Sec-

tion 1.2 sets out the thesis aims and research questions. The thesis contributions

are listed in Section 1.3. Finally, the structure of the remainder of the thesis is

outlined in Section 1.4.

1.1 Reverse-engineering gene regulatory network

models

The ‘central dogma of molecular biology’ relates to the process of gene expression,

which is the key mechanism underlying GRNs. Genetic information for cellular

organisms is stored in their genome, which contains segments of DNA that encode

genes. Gene expression is a process whereby genes are ‘activated’ and translated

to proteins, in order to perform processes and functions in a cell. Since proteins

are involved in every cellular process from metabolism to muscle development, it

is gene expression that allows all cellular processes to occur. Although the same

genomic DNA is present (with some exceptions) in every cell in an organism, genes

are expressed differently in different cell types, or under different environmental

conditions and for different purposes. For example, a yeast cell in a sugar solution

will turn on genes to make proteins that process the sugar to alcohol (Vohradsky,

2001), whilst in animals, genes that encode muscle proteins are expressed only

in muscle cells and not in the cells of the brain (Twyman, 2003). It is these

differences that make gene expression an important topic of research to biologists.
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1.1 Reverse-engineering gene regulatory network models

Gene1

Gene2 Gene3

Gene4

Figure 1.1: A simple gene regulatory network model

A gene becomes expressed when it is activated by a special type of protein

called a transcription factor binding to a segment of nearby DNA. Since proteins

themselves are created by the gene expression process, this means that the ex-

pression of one gene can affect, or regulate, the expression of other genes. A GRN

can be formed when we consider how genes interact together in this way. A sim-

ple example of a GRN model is shown in Fig 1.1. Here, the expression of Gene1

influences the expression of Gene2 and Gene3 by the production of transcription

factor proteins that activate their expression. In turn, the expression of Gene2

and Gene3 influence the expression of Gene4 in the same way.

DNA microarrays are an experimental technique that allow the expression

of thousands of genes to be measured simultaneously. They were first used to

measure global gene expression, across the yeast genome, in 1997 (DeRisi et al.,

1997). Since then, microarray technology has become increasingly popular and

is used in almost every biological research group, which has led to many publicly

available datasets of gene expression measurements for a range of organisms across

various experimental conditions. Since expression measurements across a set of

genes can provide an indication of regulatory relationships between genes, the

increasing availability of microarray data has led to an explosion of research in

the reverse-engineering of GRN models based on microarray-generated data.

Many data analysis techniques have been proposed to gain insight into gene

regulatory relationships, based on microarray gene expression data. At the most
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basic level, clustering techniques allow groups of co-regulated genes to be discov-

ered and this is used sometimes as a basis for learning a GRN model, since genes

that exhibit similar or correlated expression patterns are likely to be regulated

by a common set of genes. However, basic analysis techniques such as clustering

are not able to reveal the more complex structure of the gene regulation process.

GRNs can contain nonlinear relationships and combinatorial regulatory control

(where a group of genes may interact together to regulate another set of genes).

Thus a group of more complex analysis techniques for reverse-engineering GRN

models have been applied to and/or developed for the task. This thesis focuses on

one technique in particular, Bayesian networks (Pearl, 1991). Bayesian networks

have become a popular and successful method for the reverse engineering of GRNs

from expression data (Friedman et al., 2000; Pe’er et al., 2006; Segal et al., 2003a)

since they are able to represent the network qualitatively (with a network graph)

and quantitatively (probability distributions quantify the strength of influences

and dependencies between nodes/variables in the network graph) and thus are

relatively easy to interpret by non-technical people.

Whilst the microarray provides the most available genome-wide data source

on gene expression, it has a number of limitations as a data source for the mod-

elling of GRNs. Microarray data is subject to both natural biological variations

across samples (biological noise) and experimental noise, which may be introduced

throughout the stages of the experiment (e.g. sample preparation) (Causton et al.,

2003). In addition, a key issue with microarray datasets is often referred to as

the curse of dimensionality (Somorjai et al., 2003). A single microarray dataset

usually contains a large number of genes (commonly thousands) but the num-

ber of samples is much lower, which can make it very difficult to extract reliable

regulatory interactions from a single dataset.

There are also concerns over the reproducibility of results across microarray

platforms or laboratories (MAQC consortium, 2006; Tan et al., 2003), which has

led to questions over the reliability of microarray gene expression data. Microar-

ray expression datasets often come from different microarray platforms (which

measure gene expression using different methods). This can mean that the data

can contain different biases and it can be difficult, or sometimes impossible, to

compare the datasets since measurement units may vary. Additionally, studies
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come from different laboratories meaning that data is collected with different

measurement biases under different atmospheric conditions.

1.2 Thesis aims

The previous section introduced GRNs and motivated the use of data analysis

techniques for reverse-engineering GRN models. It also discussed the reliability

issues that surround microarray gene expression data, which is the most available

data source on gene expression levels and so is frequently used to build GRN

models. The objective of the research presented in this thesis is to build GRN

models that have enhanced performance, based on a richer and/or broader collec-

tion of data than a single microarray dataset. To achieve this, this thesis presents

two main strands of research, which are described next.

First, it is proposed that the drawbacks of using only microarray data to re-

construct GRNs can be alleviated by incorporating other complementary data

sources into the modelling process. This thesis investigates whether text-based

knowledge from the body of scientific literature, when integrated into the reverse-

engineering process as prior knowledge for Bayesian network models, can improve

the resulting GRN model over the use of microarray data only. Previous research

in the use of prior knowledge from text-based sources in GRN modelling has fo-

cused on using online biological databases. These databases rely on the addition

of manual annotations and keeping reliable and up-to-date information within

them is challenging as the publication rate of scientific papers continues to in-

crease rapidly. The research presented in this thesis aims to improve on this with

the use of advanced text-mining techniques to harness prior knowledge directly

from the body of scientific literature and integrate this into the model learning

process.

The second strand of research aims to take advantage of multiple publicly

available microarray gene expression datasets that have been generated in sim-

ilar biological studies. This thesis addresses the question of whether the use of

multiple microarray datasets to reverse-engineer a GRN model can produce an

improvement over the use of a single dataset. In addition, a comparison is made
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of two different approaches for utilising multiple datasets with Bayesian net-

work models: pre- and post-learning aggregation. When learning from multiple

datasets, there is a choice for when to aggregate knowledge within the datasets.

In pre-learning aggregation, data is combined prior to learning, and a model is

learnt from the combined dataset. In post-learning aggregation individual mod-

els are learnt from each dataset, and these are combined after learning. Whilst

pre-learning aggregation is simpler, post-learning aggregation approaches have

the advantage that they are more suitable for combining microarray expression

datasets generated by different platforms or in different laboratories, since they

do not necessarily require normalisation of the datasets, which can be complicated

on cross-platform microarray datasets.

Further to this, this thesis also addresses whether taking into account the

dataset quality when learning from multiple data sources, through dataset selec-

tion or weighting, can improve the final model. Different methods are considered

for assessing the quality of datasets and networks. An empirical evaluation in-

vestigates whether weighting the influence of each dataset can improve the final

GRN model, and compares weighting datasets against simply excluding the least

reliable datasets.

1.3 Thesis contributions

The key contributions of this thesis are outlined below:

• The incorporation of prior knowledge from the whole body of

literature for Bayesian network based GRN models.

This thesis presents some of the first research in the incorporation of prior

knowledge that has been generated from a large body of scientific papers,

for Bayesian network based GRN models. The use of advanced text-mining

techniques means information contained in a huge number of documents

can be represented in a simple format. This thesis presents a method for

including this information as a prior probability distribution over candidate

Bayesian network GRN models. An empirical evaluation shows that the use

of literature-based prior knowledge can improve both the number of true
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regulatory interactions present and the predictive performance of the learnt

network model, in comparison to a network that has been learnt solely from

expression data.

• Two novel post-learning aggregation approaches for generating

Bayesian network based GRN models from multiple microarray

gene expression datasets.

Post-learning aggregation is a new approach for using multiple microarray

datasets to produce a Bayesian network based GRN model. Each of the

methods is based on aggregating high-level features of Bayesian network

models that have been generated from different microarray gene expression

datasets. Bayesian networks meta-analysis is based on combining statis-

tical confidences attached to network features whilst Consensus Bayesian

networks identify consistent network features that exist across all datasets.

An empirical evaluation demonstrates that both methods can produce GRN

models that improve on models learnt from a single dataset or by the use

of a pre-learning aggregation approach.

• An investigation on the effect of dataset reliability on the result-

ing GRN models.

This thesis presents further development of the Consensus Bayesian net-

works approach, to incorporate weighting of the input microarray datasets

based on their reliability or quality. Empirical evaluation results demon-

strate that discarding unreliable datasets provides a more consistent im-

provement in GRN model performance than using weighting. Additionally,

the thesis presents heuristics, induced using machine learning, for selecting

which datasets to use based on their reliability measures.

1.4 Thesis outline

The remainder of the thesis is structured as follows:

• Chapter 2 forms the first part of the literature review in this thesis. The bi-

ological background (gene expression and regulation, GRNs and microarray
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technology) is presented, followed by a discussion on the reverse-engineering

of GRN models. Further data types (additional to microarray gene expres-

sion data) are also introduced.

• Chapter 3 focuses on Bayesian networks and how they can be used to model

GRNs. The second part of the literature review is included here in a thor-

ough discussion of state-of-the-art in using Bayesian networks to reverse-

engineer GRNs.

• Chapter 4 presents the first key contribution — the use of literature-based

prior knowledge to improve Bayesian network based GRN models. This

work has been submitted as a journal publication to Bioinformatics and is

currently in the second cycle of the review process.

• Chapter 5 presents the second key contribution — the use of multiple mi-

croarray gene expression datasets to produce Bayesian network based GRN

models, using two novel post-learning aggregation approaches. Some of the

work in this chapter has been published in (Peeling & Tucker, 2007; Steele

& Tucker, 2008).

• Chapter 6 presents the third key contribution — an investigation on the

effect of dataset reliability on the resulting GRN models. In this chapter,

the post-learning aggregation method of Consensus Bayesian networks is

developed further to allow weighting of each dataset and an empirical eval-

uation compares dataset weighting with dataset selection. Part of this work

has been submitted as a conference publication for IDA 2009.

• Chapter 7 extends the work in the previous chapter by presenting the use

of machine learning to induce heuristics for selecting which datasets to use

in Consensus Bayesian networks, based on their reliability measures.

• Finally, Chapter 8 presents the thesis conclusions, sets out the contributions

and discusses potential avenues for further research.
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Chapter 2

Gene Regulatory Networks

Gene Regulatory Networks (GRNs) describe how the expression of a gene —

its activity level — can regulate the expression of other genes. Building network

models that represent how genes interact in this way is a topic of particular cur-

rent interest in Bioinformatics. This chapter forms the first part of the literature

review in this thesis. GRNs are introduced together with the types of data that

can be used to reverse-engineer GRN models. Section 2.1 explains gene expres-

sion and regulation, which are the underlying processes that form GRNs. DNA

microarrays are the main tool currently available for measuring gene expression

levels. These are introduced in section 2.2, together with a discussion of microar-

ray data analysis and its drawbacks. In Section 2.3 we discuss other types of

data that can provide information on gene expression and regulation. Finally, in

Section 2.4 the main points of the chapter are summarised, with particular focus

on the motivation for the contributions of the thesis.

2.1 Regulation of gene expression

Genetic information for cellular organisms is stored in their genome, which con-

tains segments of DNA that encode genes (Causton et al., 2003). Gene expression

(see Fig. 2.1) is the process by which genes are transcribed, where the gene is

copied into what is known as messenger RNA (mRNA), which is essentially a du-

plicate of the information carried by the gene on the DNA. After transcription,
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2.1 Regulation of gene expression

the mRNA is translated to form proteins, which are the main building blocks and

functional molecules of a living cell. Proteins are involved in every cellular pro-

cess from metabolism to muscle development. Therefore it is gene expression that

allows all cellular processes to occur. The same genomic DNA is present (with

some exceptions) in every cell in an organism. However, all cells are not the same

since genes are expressed differently in different cell types, as described earlier in

Section 1.1. It is these differences that make gene expression an important topic

of research to biologists.

Gene

mRNA

Transcription

Protein

Translation

Figure 2.1: The process of gene expression

Regulatory interactions between genes concern the regulation of gene expres-

sion. Genes are encoded in DNA strands and each gene is surrounded by DNA

sequences that control its expression. The expression of a gene is initiated when

transcription factors (TFs) bind to these DNA segments (also known as promoter

sites) and activate nearby genes, causing them to be expressed. TFs also control

expression by repressing (deactivating) genes in the same way. Figure 2.2 shows

a simplified version of the process of gene regulation. TFs are so-called as they

are factors that regulate the process of transcription (the first step in gene ex-

pression). They themselves are usually proteins, which are produced during gene

expression processes. This means that we can form a hierarchy of regulatory in-

teractions, where genes and proteins can be linked (beginning with TFs that are

present in the egg at the beginning of development) (Twyman, 2003).

At the most basic level, regulatory interactions occur where TFs activate (turn

on) or repress (turn off) the expression of certain genes, or a subset of genes. More

complex interactions involve feedback loops: genes can regulate themselves when

a TF controls the expression of the same gene from which it was produced.

10



2.1 Regulation of gene expressionPromoter GeneTF
TranscriptionmRNA TranslationProtein

DNA

Figure 2.2: Regulation of gene expression: a TF binds to a promoter region of

DNA, activating the expression of nearby genes

A Gene Regulatory Network (GRN) can be formed when we consider how

genes interact together. Since TFs themselves are gene products (proteins), we

can consider a gene to interact with other genes through the gene expression and

regulation process. For example, gene Y may be activated by a protein that is

produced when gene X is expressed. This can be represented in a network format

by gene X influencing gene Y , X → Y . TFs can control the expression of many

genes (their targets), and in turn each gene may be regulated by multiple TFs,

sometimes acting in combination or under different conditions. Thus, we can talk

about regulatory networks where each gene may interact with both regulators

(TFs) and targets. Figure 2.3 shows a GRN (for a subset of yeast genes) in

two formats. Figure 2.3a shows the network with TFs influencing target genes.

The TFs, which are proteins produced by an expressed gene, are denoted by a

rectangle node and the gene name1 followed by a p. Figure 2.3b shows the network

with interacting genes only. Here, the TF nodes are removed and merged with the

gene nodes. For example, since the TF HSF1p regulates gene RPN4, there is an

interaction between the genes HSF1 and RPN4, since a product of HSF1 (when

it is expressed) regulates RPN4. There are also a number of feedback loops,

1A gene name is often three characters followed by a number
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HSF1p

HSF1RPN4REB1 SKN7

ROX1p

ROX1

RPN4pREB1p SKN7p

SFL1

(a) TFs and their targets

HSF1

RPN4

REB1

SKN7

ROX1 SFL1

(b) GRN

Figure 2.3: A gene regulatory network. Part (a) shows the network with TFs

(denoted by a p following the gene name), influencing target genes. Part (b)

shows the network with interacting genes only

where the protein produced by an expressed gene can also regulate that gene.

For this reason, throughout this thesis regulator genes (those that activate or

repress expression) are often referred to as TFs themselves, although technically

the TF is the protein produced when the gene is expressed.

Understanding the regulation of gene expression is important to biologists for a

number of reasons. For example, a number of human diseases are genetic disorders

(e.g. muscular dystrophy) that can result from the absence or malfunction of

TFs, which disrupts the regulation of gene expression in some cells (Twyman,

2003). Wet lab experiments to investigate gene regulation interactions can be

expensive and time-consuming. Because of this, building models to understand

and gain insight into gene regulation, since they can assist in highlighting TFs

and genes of interest for further investigation, is an increasingly popular topic of

research. These models are usually based on measurements of gene expression

(see section 2.2) and other available types of data (see Section 2.3).

2.2 Microarray technology

DNA microarrays are an experimental technique that allow the expression of

thousands of genes to be measured simultaneously. They were first used to mea-

sure global gene expression, across the yeast genome, in 1997 (DeRisi et al., 1997).

Since then, microarray technology has become increasingly popular and now pro-

vides a key source of experimental data for modelling gene regulatory interactions
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from expression levels. In this section we introduce the microarray and discuss a

number of issues with the accuracy and reliability of microarray expression data.

2.2.1 The basics: data collection

A DNA microarray is a glass or polymer slide to which DNA molecules are at-

tached. Such a slide may also be referred to as a DNA array, a DNA chip or a

gene chip. The attached molecules are usually referred to as spots or features. A

single microarray slide may contain tens of thousands of spots. Microarray slides

can be produced quickly and efficiently in an automated fashion, for example by

the use of inkjet printing.

A DNA microarray can measure a gene’s expression level at a particular time

by measuring the abundance of mRNA molecules in a cell in a sample taken

at that time. Recall from Section 2.1, that when a gene is expressed, it is first

transcribed into mRNA, known as a transcript. To understand how a DNA

microarray measures the abundance of mRNA, it is first useful to understand that

a gene’s transcript (the mRNA produced during expression) is a complementary

copy of the DNA segment that encodes that gene. Complementary strands of

DNA or mRNA tend to hybridise or bind together to form a single, double-

stranded molecule (see Fig. 2.4). This means that a gene and its transcript are

likely to bind. Note that DNA/mRNA strands that are not fully complementary

may also bind — in general, the greater the complementarity, the stronger the

binding.

C T A A G

G A T T C

Figure 2.4: Complementary binding of DNA strands. The base components of

DNA strands are referred to as C,A,G and T. Binding occurs between the C and

G parts and the A and T parts.

In gene expression studies, each spot on the microarray usually encodes a

single gene (in practise however, it can be difficult to identify every gene un-
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ambiguously due to similarities within gene families). There are different types

of microarrays that measure gene expression levels in different ways (often these

different types are referred to as different platforms). The most popular and com-

monly used type is the two-channel hybridised array, which compares the gene

expression levels in cells in two different samples that are collected under different

conditions. Figure 2.5 shows the experimental process for two channel arrays in

diagrammatic form. Usually, one of the samples will be a control sample of cells

and the other will measure the gene expression levels in the same cells or cell type

under a certain condition. mRNA is extracted from both samples and is labelled

differently according to which sample it is taken from. Typically, this is done by

applying red dye to one sample and green dye to the other. Then both samples

are washed over the slide. Since mRNA binds to its complementary DNA, mRNA

molecules in the sample will hybridise to spots on the array that represent their

complementary sections of DNA. This means that for genes that are expressed,

mRNA will bind to those spots on the array. Note that binding may also take

place between mRNA and genes that are not fully complementary.

To measure the abundance of mRNA that has hybridised to each spot on the

array, an image of the array is produced using a laser to detect the amount of

fluorescence emitted by the dye-labelled mRNA at each spot. For a two-channel

array, the image would be scanned twice to measure the amount of fluorescence

for each dye label. For example suppose that samples 1 and 2 are labelled with

red and green dyes respectively. Then if mRNA from sample 1 is present, the

spot will fluoresce red and if mRNA from sample 2 is present it will fluoresce

green. If mRNA from both samples is present, the spot will appear yellow. If

neither are present then the spot will not fluoresce and will appear black. In this

way, relative expression levels for each gene on the array (represented by a spot)

can be estimated using the array image. The further image and data processing

is covered later in Section 2.2.2.

Other microarray platforms also use the same principle of complementary

binding of DNA/mRNA. However the estimation of expression levels may differ.

For example, in single channel arrays (e.g. Affymetrix GeneChip), an absolute

expression value, rather than a relative value, is recorded for each spot. In this

case, only one sample is collected for each array. For these type of experiments,
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Reference sample
(e.g. healthy cells)

Query sample
(e.g. cancer cells)

mRNA mRNAmRNA extraction

Labelling with 
different dyesmRNA mRNA

Hybridisation to 
array

Scanned array 
image

Figure 2.5: The process of a DNA microarray experiment. Adapted from Khan

et al. (2002)
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multiple experiments and arrays are necessary to compare expression levels in

different samples under different conditions.

2.2.2 Data processing

Section 2.2.1 explained the first major part of a microarray-based experiment:

data collection. In this step, biological samples are prepared and this is followed

by the extraction and labelling of mRNA from the samples. Then, the extracted

and labelled mRNA is washed over the array and hybridisation takes place. The

final step in the data collection is the scanning of the array by a laser to excite

fluorescence from the dye labels, producing an image of the microarray. In this

section we continue by describing the second part of a microarray-based exper-

iment — the data processing to produce expression level measurements for the

genes represented on the array, which is a task with a number of parts. In the

first step (see Section 2.2.2.1) the microarray image is processed to produce values

that represent the fluorescence intensities of each spot. Then, an expression mea-

surement must be inferred from the measured spot intensity (see Section 2.2.2.2).

Finally (see Section 2.2.2.3), it is necessary to normalise these expression mea-

surements within the array, and if it is a set of array experiments, across a set of

arrays as well.

2.2.2.1 Image processing

The image processing step extracts fluorescence intensities for each spot on the

array, based on a digital image of the scanned array. Most commercially available

microarray scanners provide software to do this automatically. However, it is

important to understand how the image processing is carried out and its impact

on the resulting data, (Causton et al., 2003).

The main task in microarray image processing (Yang et al., 2001) is to identify

the spots on the array. This can be difficult due to artefacts or contaminants on

the slide (e.g. scratches, dye or dust). However, since the spots are printed onto

the array slide in a regular arrangement, a process known as gridding assists in

locating each spot. Usually the user is required to specify approximate locations

of subgrids on the array which are used to place initial grids over the array
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image. The placement of the grids is then improved to best represent the spots,

often using a centre-of-mass calculation for each spot. Grid placement is very

important, since if it is aligned incorrectly, expression levels may be linked to the

wrong genes. To avoid this, many arrays contain ‘landing light’ features. These

are spots on the array that will always fluoresce strongly, so they are easy to

identify and subsequently assist with grid placement. Once the grid is in place,

the spot area and the background are determined. Typically, this is done by using

a fixed region centred on the centre-of-mass, or by actually identifying the spot

boundary. The latter method can provide a better estimation of the fluorescence

intensity, but is computationally more difficult.

2.2.2.2 Expression ratios

Once spot locations are determined, expression levels need to be inferred based

on the spot fluorescence intensities (Quackenbush, 2001). For each spot a set of

summary statistics can be reported, including the mean, median and mode of

the pixel intensity distribution as well as the total intensity of the spot. Usually,

one of these statistics is used to represent the spot — a popular choice is the

background-subtracted median (which is the median of the spot intensity with

the median of the background intensity subtracted) or total intensity of the spot.

Recall that a two-channel array will have two samples applied to the slide,

labelled with different dyes. In this case the ratio of the intensities for each

dye label is calculated. Ratios are useful because they allow us to measure the

relative change in a gene between two conditions. Typically in two-channel array

experiments, one sample will consist of cells from a reference or control condition

and the other sample will contain cells under the condition of interest (the query

sample). If the intensity from the reference sample label for the jth gene is Rj,

and the intensity from the query sample is Qj, then the expression ratio Mj is:

Mj =
Qj

Rj

A ratio is a useful way to measure changes in expression, as those genes that

do not have a change in their expression between the two conditions will have

a ratio of 1. However, ratios can be problematic for the following reason. If a
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gene has a two-fold increase in expression in the query sample compared to the

reference sample, the expression ratio will be 2. However, if a gene has a two-fold

decrease in expression in the query sample compared to the reference sample, the

expression ratio will be 0.5. The scale for expression increases is different to that

for expression decreases. The most common way of dealing with this is to apply

a logarithmic transformation (at base 2) to the ratio, as it creates an even scale

for the ratios, as log2(2) = 1, log2(1) = 0 and log2(0.5) = −1. The expression

measurements transformed in this way are often referred to as intensity log ratios

or expression levels.

2.2.2.3 Normalisation

Normalisation is the transformation of expression levels (intensity log ratios) from

microarray data to adjust for systematic variations (arising from variation in the

technology rather than true biological variations) so that measurements from

two different samples can be directly compared. There are a number of reasons

why data from two arrays may not be comparable. For example, there may be

differences in the way samples are labelled, the total amount of mRNA extracted,

or changes in the photomultiplier tube settings of the scanner (Smyth & Speed,

2003). Consider Fig. 2.6a which shows unnormalised log ratio data box-plotted

for a number of arrays. We see how the interquartile range of values can differ

across the arrays. The aim of normalisation is to adjust this so that the log ratios

are comparable across multiple arrays.

The most common and simple method for normalisation is to apply a normal-

isation factor L to the log ratio data as follows:

M ′
j = Mj − L

where Mj is the log ratio of the jth gene, and M ′
j is the normalised log ratio.

This is a simple scaling procedure, sometimes referred to as scale normalisation,

where the data range is adjusted by a constant factor across all spots. There

are many methods for calculating the normalisation factor L. Often, it can be

mean or median of the log ratios across all genes, or a subset of genes, on the

array. Where a subset of genes is used, these are typically ‘housekeeping’ genes

18



2.2 Microarray technology

−3

−2

−1

0

1

2

3

4

5

6
Lo

g 
ra

tio

Array

(a) Pre-normalisation

−20

−15

−10

−5

0

5

10

15

20

25

30

N
or

m
al

is
ed

 lo
g 

ra
tio

Array

(b) Post-normalisation

Figure 2.6: Distribution of log ratio values for each array (a) pre- and (b) post-

scale normalisation. In this case, scale normalisation adjusts the interquartile

ranges of intensity log ratios so they are equal by array.
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— genes which are believed not to change in expression level. The basis of using

such genes to control the normalisation factor is that their expression level will

remain constant in all samples. Figure 2.6b shows the boxplot distribution of

scale-normalised log ratio values (using a median normalisation factor) for the

same arrays that are shown in Fig 2.6a. We can see that the median and quartile

ranges are now comparable across the arrays.

Some other, more complex, methods for normalisation are based on the raw

intensities (i.e. prior to the calculation of log ratios). For example, linear regres-

sion analysis is based on plotting the intensities for each sample in a 2 channel

experiment in a scatterplot. In theory, in data without systematic variations

the plot of each spot should cluster around a straight line whose gradient is 1.

Therefore, to normalise, a best-fit line is calculated for the scatterplot using re-

gression techniques, and this is adjusted to fit around a line with a gradient of

1. Lowess normalisation (where Lowess stands for locally weighted linear regres-

sion) (Cleveland, 1979) is a technique applied to adjust for dye bias, which occurs

when the relationship between spot intensity and gene expression is not the same

for all dyes — for example, for a given concentration of mRNA, the intensity of

red and green dyes differs (Wickham, 2004). This type of bias can be seen when

constructing a ratio-intensity (R-I) plot, which plots the log product (base 10) of

the intensities against the log ratio (base 2) of the intensities Qj and Rj for the

query and reference samples (see Fig. 2.7). In unbiased data, the log ratios should

be centred around 0. In Fig. 2.7 this does not occur and the plot shows that vari-

ation of the log ratio occurs as a function of the intensity (represented by the

log product). In this particular example there is more variation as the intensity

increases. Lowess normalisation involves applying a local weighted normalisation

factor y(xk). If we set xj = log10(Qj×Rj) and yj = log2(Qj/Rj), then the lowess

factor y(xj) is the dependence of the log2(Qj/Rj) on the log10(Qj × Rj). We

can use this function, point by point, to correct the log ratio values Mj so that

(Quackenbush, 2002):

M ′
j = Mj − y(xj)

Similarly, Loess normalisation (Workman et al., 2002) is a nonlinear normali-

sation technique that can be used to adjust for a spatial bias of the two channels
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Figure 2.7: Ratio-Intensity plot

— where (for example) some areas of the array slide one of the dyes may be more

concentrated than the other.

In the research presented in this thesis, microarray samples from different

datasets are used. These datasets are publicly available and found on online

expression databases, and often have had some type of appropriate normalisation

performed for the arrays within the dataset. Typically only the log ratios are

available, and not the original intensities, which restricts the type of normalisation

that can be performed. However, since the datasets are from different sources

further scale normalisation is usually essential in order to make the expression

log ratios comparable across datasets. We use a scale normalisation technique —

a simple adjustment of the log-ratios from a series of arrays so that each array

has the same median absolute deviation (Park & Wang, 2006). Each log ratio is

transformed using the following formula:

M ′
ij =

Mij −mediani

MADi

where Mij is the log ratio of the jth gene in the ith array (since we deal

with multiple arrays), and M ′
ij is the normalised log ratio. mediani is the median

of log ratios across all genes in the ith array and the median absolute deviation
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MADi is defined as the median of absolute deviations from the median: MADi =

mediani{|Mij −mediani |}.

2.2.3 Analysis of microarray expression data

After performing the microarray experiment to collect data, and processing the

array slide to produce normalised expression levels for a set of genes, the next

step is to use this expression data to discover interesting patterns and relation-

ships amongst genes and between experimental conditions. This may include

identifying groups of genes with similar patterns of expression or genes that have

interesting expression patterns (e.g. they are active in certain samples but not

in others). First, in Section 2.2.3.1 we describe the format of a microarray ex-

pression dataset: the gene expression matrix. Then, in Section 2.2.3.2 we provide

an overview of some basic techniques in expression data analysis. Following this,

in Section 2.2.3.3, we introduce a particular type of analysis — inferring gene

regulatory relationships from expression data — which is the main focus of this

thesis.

2.2.3.1 The gene expression matrix

Usually, to be able to perform useful analysis, we require expression levels for a

set of genes over a set of different arrays, where each array represents a different

experimental condition. This makes up the gene expression matrix, where each

entry Mji is the intensity log ratio, which we refer to as the expression level, for

gene j in the ith array. The columns of the matrix represent different arrays

which we also refer to as samples. Typically, each sample represents a different

experimental condition. The rows of the matrix represent each gene’s expression

profile. This shows how the gene’s expression changes across the experimental

conditions. In particular, if the samples are temporally related this shows how a

gene’s expression changes over time under a particular environmental condition.

Alternatively, some of the samples may come from healthy cells and some may

come from diseased cells. In this case the samples are split into different classes

(e.g. healthy and diseased) and we can view the difference between the gene

expression profiles across the different classes. For example, Fig. 2.8 shows the

22



2.2 Microarray technology

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Array

Lo
g 

ra
tio

Healthy
Diseased

Figure 2.8: Expression profiles for a single gene, for a set of healthy samples and

a set of diseased samples (each point on the x-axis refers to a different array —

arrays for healthy samples are in blue and arrays for diseased samples are in red.

The arrays are temporally related)

expression profiles for a single gene, for a set of healthy samples and a set of

diseased samples. It can be seen that in diseased cells the expression of the gene

increases significantly, indicating that it could be a gene of interest with respect

to this particular disease.

2.2.3.2 Basic analysis techniques

Some types of information that biologists can discover from a gene expression

matrix using simple analysis techniques includes the following:

• Differentially expressed genes

These are genes which vary significantly in their expression level between

two different states. It is usually these genes that are of interest in that

particular experimental condition.

• Co-expressed genes

These are genes that have similar or correlated expression patterns. Groups
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of genes which have correlated expression profiles will often have similar

biological functions and/or be regulated by a common set of transcription

factors.

• Classification of genes or samples

Where samples are labelled into classes, such as healthy and diseased, biol-

ogists may be particularly interested in which genes are expressed only in

healthy samples and which are expressed in only diseased samples.

• Temporal analysis

Where the arrays complete a time-series of experiments for a particular

environmental condition or biological process, biologists are interested in

how a gene’s expression changes across the time-series.

Differentially expressed genes are those that vary significantly in expression

between two states. In a 2 channel microarray experiment, this is equivalent to

finding genes whose (normalised) log ratio is significantly different from 0. The

simplest method for finding these genes is to calculate the mean µ̂ and standard

deviation σ̂ for the log ratio values of all genes in the array and calculate a con-

fidence interval around µ̂. Genes with log ratio values outside this interval are

then defined as differentially expressed. The Analysis of Variance (ANOVA) is

an alternative statistical technique that can be used for identifying genes that are

differentially expressed between different classes (Causton et al., 2003). ANOVA

tests for significant differences between means of two or more populations by

comparing variances. The basis of the technique is that variances in measure-

ments may be partitioned depending on the measurement source. In the case

of a microarray experiment, we may consider partitioning the measurements by

different arrays, the dyes used to label samples, or a different ‘class’ of sample,

such as healthy or diseased cells.

Groups of genes that have correlated expression profiles are often referred

to as ‘co-expressed’ genes. Co-expressed genes often have similar functions or a

common set of regulator genes (Heyer et al., 1999). Even if genes are negatively

correlated, this can indicate a true relationship, as the expression of one gene may

be activated at the same time as another gene’s expression is repressed. Clustering
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techniques are a popular method in the microarray data analysis community, used

on gene expression matrices to discover co-expressed genes (Eisen et al., 1998).

Clustering can also help to reduce the dimensionality of data — the expression

profiles for thousands of genes can be reduced to a few groups, where all genes in

the group have similar behaviour. It can also help to detect outlier genes that have

unusual behaviour. Clustering is a well-established data mining technique and

two classic methods that are often used for gene expression data are k-means and

hierarchical clustering. In hierarchical clustering, objects (in this case, objects

are genes) that are close together are iteratively grouped to form a hierarchy of

objects. In order to define whether genes are close together, a distance measure,

such as Euclidean distance, must be used on their expression profiles. In k-means,

the algorithm finds k clusters of genes (where k is pre-defined). The objects are

partitioned into k groups and the ‘centre’ of each group is calculated in Euclidean

space. The clusters are iteratively improved by constructing new clusters based

on the centres (MacQueen, 1967). Whilst there are newer clustering techniques,

there is no overwhelming evidence that these are more appropriate or obtain a

better performance than the established techniques (Causton et al., 2003).

Clustering is an unsupervised data-driven technique — so it groups genes

based only on their gene expression profiles. In contrast, supervised data mining

techniques use additional information to group genes and make decisions. Classi-

fication is a supervised method that is used to learn descriptions (of some form)

for categories of object annotations. The learnt descriptions can then be used to

make predictions on the annotation of new objects. For example, in microarray

data analysis, classification can be used to identify expression patterns for healthy

and diseased samples and then the learnt descriptions can later be used to assign

such classes to unannotated samples based on gene expression data alone. The

first classification analysis applied to gene expression data was by Golub et al.

(1999). In this work, a class discovery procedure automatically discovered the

distinction between acute myeloid leukaemia and acute lymphoblastic leukaemia

based on expression profiles, and this was used to determine the class of new

leukaemia cases. Like clustering, classification is a well-established field of data

mining. Techniques range from the simple linear regression and k-nearest neigh-

bour to neural networks and decision trees.
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Time series experiments involve taking samples from cells at certain points of a

biological process. The results can help biologists discover information about the

order and time scale of expression events (Causton et al., 2003). A classic time-

series expression dataset is (Spellman et al., 1998), in which the yeast cell-cycle

is studied. The cell-cycle is a process that occurs in all eukaryotic organisms

(which include animals, plants and fungi) where cells grow and replicate. In

this time-series analysis, the focus was on identifying trends and periodicity in

the data in order to find genes whose expression profiles correlate with known

events during the cell-cycle. An issue with time-series analysis for microarray

expression data is that datasets often only contain a small number of samples,

sometimes taken at long time intervals, so complex techniques such as Fourier

analysis (which is used in signal processing) are inappropriate. Instead simpler

techniques are used, where expression profiles are ‘timeshifted’ and correlations

and patterns are sought between them (Zou & Conzen, 2005).

2.2.3.3 Inferring regulatory relationships

Analysing gene expression data is the main focus of this thesis. In particular, we

wish to use gene expression data to infer regulatory relationships among sets of

genes. Using data to learn a model of a gene regulatory network is also some-

times referred to as ‘reverse-engineering’. As discussed in Section 2.1, expression

measurements across a set of genes can provide an indication of regulatory rela-

tionships between genes. An example of a simple regulatory relationship would

be where a regulator gene (transcription factor) induces the expression of a target

gene. Figure 2.9a shows how such a regulatory relationship may be seen in the

expression profiles of the regulator and target genes. Note that this is synthetic

time-series expression data, generated to mimic a regulatory relationship, and

contains a relatively high number of samples compared to an average gene ex-

pression dataset. In this case, the regulator gene activates the expression of the

target gene, and we can see the target gene expression profile mirrors that of the

regulator gene, but is time-shifted by a few time points. In Fig. 2.9b, the expres-

sion profiles of a regulator and a target gene from yeast are shown, taken from

real gene expression data (Gasch et al., 2000). In this case there is no consistent
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temporal relationship between samples (some samples in the series form short

time-series of a few points, but most are standalone experimental conditions).

However a correlation between the two expression profiles can be seen.

Basic microarray analysis techniques, as described in Section 2.2.3.2, can be

used to gain some insight into the gene regulatory structure. As mentioned

earlier, it is believed that co-expressed genes may share a common set of regulator

genes. For example, clustering techniques allow groups of co-regulated genes to

be discovered and this is used sometimes as a basis for gene network learning.

Many techniques use clustering for discovering groups of co-regulated genes in the

first step to building a gene regulatory network model (Bar-Joseph et al., 2003;

Segal et al., 2003a).

However, basic analysis techniques such as clustering alone are not able to

reveal the more complex structure of the gene regulation process — that is, how

genes interact and their inter-dependencies. Clustering only extracts groups of

correlated genes, whereas GRNs can contain nonlinear relationships and combina-

torial regulatory control (where a group of regulator genes may interact together

to regulate a set of target genes). Thus a group of more complex analysis tech-

niques for reverse-engineering gene regulatory network models have been applied

to and/or developed for the task. An overview of the two techniques that are the

most prevalent in the literature is provided next; they are Boolean networks and

Bayesian networks (Schlitt & Brazma, 2007). Note that there are many mod-

elling techniques for GRNs that have been proposed (e.g. Differential equation

modelling, petri nets, stochastic modelling and logical formalisms, to name but

a few). However, here we are specifically referring to the reverse-engineering of

GRNs from microarray expression data.

Boolean networks are the simplest network model method. They were first

proposed by Kauffman (1969). A Boolean network consists of a directed net-

work graph where the nodes are Boolean variables (a Boolean variable has only

two possible states — true and false) and a set of Boolean functions, each one

associated with a different node. When a Boolean network is describing a gene

regulatory network each node corresponds to two possible states of gene expres-

sion — either on or off (Filkov, 2006). The state of a target gene can be predicted

by the other genes that influence it, through a Boolean function — each node xi is

27



2.2 Microarray technology

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time point

E
xp

re
ss

io
n 

le
ve

l

Regulator
Target

(a) Synthetic time-series

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Sample/Experimental condition

E
xp

re
ss

io
n 

lo
g 

ra
tio

Regulator
Target

(b) Real data (not time-series)

Figure 2.9: Regulatory relationships shown in expression profiles

28



2.2 Microarray technology

Gene1

Gene2 Gene3

Gene4

Gene2 Gene3 p(Gene4=off) p(Gene4=on)

off off 0.9 0.1

on off 0.2 0.8

off on 0.2 0.8

on on 0.1 0.9
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Figure 2.10: A simple Bayesian network over 4 variables. (a) shows the DAG

component whilst (b) shows the conditional probability distribution attached to

the node Gene4

assigned a Boolean function fi(xi1 , ...xin) where xik is a node influencing xi. Since

it takes Boolean inputs and outputs a Boolean value, a Boolean function can be

thought of as a logical rule. A limitation of Boolean networks is the simplicity

in the way that target genes are predicted using Boolean functions — given a

particular gene, many Boolean functions may fit the observed expression data

equally well. To address this, Shmulevich et al. (2002) introduced Probabilistic

Boolean networks, an extension of Boolean networks where each gene node may

have a family of Boolean functions.

Bayesian Networks have become a popular method for the reverse engineering

of GRNs (Friedman et al., 2000; Pe’er et al., 2006; Segal et al., 2003a) from expres-

sion data since they are able to represent the network qualitatively (with a net-

work graph) and quantitatively (probability distributions quantify the strength

of influences and dependencies between gene nodes in the network graph). A

Bayesian Network consists of two components — a Directed Acyclic Graph (DAG)

consisting of edges between nodes that represent variables in the domain, and a

set of conditional probability distributions associated with each node (see Fig-

ure 2.10 for a simple example). The directed edges between nodes indicate the

existence of influences and dependencies, the strength of which are quantified

by the conditional probabilities. Like Boolean networks, Bayesian networks are

relatively easy to interpret by non-technical people due to the transparent nature

of the graphical network representation.
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Bayesian networks are able to model more complex behaviour than Boolean

networks. However as Boolean networks are simpler, they are generally more

efficient to learn from data. In Bayesian networks, the conditional probability

distributions are able to represent both simple and more complex types of de-

pendencies and can utilise discretised (multiple states) or continuous modelling

for gene nodes. They naturally deal with uncertainty (which is important due

to both the stochastic nature of gene expression (McAdams & Arkin, 1997) and

the noisiness of gene expression data) through the use of conditional probabil-

ity distributions. Additionally, it is a well-studied method and there are many

established techniques for learning Bayesian networks from data. Bayesian net-

works are our tool of choice to learn gene regulatory network models from gene

expression data and they are covered in detail in Chapter 3.

2.2.4 Using multiple microarray gene expression datasets

This thesis focuses on combining multiple sources of data in order to produce

GRN models that can potentially be more robust and with greater confidence

attached than those derived from a single dataset. In recent years, there has

been a rapid increase in the amount of publicly available microarray data. For

example, there are online databases where laboratories can contribute microarray

expression datasets for different organisms, including yeast (SGD-project, 2008)

and E. coli (GenExpDB, 2008). Usually, these datasets are accompanied by a

peer-reviewed journal publication giving details of the experiment objectives and

primary data use.

The opportunity to utilise multiple sources of available expression data for

learning GRN models is further motivated by a number of recognised issues re-

lating to the quality of microarray expression datasets. Firstly, microarray data

is subject to experimental noise. Whilst differences in expression level measure-

ments can be caused by natural biological variations between samples, they may

also result from systematic experimental noise, which can be introduced at all

stages of the experimental process, for example, from the sample preparation to

the hybridisation step to the scanning of the array. In order to measure and avoid

the effects of noise, it is considered good practise to include replicate samples in

30



2.2 Microarray technology

the experimental design (Causton et al., 2003). Replicates are of two types. Tech-

nical replicates are used to assess experimental noise, whilst biological replicates

allow biological variability to be measured. Technical replicates repeat some steps

of the experimental process on the same sample. A common method for technical

replicates is called ‘dye-swapping’. This is where multiple extracts are collected,

so that we have an extract from each sample, labelled with each dye, and hy-

bridised to the microarray. Biological replicates are obtained by identical sample

preparation from multiple biological specimens. Typically, analysis of replicate

samples involves pooling or averaging the expression levels across the replicates

(Lee et al., 2000; Wernisch, 2002).

The issue of experimental noise is not helped by the fact that due to the

relative expense of microarray experiments, sample sizes are often relatively small,

in comparison to the number of measured genes. A single microarray dataset

usually contains a large number of genes (commonly thousands) but the number

of samples is much lower (in the tens or possibly hundreds). This problem is often

referred to as the curse of dimensionality (Bellman, 1961). For this particular

application, it can make it difficult to reliably infer regulatory interactions from

a single expression dataset.

Additionally, there are concerns over the reproducibility of results across dif-

ferent microarray platforms (MAQC consortium, 2006). A number of studies

have been conducted to compare different platforms; some studies claim that

significant differences exist across platforms (Kuo et al., 2002; Tan et al., 2003)

whilst other research indicates that different platform technologies produce com-

parable datasets (Woo et al., 2004; Yuen et al., 2002). As discussed earlier, there

are different platforms for microarray technology. In two channel array plat-

forms, two differentially labelled mRNA samples are hybridised together on an

array. On one channel platforms, such as the commercially available Affymetrix

GeneChip, a single sample is hybridised to each array. One channel microarrays

give estimates of the absolute value of expression whereas two-channel technology

can estimate only relative differences in expression between genes. Comparing

datasets across different platforms is difficult for a number of reasons. Firstly,

measurement units may vary. This is especially the case between relative and ab-

solute measures of gene expression, and absolute measures must be transformed
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to relative measures for comparison purposes. Additionally, studies will come

from different laboratories meaning that data is collected with different measure-

ment biases under different atmospheric conditions, leading to different types and

levels of experimental noise across datasets. Whilst normalisation techniques can

be used, previous research has established that comparing between datasets us-

ing standard normalisation techniques is not straightforward due to the different

platform and experimental biases involved (Jarvinen et al., 2004; Yauk et al.,

2004). Whilst scale normalisation has the theoretical benefit of making arrays

between datasets comparable, in practise, bias and artefacts may still remain in

the data after normalisation.

The data quality issues described here, together with the increased availability

of microarray gene expression data in the public domain, have motivated research

in the analysis of many microarray datasets generated by multiple studies, rather

than a single dataset, in order to make more robust conclusions from results.

For example, meta-analysis methods have been proposed to combine analysis of

microarray datasets (Hu et al., 2006). Meta-analysis refers to a set of statistical

methods, originating in medical statistics, for combining the results of several

studies that address a set of related research hypotheses (Sutton et al., 2000).

It has mainly been used to combine measures for the statistical significance (e.g.

p-values) of differentially expressed genes across a number of similar studies (Con-

lon et al., 2006; Rhodes et al., 2002), or to combine effect sizes, which measure

the magnitude of the effect of a medical treatment (e.g. for cancer) (Choi et al.,

2003). There has also been other research published on combining multiple mi-

croarray datasets for other tasks, such as the functional classification of genes

(Ng et al., 2003). This research showed that combining multiple datasets can

improve classification, even if the experimental focus or conditions varies over

the datasets. Lee et al. (2004) have used multiple microarray datasets to produce

co-expressed networks of genes, where gene pairs are linked if they are correlated

across many datasets. They showed that co-expression across multiple datasets

is correlated to functional relatedness. Discovering co-expression networks across

multiple microarray datasets has since been studied further (Chen et al., 2008;

Choi et al., 2005; Yan et al., 2007).

32



2.2 Microarray technology

Combining multiple microarray studies specifically for inferring robust regu-

latory relationships is an area of research that is in its infancy. Wang et al. (2006)

were the first to address the issue with regards to reverse-engineering GRN mod-

els. They use a framework where individual models for each dataset are combined

into an overall, consistent solution. Their method is based on linear program-

ming where GRNs are represented using non-linear differential equations. More

recently, Redestig et al. (2007) and Shi et al. (2007) have presented different

methods for finding pairwise gene regulatory relationships from multiple expres-

sion time-series. Note that searching for pairwise relationships is a simplification

of discovering a network model, since many combinatorial relationships will not

be uncovered.

The difficulties in comparing directly amongst datasets produced on differ-

ent microarray platforms and in different laboratory conditions motivates a key

premise of this thesis, that combining microarray datasets at the model-level

rather than the dataset-level is more appropriate. Later in this thesis (see chap-

ter 5) we compare two frameworks for combining microarray datasets to infer

GRNs: pre- and post-learning aggregation. Pre-learning approaches combine

data at the dataset-level by using standard scale normalisation to transform each

dataset and concatenating them to form a large set of observations. A model is

then learnt from the concatenated dataset. In post-learning aggregation individ-

ual models are learnt from each dataset and the models are combined. This allows

regulatory interactions to be inferred from each dataset, and then an aggregate

model can be built based on the set of models. A post-learning aggregation frame-

work can combine microarray datasets generated by different platforms, research

groups and laboratories without requiring any special normalisation to be applied

to the datasets. Post-learning aggregation is the approach taken by Wang et al.

(2006) in previous research (see previous paragraph), but in this thesis Bayesian

networks are used as the modelling technique, due to their natural suitability for

and previous success in reverse-engineering GRNs. In Chapter 5 we show that

our post-learning aggregation approach for Bayesian networks produces better

results than pre-learning aggregation for reverse-engineering GRNs from multiple

expression datasets.
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2.3 Other types of data

Whilst the microarray provides the most available genome-wide data source on

gene expression, Section 2.2 has highlighted its reliability and quality issues. Sec-

tion 2.2.4 motivated the use of multiple microarray datasets to alleviate these

issues. However, there are also other data sources that can provide further com-

plementary knowledge on the regulation of gene expression. In this section we

introduce these potential sources of data, discuss how they can be used for the

reverse-engineering of GRN models and provide an overview of relevant work.

2.3.1 Protein-protein interaction data

Gene regulatory relationships and protein-protein interactions are closely linked.

Recall that proteins are gene products that are created during the gene expres-

sion process, and that proteins initiate the process of gene expression, so they

are of interest in discovering gene regulatory interactions. Physically interacting

proteins are often co-expressed (Ge et al., 2001). This means that co-expressed

genes discovered using microarray expression data may not be explained by a gene

regulatory interaction, but instead by interacting proteins (Nariai et al., 2005).

Therefore, for example, protein-protein interaction data can be useful in reduc-

ing spurious regulatory interactions inferred by expression data alone. However,

it should be noted that co-expressed genes may also be physically interacting

proteins: the two conditions are not mutually exclusive.

Just as microarray technology is a high-throughput method for measuring

gene expression levels, there are high-throughput technologies available for de-

tecting physical interactions between proteins. Two widely used experimental

technologies for detecting protein-protein interactions are the yeast two-hybrid

(Y2H) system (specifically for the yeast organism) and affinity purification fol-

lowed by mass spectrometry (AP-MS). These systems can produce sets of inter-

acting proteins, however like all high-throughput technologies, the resulting data

is subject to noise. Different datasets of interacting proteins are often contra-

dictory (Jansen et al., 2003). To deal with this uncertainty, research has been
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carried out on estimating the reliability of a discovered protein-protein interac-

tion, providing a confidence for a protein-protein pair based on multiple data

sources (Bader et al., 2004; Saito et al., 2003).

2.3.2 Transcription factor binding site data

Transcription Factor Binding Site (TFBS) experimental data can also be very

useful in predicting gene regulatory interactions. Recall that a gene becomes ex-

pressed when a transcription factor binds to a segment of DNA close to the gene.

Thus, if we can identify the location of binding sites for a particular transcrip-

tion factor, we can also identify potential target genes. Therefore, sometimes

this type of data is referred to as location data. There are a number of different

experimental techniques for discovering binding sites, some localised and some

high-throughput technology (Elnitski et al., 2006). A popular high-throughput

technology is named ChIP-chip. ChIP-chip combines a method known as chro-

matin immunoprecipitation (the ‘Ch-IP’ part) with microarray technology (the

‘chip’ part). For a specific protein, or group of proteins, ChIP-chip can be used to

identify their binding sites. In general, the experimental results can be reported

as a set of p-values, where each p-value reflects the confidence in a regulatory

relationship existing between a protein and a target gene (Lee et al., 2002).

2.3.3 Literature-based knowledge

There is a wealth of knowledge on gene regulation locked in the scientific litera-

ture. When experimental studies are conducted, for example using microarrays

or binding site experiments, the results are typically published in a peer-reviewed

journal. Thus any confirmed regulatory relationships are likely to be documented

in the body of literature in the field. There are a number of ways in which this

information can be extracted from the literature.

There are a number of online databases that contain comprehensive knowledge

on genes and their products (e.g. proteins). These databases can be considered

the backbone of literature-based knowledge on genes — their information often

feeds into databases that store more complex types of knowledge, such as rela-

tionships between genes. For example, GenBank is an annotated collection of all
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publicly available DNA sequences, hosted by the National Center for Biotechnol-

ogy Information (NCBI) (McEntyre & Ostell, 2002-2005). Essentially, this means

it contains information about all genes in all organisms. Individual researchers

can upload new discovered sequences to the GenBank and this means there can be

multiple entries for the same entity, and some information may be contradictory.

The NCBI also maintains RefSeq, which is a curated database of DNA sequences

— there is only one entry for each molecule.

There are also online databases that build a more complex picture of biologi-

cal systems. For example, KEGG (Kyoto Encyclopedia of Genes and Genomes)

(Kanehisa & Goto, 2000; Kanehisa et al., 2008) is a well-used database of bio-

logical systems. It includes information on genes and proteins, their functions,

and known interactions (referred to as pathways). To show how entities relate

and interact, gene and proteins are stored in a graph format. All information

is drawn from other databases such as GenBank, or manually entered based on

published materials.

The Gene Ontology (GO) (The Gene Ontology Consortium, 2000) is another

collection of databases that relies on individual researchers to contribute knowl-

edge, in order to build descriptions of gene products. GO started with three

organism databases (yeast, fly and mouse) but now includes many different or-

ganisms. A key concept of GO is the controlled use of vocabulary (ontologies), so

that information in the database is consistent. Gene entities can be linked using

different relationship types (e.g. regulates, is-a, part-of ) so interactions between

genes can also be identified.

However, these online databases rely on the manual addition of knowledge

from researchers in the field, and as the publication rate increases and subse-

quently the volume of scientific papers becomes prohibitively large for such a

practice, keeping up-to-date information within them becomes increasingly chal-

lenging. Additionally, the reliance of manual updates for such databases brings

the risk of erroneous or contradictory information. This has led to the devel-

opment of text mining techniques to automatically extract information about

biological entities and their relationships directly from a collection of scientific

papers.
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Many text mining techniques have been developed specifically for use with

biological literature, due to its complex nature (Krallinger & Valencia, 2005).

At the most basic level, the PubMed and Medline databases store information

relating to each paper published in the biological domain — including author,

title and abstracts. Many text mining tools use PubMed or Medline as their

knowledge base. The first step in biological text mining is to identify biological

entities, such as genes and proteins. This is known as named-entity recognition

(NER). Often there are common names for the same biological entity, so it is

necessary to be able to identify each entity unambiguously. For example, genes

have a number of different identification attributes, such as gene names, symbols

and accession numbers, and additionally there are sometimes multiple gene names

that actually refer to the same gene.

The next step is to identify relationships and interactions between biological

entities (e.g. interactions between genes, and interactions between proteins) from

the literature. A simple and efficient method for extracting relationships between

entities is based on the co-occurrence of terms in a sentence or abstract (Jelier

et al., 2005). This technique, whilst simple, is also effective. It has been shown

that the co-occurrence of gene names in a paper abstract frequently reflects a

true relationship between the two genes (Jenssen et al., 2001; Stapley & Benoit,

2000).

The Associative Concept Space (ACS) is a biological text mining tool that

extends the simple co-occurrence technique (van der Eijk et al., 2004). The ACS

makes use of a thesaurus in order to avoid ambiguities by mapping synonyms to

biological entities — each entity (e.g. a gene) is described using a ‘concept profile’.

The ACS is based on calculating a ‘distance’ between two concepts. A key point

is that distances are calculated based not only on the co-occurrence of entities in

the same document (a ‘one-step’ relation), but also on indirect, multi-step rela-

tions, where concepts are linked via a number of documents. The ACS improves

on simple co-occurrence methods in a number of ways. It can reveal relations

between genes based on their contexts, i.e. the other concepts with which they

are mentioned, and due to this does not require the genes to be mentioned in the

same article for a relationship to be discovered. This research has been extended
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further by the development of literature-based gene concept profiling and associ-

ation scores (Jelier et al., 2007; Schuemie et al., 2007a) that describe the overlap

in the contexts in which the genes are mentioned. It can discover relationships

between biological entities based on a huge number of documents and represent

the relationships using an association score matrix, where the association score

between a entity-pair reflects the strength of the relationship between them.

2.3.4 Use of prior knowledge in inferring regulatory rela-

tionships

In this section 2.3, we have identified a number of data types that offer comple-

mentary knowledge to microarray expression data. Whilst expression data gives

us information on expression levels, each of these other data types offers a differ-

ent aspect of knowledge. Protein-protein interaction data provides information

on which proteins interact. TFBS data provides a confidence on whether a gene

pair have a regulatory relationship, based on binding sites. Literature mining

can extract knowledge that has been published in scientific papers. The use of

microarray expression data alone for inferring gene regulatory relationships has

drawbacks due to its quality and reliability issues. Consequently, it has been

recognised that integrating the use of these complementary data types into the

inference of gene regulatory relationships can be beneficial. Typically, these com-

plementary data sources are used as prior knowledge in some way. For example,

the prior knowledge may be used to identify potential transcription factors, group

genes into potential regulatory relationships, or place a probability distribution

over candidate network models, prior to learning a model from microarray ex-

pression data. In the rest of this section we provide an overview of relevant work

in combining prior knowledge with expression data.

The combination of protein-protein interaction data and microarray expres-

sion data has also been used to build protein-protein interaction networks and

GRNs in parallel (Nariai et al., 2005). In this research, a single model with three

components is learnt from the data: a Bayesian network representing a GRN, a
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Markov network1 representing a protein-protein interaction network, and a struc-

tural connection between the two networks. The aim of this structural connection

is to clearly distinguish regulatory relationships from protein-protein interactions,

since genes that are co-expressed and thought to be part of a regulatory relation-

ship may actually be interacting proteins. Segal et al. (2003b) demonstrate a

similar approach to build a probabilistic model based on both data types. A

probabilistic model is constructed for each data type and then a unified model is

created based on the individual models.

Most work that combines TFBS location data with microarray expression

data is tested on the yeast organism, since ChIP-chip experiments have been

carried out to identify the binding sites for over a hundred of its transcription

factors (Lee et al., 2002). The most relevant work to this thesis on combining

TFBS data with microarray data for inferring GRNs is by Bernard & Hartemink

(2005), since it is based on the use of Bayesian networks. In this work a prior

probability distribution over candidate Bayesian networks is constructed based

on the yeast location data. They found that the use of a prior distribution

increased rate of true regulatory relationships discovered. However, they also

found that using the location data alone had a good accuracy in comparison with

the combination of data types. Similarly, Xu et al. (2004) also use location data to

build a prior distribution for a Bayesian model to identify regulatory interactions

in yeast. This research extends the Module Networks work by Segal et al. (2003a)

that builds regulatory modules based on expression data only. In other work,

Segal et al. (2003c) demonstrate a similar approach to the research in which they

combine protein-protein interaction and expression data, but use DNA sequence

information (relating to binding site DNA sequences) instead of protein-protein

interaction data. Gao et al. (2004) present MA-Networker, which uses expression

and location data. The basis of MA-Networker is the use of a ‘coupling factor’,

which is calculated for each transcription factor-target gene pairing based on both

data types. Once again, this research is tested on the yeast organism. They find

that 58% of the genes whose promoter region is bound by a transcription factor

are true regulatory targets. Imoto et al. (2003) propose the use of TFBS data as

1A Markov network is similar to a Bayesian network, but only has undirected edges between
nodes
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prior knowledge to build a prior probability distribution over potential Bayesian

models, but do not experimentally test their method using location data.

The incorporation of literature-based data for learning GRNs began with the

use of online biological databases, such as KEGG. Imoto et al. (2003) intro-

duce energy functions to incorporate prior knowledge sources into Bayesian GRN

models and propose the incorporation of many types of different prior knowl-

edge, including literature-based knowledge. Their experiments are conducted

with prior knowledge extracted from regulatory interactions that are recorded in

the Yeast Proteome Database (YPD). Later, Werhli & Husmeier (2007) extended

the approach of Imoto et al. to multiple sources of prior knowledge and test their

approach on combining protein-protein interactions and KEGG pathways with

expression data.

More recent work has seen the integration of text mining techniques to extract

knowledge, due to the limitations of online databases. Li et al. (2006) use co-

occurrence text mining to build a prior regulatory network, and then microarray

expression data is used to improve the network. Aerts et al. (2008) use text min-

ing to identify DNA sequence information in scientific publications, as a means

of identifying the location, organism and target gene information for regulatory

relationships. Suwannaroj & Niranjan (2008) use clustering based on the com-

bination of co-expression and text-mined literature gene relationships to build a

network of co-regulated genes.

Later in this thesis we present some of the first research on the incorporation

of prior knowledge from a large body of relevant literature (see Chapter 4) in

combination with expression data for reverse-engineering GRNs using Bayesian

networks. We decide to use literature-based data for a number of reasons. Pub-

licly available and genome-wide experimental data, such as protein-protein in-

teractions and TFBS location data can be noisy and difficult to obtain, since

experiments are relatively expensive and can be lengthy to run. For example,

location data is often only available for a small set of transcription factors. This

is why previous research tends to focus on the yeast organism, where a large set

of data is readily available. However, by using literature-extracted knowledge, we

can harness a huge amount of information from numerous sources for any organ-

ism for which there are published papers. We use literature-based gene concept
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profiling (introduced earlier in Section 2.3.3) to generate a prior distribution over

candidate Bayesian network models.

2.4 Summary

This chapter has formed the first part of the literature review, and provides

motivation for the contributions of this thesis. In Section 2.1, the mechanisms of

gene expression and regulation were introduced. The process of gene expression

is often referred to as the ‘central dogma of molecular biology’, since it initiates

all cellular processes in living organisms. In a process known as gene regulation,

genes interact in order to activate and repress the expression of other genes.

Understanding how genes operate in these networks — known as gene regulatory

networks (GRNs) — is a major goal of computational biology. For example,

understanding GRNs can help biologists gain insight into the causes of genetic

conditions or cancer.

This thesis is focused on the reverse-engineering of GRNs, that is, inferring

GRN models directly from data sources. In particular, in Section 2.2 we described

DNA microarrays, a high-throughput technology for measuring the expression

levels of thousands of genes simultaneously. Microarray data can help biologists

discover regulatory relationships between genes through the analysis of expression

level patterns. However there are a number of recognised issues with microarray

expression data. It is subject to both biological variations across samples and

experimental noise, which may be introduced throughout the stages of the exper-

iment (e.g. sample preparation or hybridisation). In addition, a key issue with

microarray datasets is often referred to as the curse of dimensionality. A single

microarray dataset usually contains a large number of genes (commonly thou-

sands) but the number of samples is much lower, which can make it very difficult

to extract reliable regulatory interactions from a single dataset. Microarray tech-

nology is now widely used, and with the subsequent, rapid increase of publicly

available microarray data comes the opportunity to produce regulatory network

models based on multiple datasets. However, normalisation processes that are

intended to allow direct comparison of multiple datasets do not always remove

the inherent noise and biases of the microarray platform or laboratory process
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and environment from which the data is generated. This motivates the first con-

tribution of this thesis: Consensus Bayesian networks and Bayesian networks

meta-analysis, approaches for combining Bayesian network models of GRNs at

the model-level, which has no requirement for normalising between datasets. This

is first presented in Chapter 5 and extended further in Chapter 6.

The drawbacks of using only microarray data to reconstruct GRNs can also

be alleviated by incorporating other complementary data sources into the mod-

elling process. There are many other data sources that contribute to available

knowledge on GRNs, such as TFBS location data, protein-protein interactions,

and literature-based knowledge, which are all covered in Section 2.3. However,

publicly available and genome-wide experimental data, such as protein-protein

interactions and TFBS location data can be noisy and difficult to find, since ex-

periments are relatively expensive and can be lengthy to run. A better alternative

is the use of text mining to extract knowledge from the literature, which can har-

ness a huge amount of information from numerous sources for any organism for

which there are published papers. This motivates the second contribution of this

thesis, presented in Chapter 4, some of the first research on the incorporation of

prior knowledge from a large body of literature in combination with expression

data for reverse-engineering GRNs using Bayesian networks.

Next, in Chapter 3, we describe Bayesian networks, our tool of choice for

the reverse-engineering of GRNs, and present the remaining part of our literature

review, focusing on the use of Bayesian networks with microarray gene expression

data.
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Chapter 3

Modelling GRNs using Bayesian

networks

Bayesian Networks have become a popular method for computational mod-

elling of GRNs from microarray expression data since they are able to repre-

sent networks qualitatively (using graphs), and quantitatively (using probability

distributions) and thus are relatively easy to interpret by non-technical people.

This chapter introduces Bayesian networks for modelling GRNs. The first section

( 3.1) provides an overview of the basics of Bayesian networks. Following this,

in Section 3.2 we explain how Bayesian networks can be used to model GRNs.

Section 3.3 describes methods for learning Bayesian networks and attaching confi-

dence levels to network features. In Section 3.4 we discuss methods for evaluating

the performance of learnt Bayesian network models. Finally, a review of literature

on modelling GRNs using Bayesian networks is provided in Section 3.5.

3.1 Bayesian networks

Bayesian Networks (BNs) (Mitchell, 1997; Murphy, 2001b; Pearl, 1991) are graph-

based models of probability distributions that capture properties of conditional

independence between variables. A BN consists of two components. The first is

a Directed Acyclic Graph (DAG) consisting of directed arcs between nodes that

represent random variables in the domain. If there is an arc (also referred to as a
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Gene1

Gene2 Gene3

Gene4

Figure 3.1: DAG component of a simple Bayesian network over 4 random discrete-

valued gene variables. This example network is adapted from Murphy (2001b).

p(G1=on) p(G2=off)

0.50 0.50

G1 p(G2=on) p(G2=off)

off 0.50 0.50

on 0.80 0.20

G1 p(G3=on) p(G3=off)

off 0.75 0.25

on 0.25 0.75

G2 G3 p(G4=off) p(G4=on)

off off 0.90 0.10

on off 0.20 0.80

off on 0.20 0.80

on on 0.10 0.90

Table 3.1: Conditional probability tables for each node in the DAG shown in

Figure 3.1. Note that G1=Gene1, G2=Gene2, G3=Gene3 and G4=Gene4

link or an edge) from node A to another node B, then A is said to be a parent of

B, and B is a child or descendant of A. Informally, a directed link between nodes

A → B indicates the existence of a direct influence from A on B. The second

component is a set of Conditional Probability Distributions (CPDs) associated

with each node. The strengths of the influences indicated by directed links are

quantified by these conditional probabilities. The CPDs can be modelled by

either a continuous distribution or with Conditional Probability Tables (CPTs)

for discrete-valued variables.
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For example, consider the BN consisting of the DAG in Figure 3.1, together

with the CPTs in Table 3.1 which represent the CPDs for each of the four random

variables, which are discrete-valued (binary). In this example, which is adapted

from the Sprinkler network in (Murphy, 2001b) to instead show gene regulatory

interactions, the variable Gene4 is influenced by Gene2 and Gene3. From the

CPT for Gene4, we can see that if either Gene2 or Gene3 is expressed (‘on’), then

there is a strong probability that Gene4 is also on. The node Gene1 has a strong

influence on Gene2 if Gene1 is on, but otherwise Gene2 is equally probable to

be on or off. The node Gene1 has no parent nodes, so its CPT specifies the prior

probability that it is expressed (‘on’) or not (‘off’).

3.1.1 Conditional independence

As mentioned in earlier in this chapter, BNs specify a set of conditional indepen-

dencies amongst a set of variables. Thus, the concept of conditional independence

between sets of variables is a key underlying principle of BNs. Suppose we have

three random variables X, Y and Z. We say that X is conditionally independent

of Y given Z if:

p(X|Y, Z) = p(X|Z)

Essentially, this means that once we know the value of Z then X and Y are

independent. It can be shown that each node in a BN is conditionally independent

of all its non-descendants given its parents (Pearl, 1991). For example, for the

network shown in Figure 3.2 the nodes W , X and Y are conditionally independent

given the value of their parent node Z. For the previous example network shown

in Figure 3.1, Gene4 and Gene1 are independent when given the values of Gene2

and Gene3.

3.1.2 Inference

A BN specifies a Joint Probability Distribution (JPD) across the set of variables.

Consider the network specified by the DAG in Figure 3.1. The joint probability
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Z

W X Y

Figure 3.2: Conditional independence in Bayesian networks: this figure shows the

DAG component of a Bayesian network. The nodes W , X and Y are conditionally

independent given the value of Z.

of all nodes in this DAG can be specified using the chain rule of probability, as

follows:

P (G1, G2, G3, G4) = P (G1)P (G2|G1)P (G3|G1, G2)P (G4|G1, G2, G3)

However, since G2 and G3 are conditionally independent given G1, and G4 is

conditionally independent of G1 given G2 and G3, this can be rewritten as:

P (G1, G2, G3, G4) = P (G1)P (G2|G1)P (G3|G1)P (G4|G2, G3)

These probabilities are specified in the CPTs in Table 3.1. Thus, the condi-

tional independence relationships allow us to represent the JPD more compactly.

BNs are so-called because they use Bayes rule to perform inference (Murphy,

2001b). Bayes rule provides a method for calculating the posterior probability

P (A|B), based on the values of P (A) — the prior probability, P (B|A) (the likeli-

hood) and P (B). This is useful in cases where P (A|B) is the quantity of interest,

but there is only observed data available to calculate P (B|A). Bayes rule is as

follows:

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

Using Bayes rule together with the JPD described by a BN, we can infer

the probability distribution on the value of a target variable, given the observed

values of other variables in the network. For the example network in Fig 3.1, if
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it is observed that the Gene4 is expressed, G4 = on, and we want to find the

probability that it is Gene3 is expressed, G3 = on, then by Bayes rule:

P (G3 = on|G4 = on) =
P (G4 = on|G3 = on)P (G3 = on)

P (G4 = on)
(3.2)

=

∑
g1,g2 P (G1 = g1, G2 = g2, G3 = on,G4 = on)∑

g1,g2,g3 P (G1 = g1, G2 = g2, G3 = g3, G4 = on)

(3.3)

=
0.4138

0.6125
(3.4)

= 0.6755 (3.5)

Similarly, if we want to find the probability that Gene2 is expressed, G2 = on,

given that Gene4 is expressed, G4 = on:

P (G2 = on|G4 = on) =
P (G4 = on|G2 = on)P (G2 = on)

P (G4 = on)
(3.6)

=

∑
g1,g3 P (G1 = g1, G3 = g3, G2 = on,G4 = on)∑

g1,g2,g3 P (G1 = g1, G2 = g2, G3 = g3, G4 = on)

(3.7)

=
0.2938

0.6125
(3.8)

= 0.4796 (3.9)

Thus we can find which parent node of Gene4 has a heavier influence. In this

case, P (G3 = on|G4 = on) > P (G2 = on|G4 = on) so it is more likely to be

Gene3.

Bayes rule can be used to infer the probability distribution for any variable,

given the values of the remaining variables, as described above. However, if each

node has 2 states, then the JPD has size O(2n), where n is the number of nodes.

This only grows if a node has greater than 2 states. Therefore summing over

the JPD takes exponential time. Thus, many alternative exact and approximate

inference methods have been proposed to make the problem tractable. For exam-

ple, a frequently used method for exact inference involves techniques known as

variable elimination and the junction tree inference algorithm (Murphy, 2002).
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Variable elimination makes use of the conditional independence assumptions de-

fined in the network to simplify calculations (as described earlier in this section).

Implicitly, variable elimination can then be used to create an undirected graph,

equivalently representing the JPD, called the ‘junction tree’ on which inference is

easier to perform. There are many methods for approximate inference (Murphy,

2001b), including those based on Monte-Carlo sampling. The research presented

in later chapters of this thesis makes use of the Bayes Net Toolbox (Murphy,

2001a) to implement the junction-tree inference algorithm for the prediction of

node values in BNs.

3.1.3 Explaining away

In cases where a node has multiple parents, there can be a situation where the

influencing nodes compete to explain observed data. This is referred to as ‘ex-

plaining away’ (Murphy, 2001b). For example, consider the network in Figure 3.1,

where Gene4 has two parent nodes, Gene3 and Gene2. In the case where Gene4

is observed, i.e. it has a value, Gene2 and Gene3 become conditionally depen-

dent. Recall from the previous section, that if Gene4 is expressed (‘on’), then

the probability that Gene2 is true is 0.4796. Now, if we assume that Gene4 is

expressed and also that Gene3 is expressed, we can calculate the probability of

Gene2 being expressed as follows:

P (G2 = on|G4 = on,G3 = on) =
P (G4 = on,G2 = on,G3 = on)

P (G4 = on,G3 = on)
(3.10)

=

∑
g1 P (G1 = g1, G2 = on,G3 = on, G4 = on)∑

g1,g2,g3 P (G1 = g1, G2 = g2, G3 = on,G4 = on)

(3.11)

= 0.2991 (3.12)

This illustrates how the probability of Gene2 being ‘on’ (or true) decreases,

when we know that Gene3 is also ‘on’.
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3.1 Bayesian networks

3.1.4 Parameter learning

Given a network structure and a set of observations on all nodes, we can learn

the parameters (that is, the parameters of the CPDs attached to each node) of

the network using maximum likelihood parameter estimation. The aim is to find

the parameters of the CPDs for each node that best fit the data. Formally, this

can be expressed as follows (Needham et al., 2007). Given a BN that represents

a probability distribution X and a set of observations (our dataset) D, then we

wish to learn a set of parameters θ for X that maximise the likelihood that the

data D comes from X. If D = x1, x2, ..., xN (a set of N training examples), and

the likelihood is denoted L(θ) then this can be expressed as follows:

arg max
θ

L(θ) = arg max
θ

P (D|θ) = arg max
θ

N∏
i=1

P (xi|θ)

The likelihood of the data given the model is product of the probabilities

of each example (assuming that the data are independent). For discrete-valued

variables, this can be done simply by calculating the frequencies of possible states

in the data observations. However, it is often necessary to use a prior for the

parameters — otherwise, combinations of variable states that are not contained

in the data will receive a zero probability. The prior P (θ) is taken into account

by maximising the posterior probability P (θ|D) through the use of Bayes rule

P (θ|D) = P (θ)P (D|θ)
P (D)

. Since P (D), the probability of the data (or also known

as the marginal likelihood), is a constant, P (θ|D) ≈ P (θ)P (D|θ). The research

presented in later chapters of this thesis makes use of the Bayes Net Toolbox

(Murphy, 2001a) to implement the maximum-likelihood parameter estimation

(with priors) to learn the CPTs of learnt network structures.

There are also methods for parameter learning with only partially observed

data (i.e. where some nodes have missing data), such as the well-known Estima-

tion Maximisation (EM) process. A description is omitted as in this research we

do not deal with learning from missing data.
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3.1 Bayesian networks

3.1.5 Equivalence classes

It is important to note that more than one DAG may represent the same set of

conditional independencies. A set of such DAGs belong to the same equivalence

class. Pearl & Verma (1991) showed that two DAGs are equivalent if and only

if they have the same skeleton and the same v-structures. The skeleton is the

underlying graph with undirected edges and a v-structure is an ordered triple of

nodes X,Y and Z such that X → Y and Y ← Z, and X and Z are not adjacent

(not directly connected). In other words, equivalent graphs agree on the same

underlying undirected structure, but the direction of some arcs may vary. This

means that the equivalence class of a set of conditional independencies can be

represented using a partially directed acyclic graph (PDAG), where only some

arcs are directed.

For example, for the network shown in Figure 3.1, the PDAG representing

the BN equivalence class is shown in Figure 3.3a. The v-structure between the

Gene2,Gene3 and Gene4 nodes is preserved. However, the arcs between Gene1,

Gene3 and Gene2 become undirected. This PDAG represents the same condi-

tional independencies as the DAGs shown in the original network (Figure 3.1),

and an alternative DAG that is shown in Figure 3.3b. Although this DAG does

not represent the same intuitive ordering of variables, the conditional indepen-

dence relationships are identical.

It is possible to derive the PDAG representing the equivalence class for any

DAG using an algorithm derived by Chickering (1995).

3.1.6 Causality

An advantage of BNs that is often cited is that they can indicate causal knowl-

edge amongst a set of variables (Mitchell, 1997). However, it is not as simple as

considering the directionality of the arcs in the DAG: an arc A → B does not

necessarily imply that A causes B. This follows from the discussion on equiv-

alence classes: two DAGs may represent the same independence relationships

amongst variables, despite the directionality of some arcs varying. Instead, a

common interpretation of causality in BNs has been related to the conditional

independence relationships amongst variables. The key idea is that at least three
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3.2 Bayesian networks to model gene regulation

Gene1

Gene2 Gene3

Gene4

(a) PDAG

Gene1

Gene3

Gene2

Gene4

(b) Alternative DAG

Figure 3.3: PDAG and an alternative DAG representing the equivalence class

and conditional independencies amongst nodes of the Gene2 BN shown in Fig 3.1

variables need to be measured, and one of these variables acts as a control for the

relationship among the other two variables (Murphy, 2001b). In terms of condi-

tional independence, this is expressed by stating that a variable is conditionally

independent of other variables in the network, given the value of its parent nodes.

For example, in the BN in Figure 3.1 Gene4 is conditionally independent of other

variables in the network, when given the values of Gene2 and Gene3, implying

that Gene2 and Gene3 cause Gene4. However, BNs and their relationship to

causality is a complicated and frequently discussed topic. Pearl (2000) contains

a thorough discussion on whether causality can be distinguished from correlation

or conditional independence assumptions implied by a DAG.

3.2 Bayesian networks to model gene regulation

Bayesian Networks have become a popular method for computational modelling

of GRNs from microarray expression data (Friedman et al., 2000; Hartemink

et al., 2002; Pe’er et al., 2006). In this section we describe how BNs can be used

to model a GRN. Recall from section 3.1 that a BN describes a set of conditional

independence relationships among a set of variables. In order to represent a GRN

using a BN, we apply the notion of conditional independence to gene regulation.

51



3.2 Bayesian networks to model gene regulation

3.2.1 Simple regulatory structures

It makes sense that genes which are regulatory in nature (TFs) will render the

genes that they control independent. In other words, if a TF controls a set of

genes, these target genes become conditionally independent given the regulator

gene (the TF). Therefore, this type of simple regulatory structure involving a TF

and its target genes can be easily represented using a BN. Suppose we have a set

of target genes Xi and a regulatory gene TF . Then a network representing this

can be formed with the TF variable as a parent node to the Xi nodes, as shown

in Figure 3.4a. In this case we have that the Xi are conditionally independent on

the TF node. The network structure also makes sense in terms of links between

nodes i.e. the TF directly influences the values of the target genes. For control by

multiple regulators, additional parent nodes representing TFs can be added, as

shown in Figure 3.4b. In this case the target genes are conditionally independent,

given the values of all controlling TFs.

TF

X1 X2 ... Xn

(a) Single regulator

TF1

... XnX1 X2

TF2

(b) Multiple regulators

Figure 3.4: (a) shows a standard gene regulatory network, involving a TF parent

node to target genes Xi. (b) is a modified version of the same network, but with

an additional parent node representing a second regulating gene.

Since regulator genes can also be regulated by other TFs, we can build up

a more complex network structure using the principles described, that include

longer chains of gene regulation. For example, Fig 3.5 shows a DAG structure

for a set of yeast genes.

3.2.2 Modelling using microarray expression data

Microarray gene expression data is the most common type of data used to model

GRNs using BNs. In this case each node actually represents the expression value
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3.2 Bayesian networks to model gene regulation

REB1

RPN4

YAP1TYE7

HSF1

SKN7

SIP4

SFL1

ROX1

Figure 3.5: A more complex DAG structure representing a regulatory structure

between a subset of yeast genes

for that gene. Note that the exact representation of the expression value may vary

- i.e. whether it is a log ratio or absolute value, depending on the microarray

platform and data preprocessing techniques. Recall from chapter 2, that gene

expression values are a continuous data type. However, in the research presented

in this thesis gene expression values are discretised into three states using an

equal-frequency binning method. This means that when using inference to find

the expression value of a gene, we are actually finding the discretised state of that

gene expression value. Discretisation is a technique commonly applied to real gene

expression data for its use to model GRNs. For example, research by high-profile

researchers in this field has used discretisation to classify gene expression values

into 2 or 3 states such as ‘active’, ‘no change’ or ‘repressed’ (Friedman et al., 2000;

Hartemink et al., 2002). Discretisation is of particular benefit with real data that

have a small number of samples and/or can be noisy. It is a simple method that

still allows complex regulatory structures to be modelled whilst avoiding the need

to deal with parameterised continuous distributions.

This means that the CPDs attached to each node will be CPTs since the gene

expression nodes are discrete-valued. The CPTs show how regulators influence
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3.2 Bayesian networks to model gene regulation

RPN4 HSF1 p(TYE7=high) p(TYE7=low)

low low 0.50 0.50

high low 0.40 0.60

low high 0.25 0.75

high high 0.10 0.90

Table 3.2: Example CPT for target gene TYE7 (from Figure 3.5), that is con-

trolled by two TFs, RPN4 and HSF1

the target genes. TFs may interact in a number of different ways to effect regu-

lation on target genes — for example, a pairing of TFs may work where one is an

activator and another is a repressor. An example of a CPT for the gene TYE7,

that has two regulators, (taken from the DAG shown in Figure 3.5) is shown in

Table 3.2. According to this CPT, TYE7 is repressed (low) when its TFs HSF1

and RPN4 are activated (highly expressed). Furthermore, the TF HSF1 has a

larger influence on the repression than RPN4, as we can see from the probabilities

when RPN4 is low and HSF1 is high.

Additionally, when we think of a node to represent the gene expression value,

we can apply the ideas of inference, explaining away and causality (described in

Section 3.1) to GRNs. For example, inference can be used to find the probability

distribution of expression values for a particular gene, based on the observed

values of other genes, or to predict the expression value of a gene based on its

probability distribution. In particular, this method can be used to validate GRN

structures, by predicting the expression values of genes in the network over new

independent datasets. This is discussed in more detail in section 3.4.

3.2.3 More complex regulatory interactions

The BN structures described in Section 3.2.1 only describe static relationships,

where a relationship is found between the observations of gene expression values

taken in the same sample. They do not model temporal interactions. For example,

there may be a time delay between the activation of a TF and the resulting

increase/decrease in expression by a target gene. In this case a relationship is

found between the observations of expression values taken in samples collected
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3.2 Bayesian networks to model gene regulation

X(t-1)

X(t)

X(t+1)

Figure 3.6: A simple DBN

at different time points during the same experiment. Such phenomena can be

modelled using Dynamic Bayesian Networks (DBNs). When data samples come

from a time-series of measurements, an observation at time t may carry some

information on adjacent times (both before and after). This can be represented in

a BN structure by using nodes for the values of variables at different time points,

e.g. t − 1 or t + 1. As in static BNs, arcs between nodes indicate how variables

influence one another; in general influence flows between time-consecutive nodes,

a simple instance of which is shown in Figure 3.6.

Since they can drill down to individual time steps, DBNs can also model cyclic

behaviour. This is particularly useful in GRNs, which often contain feedback

loops where TFs regulate themselves. An example of this is shown in Figure 3.7.

Part (a) shows a cyclic graph where a feedback loop exists between variables

X1,X2 and X5. This is not a valid representation for a DAG since it includes a

cycle. However it can be represented in DAG if we include nodes for each Xi at

different time steps (which represent different sample points). This is shown in

part (b). Here, there are arcs included between the same nodes at different time

slices. Additional arcs show the influences between different nodes at different

time steps.

In order to apply DBNs to model temporal and cyclic behaviour in gene reg-

ulation, gene expression data is required that contains samples taken at different

times during an experiment (preferably where the samples also are evenly spaced).

Acquiring multiple sets of such data can be difficult. In the research presented in

this thesis, we focus on static BNs to model GRNs for two reasons: to first build

a solid foundation for combining datasets to model simple regulatory structures
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X1

X2 X3

X4

X5

(a) Cyclic graph

X2(t-1)

X5(t) X2(t)X4(t)

X4(t-1) X1(t-1)

X3(t)X1(t)

X5(t-1) X3(t-1)

(b) Potential representation as a DBN

Figure 3.7: Cyclic behaviour represented in a DBN. This figure is adapted from

Kim et al. (2003)

and secondly due to the paucity of suitable temporal data. However Section 8.3

outlines how the research can be extended to model more complex regulatory

structures.

3.3 Learning Bayesian network structures

There are two main approaches to building BN structures, based on a set of data

observations. Constraint-based approaches compute conditional independencies

between variables and use these as constraints to build a PDAG. The search-and-

score approach looks at maximising a score based on how well the network fits the

data. In this section we describe both approaches in more detail, and explain why

we use the search-and-score method to learn BNs that represent GRNs. Following

this, in Section 3.3.4 we describe a method for calculating the confidence level of

learnt network features (such as an interaction between a pair of genes).

3.3.1 Constraint-based learning

Constraint-based approaches work by establishing conditional independencies be-

tween variables and forming a PDAG based on this. If two variables X and Y

can be found to be conditionally independent given another set of variables S,

then there is no link between X and Y in the network structure.

56



3.3 Learning Bayesian network structures

Examples of constraint-based approaches are IC (Inferred Causation) (Pearl,

2000) and the PC algorithm (Spirtes et al., 2000). Both algorithms follow a

similar process. First, an undirected graph structure (the skeleton) is found by

searching for conditional independence relationships among sets of variables. For

each pair of variables X and Y , a set S of variables is sought such that X and Y

are conditionally independent given S. X and Y are only connected in the graph if

no set of variables can be found (i.e. X and Y are not conditionally independent).

The PC algorithm invokes efficiency savings here, as it only considers a reduced

subset S of conditioning variables, which is those variables that are adjacent to

X and Y . Once the undirected graph structure is found, four rules are used to

direct arcs to form a PDAG (Pearl, 1991).

Conditional independence between variables can be established using a variety

of methods, but the most commonly used involves partial correlation. Partial

correlation measures the degree of association between two random variables,

with the effect of a set of (control) variables removed. If the partial correlation

between the variables X and Y , conditional on a set of variables S is zero, then

X and Y are conditionally independent.

3.3.2 Score-based learning

The search-and-score approach has generally been more popular for learning BNs,

in particular for inferring gene regulatory relationships. The approach performs a

search through the space of possible networks and scores each structure. The aim

is to identify the network with the maximum score. A variety of search strategies

can be used, the simplest being a greedy hill-climb. In the research presented in

this thesis, we use a simulated annealing approach in order to avoid local maxima.

The search begins with an empty network. At each stage of the search, networks

in the current neighbourhood are found by applying operators such as add arc,

remove arc and reverse arc to the current network.

We use the Bayesian Information Criterion (BIC) (Schwartz, 1978) for scor-

ing candidate networks. The BIC function is a combination of the model log-

likelihood and a penalty term that favours less complex models — as such it is

similar to the minimum description length:
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3.3 Learning Bayesian network structures

BIC = log P (θ) + log P (θ|D)− 0.5 k log(n)

where θ represents the model, D is the data, n is the number of observations

(sample size) and k is the number of parameters. log P (θ) is the prior probability

of the network model θ, log P (θ|D) is the log-likelihood while the term k log(n)

is a penalty term, which helps to prevent overfitting by biasing towards simpler,

less complex models. The BIC is part of a family of Information Criterion scoring

functions that take a common formulation but with different penalty terms (Sto-

ica, 2004). For example, the Akaike Information Criterion (AIC) (Akaike, 1974)

has a penalty term of 2k (twice the number of parameters), whereas the BIC has

the penalty term k log(n) that depends on the number of model parameters but

also the number of samples. Since the BIC’s penalty term takes the number of

samples into account it is more appropriate for dealing with microarray datasets,

which commonly contain only a small number of sample points.

3.3.3 Comparison of both approaches

Comparative evaluations of constraint-based and search-and-score approaches for

learning BNs, specifically for the modelling of GRNs, have been previously carried

out (Pournara, 2005; Werhli et al., 2006). In particular, Werhli et al. find that for

certain experimental types (interventional microarray studies, where the environ-

ment or cells are deliberately interfered with for the purposes of the experiment),

the score-based approach outperforms the constraint-based approach. However,

for simple observational microarray studies, there is insufficient evidence that

either approach performs best.

Constraint-based approaches have the advantage of efficiency, even on large

datasets. Using a constraint-based approach, a graph structure can be found

quickly by simply checking conditional independence relationships based on par-

tial correlations of different sets of variables. However, as shown in Werhli et al.,

the score-based approach can produce better-performing networks on interven-

tional study data. This type of data makes up a large proportion of the publicly

available microarray studies. Score-based learning is also a more flexible method;

it can produce networks that have the potential to present a more detailed model
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3.3 Learning Bayesian network structures

of interactions among genes, since all edges can be directed, whilst the constraint-

based approach produces PDAGs only. In addition, since the score-based ap-

proach is not deterministic, confidence levels for each edge can be inferred (as

described in the next subsection 3.3.4). In this thesis, the search-and-score ap-

proach, as described in Section 3.3.2, is used to learn BNs that represent GRNs,

in conjunction with the BIC scoring mechanism that is implemented in the Bayes

Net Toolbox (Murphy, 2001a).

3.3.4 Confidence levels for network edges

When learning BNs using the search-and-score method, a different network may

be learnt each time. This is the case where there is a random element to the

search strategy, such as in simulated annealing. As we are interested in which

genes have regulatory interactions, i.e. if an edge appears between two genes, it

is not enough to just learn a network with a high score, since two networks with

similar high scores may represent a different set of gene interactions.

Friedman et al. (1999) devised a method for computing a level of confidence

for features within a BN. For example, a feature could be the existence of an arc

between two nodes in the network. We make use of this method to generate more

robust network structures and obtain confidence levels on whether two nodes are

connected.

The method is based on a well-known statistical method, Efron’s Bootstrap

(Efron & Tibshirani, 1993). Given a dataset D containing N observations, we

create a new dataset by re-sampling N times, with replacement from D. A BN is

learnt from the re-sampled dataset. This process is repeated m times, so finally

m BNs have been learnt. An estimate of the confidence level for each feature is

computed by the proportion of networks that contain that feature.

We define a feature as the existence of an edge between two nodes in the

network. Thus, network structures learnt using this bootstrapping method are

essentially confidence matrices, where the i,j th entry indicates the confidence

level of the directed edge from node i to node j. We refer to such a matrix as

the bootstrapped network. Figure 3.8 shows an example bootstrapped network in

both a graph and matrix format.
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Gene1
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G1 G2 G3 G4

G1 0 0.57 0.57 0.37

G2 0.56 0 0.31 0.34

G3 0.54 0.28 0 0.47

G4 0.39 0.33 0.48 0

(a) Graph representation (b) Matrix representation

Gene1

Gene2 Gene3

Gene4

(c) PDAG representing the bootstrapped network, at confidence threshold 0.45

Figure 3.8: A bootstrapped network is actually a matrix of confidence level es-

timates for each possible edge in the network. (a) shows the network graph

representation (b) shows the matrix representation. With larger variable sets,

this is an easier way to view the network (c) shows the PDAG extracted from the

bootstrapped network, when the confidences are thresholded at 0.45
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3.4 Evaluation of model performance

To create bootstrapped networks that take consideration of equivalence classes,

BNs are learnt from each resampled dataset and then converted to PDAGs. Con-

fidence estimates for each edge are then calculated on this set of PDAGs. It is

important to note that the edge i → j may have a different confidence estimate

to the edge i ← j. Where directed edges are present in a PDAG, they contribute

only to the confidence estimate for the edge in that direction, whereas undirected

edges contribute to the confidence estimate for an edge in both directions.

A PDAG that represents the bootstrapped network at a certain confidence

level can be formed by thresholding. If an edge has a confidence level above the

threshold, it is included in the PDAG (and if edges are found in both directions

— e.g. from node i → j and i ← j, then the edge is undirected). Thus, if

directional dependencies have enough support in the bootstrapping process they

will be captured and represented in the final thresholded PDAG. An example

of such a thresholded PDAG is shown in Figure 3.8. Note that this method

of thresholding does present the possibility that the extracted PDAG may not

be a PDAG — that is, the network structure could be cyclic. However, in our

experiments, this did not occur. If it was the case, the network can be converted

to acyclic by undirecting an edge in the cycle. The edge to be undirected can be

selected by finding which one has the least support to be directed (that is, it has

the smallest difference between the confidences in each direction).

3.4 Evaluation of model performance

After learning a BN, we wish to evaluate the performance of the model. This

section relates specifically to the evaluation of BNs learnt to represent GRNs.

We present two methods which are used to evaluate the research in this thesis.

The first method makes a comparison of the network structure to documented

knowledge. In terms of GRNs, this means comparing the regulatory interactions

represented by the BN with interactions documented in the literature (which have

been confirmed, usually through biological experiments). The second method of

evaluation does not require documented knowledge, instead it uses BN inference

to predict node (gene expression) values based on unseen and independent obser-

vations.
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3.4 Evaluation of model performance

Edge present in

learnt network true network

True positive (TP) X X
False positive (FP) X 7

True negative (TN) 7 7

False negative (FN) 7 X

Table 3.3: Comparison between the learnt network and the true network in terms

of true and false positives and negatives

3.4.1 Network structure comparison to current knowledge

In the first evaluation method, gene interactions represented by the BN are com-

pared to documented gene interactions found in the literature. A ‘true’ network

is formed from documented interactions, where a directed edge X → Y , between

two genes X and Y , exists if a confirmed regulatory interaction between that

pair of genes can be found documented in the literature. The learnt BN struc-

ture can be compared to the true network in terms of true and false positives

and negatives - see Table 3.3. A true positive (TP) is an edge that is present

in both the learnt and true networks. A false positive (FP) is an edge that is

present in the learnt network but not in the true network. A false negative (FN)

is an edge that is in the true network but not in the learnt network, whilst a true

negative (TN) is an edge that is not in the true or learnt network. In terms of

the directionality of edges in the learnt network, if the direction conflicts with

that in the true network, then the edge is counted as a FP. If the learnt network

contains an undirected edge that is directed in the true network we count this as

a TP.

The true networks can be obtained from various sources according to the or-

ganism of interest. For example, E. coli regulatory interactions are documented

in the online database RegulonDB (Salgado et al., 2006) and yeast interactions

(both confirmed and potential) are listed in the YEASTRACT database (Teix-

eira et al., 2006). However the online databases from which our ‘true’ networks

are extracted are limited to interactions that have been confirmed by biological

studies. For example, RegulonDB contains regulatory information for only about
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Figure 3.9: An example of a ROC curve representing the evaluation of a boot-

strapped network

25% of the genes in the E. coli genome (Faith et al., 2007). Therefore the pro-

portion of FP interactions recorded in our learnt networks is likely to be higher

than in reality.

In order to compare the numbers of TP and FP edges in different networks, we

use Receiver Operator Characteristic (ROC) curves (Krzanowski & Hand, 2009).

A ROC curve allows one to view graphically the performance of a classifier by

plotting the TP rate (the proportion of true interactions that are identified)

against the FP rate (proportion of incorrectly identified interactions):

TPrate =
TP

TP + FN
FPrate =

FP

FP + TN

In a ROC space, a perfect network (i.e. identical to the true network) would

have a TP rate of 1 and a FP rate of 0, which would sit at the top-left corner

of the plot. For this particular application of modelling GRNs, whilst we do not

want to ‘miss’ documented interactions (i.e. a high TP rate is desirable), a low

FP rate can be more important as FPs are significantly more costly to biologists

(since it may lead to unnecessary and expensive wet lab experiments).
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3.4 Evaluation of model performance

For our experiments we plot a ROC curve for a bootstrapped network, where

each point corresponds to the TP and FP rates of the PDAG extracted from

the bootstrapped network at a particular confidence threshold. The Area Under

the ROC Curve (AUC) is a global measure of the classifier performance, and is

often used in classification problems. AUC is a value between 0 and 1. The AUC

measures discrimination, that is, the ability of the model to correctly classify

instances (in this case, an instance is whether an interaction between a pair

of genes exists). The AUC also specifies the probability that when we draw

one positive and one negative example at random, a higher value is assigned

to the positive than to the negative example. This direct interpretation of the

AUC originates from the use of the ROC in applications where instances can be

assigned a value or score that can be used to rank instances from most to least

likely positive. For example, in medical studies where patients are classified into

diseased and healthy and assigned a score based on the severity of their disease

(Hanley & McNeil, 1982).

In this thesis, the AUC is used to compare bootstrapped networks generated

by different algorithms. In general, the closer the AUC is to 1 (and further away

from 0.5) the better the overall performance of the network. Figure 3.9 shows a

ROC curve (the solid line) representing the evaluation of a bootstrapped network.

Each point on the curve represents the TP and FP rate of a PDAG extracted

from the bootstrapped network at a different confidence threshold. In this case

the thresholds are between 0 and 1 at intervals of 0.1. The points closest to

(1,1) represent lower thresholds (0,0.1,0.2,...) , where more edges appear in the

PDAG. The points closest to (0,0) represent higher thresholds (1, 0.9, 0.8,...),

where fewer edges appear in the PDAG. Note that multiple points on the ROC

curve are concentrated at (0,0), due to a lack of edges in the bootstrapped network

with high confidences. The AUC is this case is 0.77. The dotted line indicates

the TP=FP line, which has an AUC of 0.5. Any point on this line represents a

PDAG which cannot discriminate between true and false edges. For this reason,

a well performing network should have a curve above the TP=FP line and an

AUC that is greater than 0.5.
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3.5 Recent work in using BNs to model GRNs

3.4.2 Prediction of gene expression values

Another method of BN performance evaluation is the prediction of node values

on an independent dataset. A BN that is better at predicting node values on

unseen data can be said to be more robust as it is less likely to be overfitting

on the training data. In the case of a BN that represents a GRN, prediction is

of gene expression values on an independent microarray expression dataset. To

predict gene expression values, we estimate the CPDs using the same expression

dataset from which the structure was learnt, using maximum likelihood parameter

estimation (assuming we have complete data). Using the parameterised structure,

we can then predict the (discretised) expression value of each gene, based on the

expression values of its influencing genes in the network, over samples from unseen

independent datasets. The success of gene expression prediction can be measured

using prediction accuracy, which is the proportion of samples where the predicted

discrete states are correct.

3.5 Recent work in using BNs to model GRNs

Research on using BNs to model gene regulation first began in the late 1990s.

Prior to BNs, most analyses performed on gene expression data to infer regulatory

relationships were clustering techniques used to extract groups of co-regulated

genes. However, clustering can only extract groups of correlated genes and not

the regulatory network structure. BNs are able to discover more complex, non-

linear relationships and transparently represent the nature of interactions (for

example, how regulators act in combination) through their conditional proba-

bility distributions. However, note that clustering is still used sometimes as a

basis for gene network learning using BNs (Segal et al., 2003a). For example,

Bar-Joseph et al. (2003) use a clustering basis for their computational framework

to discover gene regulation modules. The remainder of this section documents

the original papers and notable more recent work on using BNs to model GRNs.

Related work on the incorporation of prior information and multiple gene expres-

sion datasets into GRN modelling, the main research areas covered by this thesis,

is covered in later chapters 4, 5 and 6.
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Friedman et al. (2000) published the first research on using BNs to learn gene

interactions from yeast expression data. They use the fact that BNs capture

properties of conditional independence amongst variables to model statistical de-

pendencies amongst sets of genes, as described earlier in Section 3.2.1. Within

the BN, the expression levels of genes are represented as nodes and directed arcs

between nodes indicate interactions between genes. The Sparse Candidate al-

gorithm is used to restrict the search space of possible networks for learning.

This algorithm uses simple local statistics (e.g. correlation) to identify a rela-

tively small number of candidate ‘parent’ genes. This is necessary because of

the large number of genes usually included in a standard set of expression data.

A search-and-score learning process is used, with the Bayesian score (which is

similar to the BIC score, but does not include penalty terms). The algorithm

is applied to a yeast gene expression dataset (Spellman et al., 1998), which is a

classic test dataset in bioinformatics research. Learnt networks are biologically

validated in two ways: order relations and Markov relations. Markov relations

concern whether genes are directly connected in the network, and order relations

are concerned with the direction of the influences between genes. For example,

if gene X is an ancestor of Y , then this provides an indication that X has a

causal influence on Y . Analysis of the learnt networks uncovered many interest-

ing relationships, many of which make sense biologically (the learnt BNs were

not formally validated using TP and FP rates, but when the research was pub-

lished less was known about regulatory interactions). Since this work, BNs have

been used frequently in learning GRNs. A summary of the most significant and

relevant research is presented next.

Hartemink et al. (2002) present a similar BN methodology for constructing

gene networks, which was developed concurrently with the work by Friedman

et al. Networks are structured similarly with variables representing gene expres-

sion levels; however they also include latent (hidden) variables representing gene

protein levels, which are not included in the data and are therefore unobserved.

They extend the BN framework by adding the ability to ‘annotate’ the network

edges. For example, an edge X → Y can be annotated with ‘+’ (positive —

indicates if X is high, Y is biased to be high) or ‘−’ (negative — if X is high, Y
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is biased to be low). These correspond to activator/repressor roles of regulator

genes.

Imoto et al. (2002) use BNs and nonparametric regression with Gaussian

noise models in order to capture linear and nonlinear relationships between genes.

This method uses continuous modelling for the gene variables as opposed to

discretisation, which can require a large number of parameters to be learnt and use

suboptimal thresholds in the discretisation process, potentially leading to a loss

of information. However, discretisation can offset noise in the data. Imoto et al.

(2002) observe that their constructed networks confirm the results of Friedman

et al., though extra genes are found to mediate some of the relationships found

by Friedman et al.

Segal et al. (2003a) published work on Module Networks — a method based

on BNs for learning regulatory modules from gene expression data. A regulatory

module is defined as a set of genes whose expression levels are controlled by a

small set of regulator genes. Modules are interacting, so the learnt modules pro-

vide a global view of the regulatory network, as opposed to smaller, local-scale

networks. The modules also provide further detail as to the conditions under

which regulation occurs in the form of testable hypotheses — ‘regulator X regu-

lates module Y under conditions W ’ — referred to as a regulatory or regulation

program. The algorithm is fairly involved and described in further detail in a

technical paper (Segal et al., 2005). Candidate regulator genes are drawn from

a list of putative transcription factors. Regulatory programs are represented us-

ing regression trees. These allow the if-then contexts (as described earlier) for

regulation to be used. Genes are initially assigned to modules through a cluster-

ing procedure. Modules and regulatory programs are iteratively improved using

an expectation-maximisation procedure and scored using the Bayesian score. At

each iteration, the regulatory program for each module is refined and genes are

reassigned to the module which best fits its regulatory program.

More recently, Pe’er et al. (2006) presented an algorithm, MinReg, which

scales to learning large BN-based GRN models efficiently from microarray data.

This work uses biologically motivated restrictions on the network structure in

order to reduce the search space during learning. For example, such restrictions

include limiting the parent nodes to putative transcription factors. Additionally,
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a gene is only considered to be a possible regulator gene if it achieves high scores

consistently for many target genes in the learning process. The algorithm per-

formed well in both a statistical and biological validation process over synthetic

and yeast microarray data. In particular, the algorithm was tested on microarray

data for a mammalian organism (mouse), which is generally more complex than

simpler organisms such as yeast, and discovered many key regulator genes. Min-

Reg also outperformed the Module Networks algorithm when both were applied

to the same set of yeast genes and microarray dataset.

Friedman et al. (1998) and Murphy & Mian (1999) first postulated the use of

DBNs to model gene expression data. Friedman et al. discuss extending learning

BN structures to DBNs and present gene networks as an applications, but do

not actually use real microarray data. The technical report by Murphy & Mian

was a review of DBNs and learning algorithms and did not actually contain any

experiments using biological data.

Ong et al. (2002) were the first to apply DBNs to real time-series microarray

data, using latent (hidden and unobserved) nodes to represent regulatory mod-

ules, a group of genes that are controlled together by one regulator. In the follow-

ing year, Kim et al. (2003) applied DBNs to the classic yeast data set (Spellman

et al., 1998). They compared discrete and continuous models and appropriate

learning algorithms for each type of model, though they make no conclusion over

whether either method is superior.

Zou & Conzen (2005) present a DBN approach which the authors assert has

increased accuracy and reduced computational time compared with other DBN

methods. This paper deals with two key issues — the lack of a systematic method

for establishing a biologically relevant transcriptional time lag and the excessive

computational time needed for model selection (in a search-and-score learning

approach). The results presented in the paper — the approach is applied to

yeast time series expression data (Chou et al., 1998) — show the method is

significantly faster and identifies more known gene relationships than a standard

DBN. In order to reduce the number of potential regulator genes (and thus the

model search space), they use the biological fact that most regulator genes exhibit

an earlier or simultaneous change in expression when compared to their targets

(Yu et al., 2003). They also estimate the time delay between the regulator and
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target from the data which also reduces the number of potential networks. In

previous work the time-delay has usually been assumed as the sampling time unit

— which may not always be constant in the data and may have no bearing at all

on the transcriptional time lag.

In summary, the use of BNs to reverse-engineer GRNs is a well established

area of research. BNs have been successfully applied to many microarray gene ex-

pression datasets by many researchers and have been proven to provide a natural

and transparent representation for a GRN. For these reasons, BNs are chosen as

the tool of choice for modelling GRNs in this thesis. However, whilst BNs are a

well-suited modelling technique, the data quality issues associated with microar-

ray expression data (as described in chapter 2) have not yet been fully addressed.

The remaining chapters in this thesis address the incorporation of additional data

sources and the use of multiple microarray datasets for modelling GRNs using

BNs. There has been previous research in integrating prior knowledge into BN

modelling (which is discussed fully in chapter 4) but the work presented in this

thesis focuses on integrating a particular data source, text-based knowledge from

literature, on a scale which has not been addressed previously. There has been

little research in general in using multiple microarray datasets to reverse-engineer

GRNs, and all research of which we are aware of has focused on the use of other

modelling techniques. Chapters 5 and 6 present a novel approach for using mul-

tiple microarray datasets with BNs.

69



Chapter 4

Prior knowledge

4.1 Introduction

Whilst the microarray provides the most available genome-wide data source on

gene expression, there are concerns over its reliability and the reproducibility of

results across microarray platforms or laboratories (MAQC consortium, 2006; Tan

et al., 2003). However, the drawbacks of using only microarray data to reconstruct

GRNs can be alleviated by incorporating other complementary data sources as

prior knowledge in the modelling process. There are many other data sources that

contribute to available knowledge on GRNs, such as transcription factor binding

site location data, protein-protein interactions, and literature-based knowledge.

This chapter presents some of the first research on the incorporation of prior

knowledge from the whole body of biological and medical-related literature into

BN models of GRNs. In this work we use a comprehensive collection of prior

knowledge (based on the body of related literature in the field) and show that

this content helps to improve the modelling process. The ability to use such a

large body of prior knowledge lies in the use of advanced biological text mining

techniques, literature-based gene concept profiling and the Associative Concept

Space (ACS) (Jelier et al., 2007; Schuemie et al., 2007a). Using these techniques,

a measure of association between a pair of genes can be calculated based not only

on the co-occurrence of entities in the same document (a ‘one-step’ relation), but
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also on indirect, multi-step relations, where concepts are linked via a number of

documents. It allows the generation of an association matrix for gene-pairs, where

each entry represents how related the genes are based on a database of scientific

literature. The research presented in this chapter has been conducted in collabo-

ration with the Biosemantics Association (http://www.biosemantics.org), who

have been responsible for the development of these text mining techniques.

BNs provide a natural mechanism for incorporating prior knowledge through

the use of a prior probability distribution on candidate network structures. Build-

ing on existing network edge decomposition techniques for building such a prior

distribution, this chapter presents a methodology to translate literature-based

gene association matrices into a prior probability distribution across network

structures, which can then be integrated into the BN learning process. We eval-

uate its use by comparing BN models learnt with and without prior knowledge

on three different gene sub-networks for yeast, E. coli and human organisms,

and also investigate the effect of weighting the influence of the prior probability

distribution. The experimental findings show that literature-based priors can im-

prove both the number of true regulatory interactions present in the network and

the accuracy of expression value prediction on genes, in comparison to a network

learnt solely from microarray expression data.

The remainder of the chapter is organised as follows. An overview of previous

research in relation to this work is provided in Section 4.2. Section 4.3 describes

how prior knowledge can be incorporated in learning BNs. Section 4.4 explains

literature-based gene concept profiling, and presents a method for translating

the literature-based knowledge to prior probabilities for BN network structures.

Section 4.5 details the experimental results on three real sub-networks. Finally,

Section 4.6 summarises and discusses the findings.

4.2 Related work

Previous research on the integration of literature-based knowledge into the reverse-

engineering of GRNs with BNs has utilised online databases such as KEGG as

sources of prior knowledge. In the most notable comparable work, Imoto et al.

(2003) use energy functions to incorporate prior knowledge sources into Bayesian
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GRN models and propose the incorporation of many types of different prior

knowledge, including literature-based knowledge extracted from regulatory inter-

actions that are recorded in the Yeast Proteome Database (YPD). Later, Werhli

& Husmeier (2007) extended the approach of Imoto et al. to multiple sources

of prior knowledge and applied their approach on combining protein-protein in-

teractions and KEGG pathways with expression data. The use of advanced text

mining techniques provides an advantage over this research, since databases such

as YPD and KEGG rely on the addition of manual annotations and as the volume

of scientific publications becomes prohibitively large, keeping up-to-date informa-

tion within them becomes increasingly challenging. In contrast, literature-based

gene concept profiling can quickly harness the information contained in a huge

number of documents into a simple, clear format.

Informative network structure priors have previously been used to incorporate

prior knowledge into BN based GRN models. For example, Bernard & Hartemink

(2005) use the technique to incorporate transcription factor binding site location

data. However, it has not been applied with the type of literature-based infor-

mation used in this research, and weighting the influence of the prior knowledge

has not been addressed.

More recently, in research that was developed concurrently with the work that

is presented in this chapter, Larsen et al. (2007) and Almasri et al. (2008) have

used literature-based prior knowledge generated using a tool called PathwayAssist

(Nikitin et al., 2003; Novichkova et al., 2003), a natural language processing tool

that can identify potential gene interactions based on a collection of literature.

In this tool, the natural language processing is based on parsing the meaning

of sentences; entities must appear in the same sentence to be related, which is

not a restriction of the concept profiling technology that is used in this chapter.

The work in this chapter also extends beyond this by considering a weighting on

the influence of the prior knowledge during learning. Additionally, we provide a

more thorough evaluation of the learnt networks, through gene expression value

prediction in addition to a comparison of documented interactions contained in

the learnt networks.
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4.3 Informative Bayesian network priors

As discussed in chapters 2 and 3, in this research BNs are used to model GRNs.

BNs provide a natural mechanism for incorporating prior knowledge relating to

the network structure through a prior probability distribution across candidate

network structures. Recall the score-based search method for learning BNs (see

Section 3.3). This approach performs a search through the space of possible

networks, scoring each structure, to identify the network with the maximum

score. We use the Bayesian Information Criterion (BIC) for scoring candidate

networks. As described in section 3.3.2, the BIC function is calculated by:

BIC = log P (S) + log P (S|D)− 0.5 k log(n)

where P (S) is the log prior probability of the network model S. Usually the

prior probability of network structure P (S) is chosen to be uninformative — that

is, it is a uniform prior, where every structure is equally likely. Therefore it is usu-

ally not included in the score calculation. However, in this research we consider

the use of an informative prior (i.e. which is not uniformly distributed over each

possible network) based on knowledge contained in the scientific literature. This

means that if a particular network structure is favoured in the literature, it will

have a higher prior probability, and this will be considered in the scoring process.

Section 4.3.1 explains how the prior probability for a network structure can be

calculated using an edge decomposition method and Section 4.3.2 discusses how

the influence of the prior can be varied by using weighting in the score.

4.3.1 Calculating the prior probability of a network struc-

ture

A prior probability distribution for candidate network structures assigns each

possible structure a probability such that all probabilities sum to 1. However,

enumerating all possible structures is infeasible in most cases. A more intuitive

method to calculate the prior probability is by using an edge decomposition tech-

nique developed by Castelo & Siebes (2000). Most often, we will find that prior
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knowledge can be easily represented by edge probabilities (i.e. probabilities indi-

cating whether an edge exists between each possible pair of nodes). For example,

it is appropriate for including the literature-based knowledge, since this can be

represented using measures of association between two genes (see Section 4.4.1).

Bernard & Hartemink (2005) also use this edge-wise decomposition method to

include location binding data (which provides a confidence on whether two genes

have a regulatory relationship) into BNs. An overview of the approach is provided

next.

Suppose that we wish to find the prior probability for a network structure S

and probabilities for the existence of each edge in S are provided by an expert

or based on some prior knowledge. Now, if a and b are two nodes in a network

where B is the expert prior knowledge then

p(a → b|B) + p(a ← b|B) + p(a...b|B) = 1

where a → b, a ← b indicate directed edges and a...b indicates that an edge

between a and b does not exist. In other words, the probabilities of the edge

existing in either direction or not existing at all sum to 1.

The next step is to use these edge probabilities to form a probability for

the whole network. If we make the assumption that the prior information on

the existence of each edge are independent of one another (in other words, the

probabilities for the edge between a and b is not related to the edges between a

and c or c and d, and so on), then we can multiply the probabilities together to

obtain the probability of the whole network S, such that

P (S|B) =
∏

xi↔xj∈S,i6=j

p(xi ↔ xj|B)
∏

xi...xj∈S,i6=j

p(xi...xj|B) (4.1)

where xi and xj are nodes in S, xi ↔ xj represents an edge between xi and

xj in either direction and xi...xj represents an edge that does not exist. In other

words, the prior probability of the whole network S is formed by multiplying the

probabilities for each edge in S to exist, and for each edge that is not in S, to

not exist. We should note that in this case the independence assumption may

be violated if the different sources of the prior information are not independent,

which can lead to edge probabilities becoming dependent. For example, if one
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edge probability is high, another related edge may have a higher probability.

This could lead to the introduction of surplus false positive edges into the learnt

networks. However, as noted by Castelo & Siebes (2000), the assumption of

independence ensures that the calculation of the prior probability distribution is

tractable.

Then, taking logs:

log P (S|B) =
∑

xi↔xj∈S,i6=j

log p(xi ↔ xj|B) +
∑

xi...xj∈S,i6=j

!log p(xi...xj|B) (4.2)

Thus, by the edge decomposition method, the log prior probability of a net-

work S (as required for the BIC score of a network) can be calculated by summing

the log prior probabilities that each edge the network S contains does exist and

that each edge not present in the network S does not exist.

For example, consider candidate networks of four nodes, x1,x2,x3 and x4,

where the prior probabilities for the existence of each edge are shown in the matrix

in Figure 4.1a. In this matrix, the i, jth entry indicates the probability that an

edge xi → xj exists. The probability that an edge between two nodes does not

exist can be inferred from this matrix, i.e. p(xi...xj) = 1−p(xi → xj)−p(xj → xi).

Now consider the example network structure S1 shown in Figure 4.1b. The log

prior probability for this structure can be found by applying equation 4.2 so that

log P (S1) =
∑

xi↔xj∈S1,i6=j

log p(xi ↔ xj) +
∑

xi...xj∈S1,i6=j

!log p(xi...xj)

where:

∑

xi↔xj∈S1,i6=j

log p(xi ↔ xj) = log p(x1 → x2) + log p(x2 → x3) + log p(x2 → x4)

and

∑

xi...xj∈S1,i 6=j

!log p(xi...xj) = log p(x1...x3) + log p(x1...x4) + log p(x3...x4)
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x1 x2 x3 x4

x1 - 0.35 0.5 0.1

x2 0.2 - 0.8 0.75

x3 0.2 0.1 - 0.2

x4 0.25 0.15 0.15 -

x1

x2

x3 x4

(a) Edge prior probabilities (b) Example network S1

Figure 4.1: (a) shows the edge prior probabilities for a set of nodes whilst (b)

shows an example network structure S1

so, this means that

log P (S1) =log 0.35 + log 0.8 + log 0.75 + log 0.3 + log 0.65 + log 0.65 (4.3)

=− 3.6262 (4.4)

and removing logs, we have that

P (S1) = 0.0266

4.3.2 Weighting the prior

The influence of the prior can be varied by including a weight in the score calcu-

lation:

BIC = w log P (S) + log P (S|D)− 0.5 k log(n)

where w ∈ (0, 1] and is referred to as the prior weight. A weight of 0 corre-

sponds to a uniform (uninformative prior) whilst a weight of 1 includes the full

log prior probability in the score calculation.
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4.4 Literature-based Bayesian network priors

Section 4.3 introduced informative structure priors, which is the natural mecha-

nism of BNs for incorporating prior knowledge into the network learning process.

This involves including a log prior probability in the score for each network struc-

ture that is considered during the learning search. This prior probability can be

calculated using an edge decomposition technique, which is particularly appropri-

ate for the literature-based knowledge we use, since it is a gene-pair association

score matrix. This section describes literature-based gene concept profiling in

further detail and how it can be used to produce an association matrix (sec-

tion 4.4.1). Note that literature-based gene concept profiling is a text mining

approach previously developed by the Biosemantics Association, collaborators in

the research in this chapter. Following this, Section 4.4.2 presents a methodology

for translating gene-pair association scores into network edge probabilities. This

is a new technique developed by the author of this thesis in collaboration with

the Biosemantics Association.

4.4.1 Literature-based gene concept profiling

Information in the literature about biomedical concepts such as genes can be sum-

marised using a technique known as concept profiling (Jelier et al., 2007; Schuemie

et al., 2007a). This technique uses a thesaurus containing biomedical concepts.

Biomedical concepts may be single word objects found in the biomedical litera-

ture, such as gene or organism names, or may be common multiple-word combina-

tions. A thesaurus is required since one concept may have many homonyms (for

example, a single gene often has multiple idenitifiers). For our experiments we

use a combination of the UMLS Metathesaurus (McCray & Miller, 1998) and the

Biosemantics Association’s own gene thesaurus, which was created by combining

information from several databases, including Entrez Gene and Uniprot.

The concept recognition software Peregrine (Schuemie et al., 2007b), which

also disambiguates homonyms, can detect occurrences of thesaurus-concepts in

Medline articles published after 1980, resulting in a list of concepts per paper.

From this concept profiles are constructed. A concept profile itself contains con-

cepts: it is a vector of concepts with weights, where the weight describes the
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strength of the association between the concept and the concept to which the

profile belongs, i.e. the concept profile for concept i is wi = (wi1, wi2, ..., wiM)

where M is the number of concepts in the thesaurus. The weights in a concept

profile for concept i are derived from the set of documents associated with con-

cept i, Di, which is a subset of the total set of documents D. The weight wik

is based on the uncertainty coefficient between the occurrence of the concept i

and the occurrence of the other concept k; it expresses the relative amount of

information gained about whether concept i occurs in each document d ∈ Di by

knowing that concept k occurs in document d (Jelier et al., 2008). Since each

gene is a concept in our thesaurus, we can construct concept profiles for all genes.

Since concept profiles are weight vectors, we can calculate a measure of asso-

ciation between two concept profiles and since genes have concept profiles, we can

calculate a measure of association between two genes. In this research Pearson’s

correlation coefficient is used to compute an association score for each pair of

genes, which tells us how correlated, or similar, their concept profiles are. There-

fore, two genes will have a high correlation if their profiles share the same set of

concepts with high weights, and the same set of concepts with low weights. This

then allows the generation of a correlation matrix between genes that is based

on knowledge contained in the literature. Interestingly, we can even calculate

the correlation between genes that have never been mentioned together in the

literature, based on shared concepts in the respective concept profiles.

The resulting correlation matrix provides an indication of whether a set of

genes are closely related. For example, if genes are mentioned in a similar liter-

ature context, then they will have a high correlation. However, we should note

that this correlation score only provides information about relationships between

genes in the broadest sense. For example, it does not indicate whether a certain

regulatory relationship only holds under certain conditions. To solve such ambigu-

ities is beyond the capabilities of current natural language processing techniques.

By using homonym disambiguation in the concept recognition process, the most

reliable correlation scores currently possible are generated, but still these scores

should be taken as indications of probabilities, not as proven biological facts.
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4.4.2 Edge prior probabilities from literature-based knowl-

edge

The correlation matrix produced by literature-based gene concept profiling can

then be used as the basis for calculating the candidate network prior probabilities

using the edge-wise decomposition technique. The correlation value provides a

measure of whether two genes are related according to the literature. This section

presents a method to translate this correlation value into a probability that an

edge exists between that gene pair, based on the idea that a higher correlation

translates to a higher probability.

Note that with this type of literature-based prior knowledge there is only

information available for whether an edge exists or not and no information on

the edge directionality (since the correlation matrix is symmetric). For this reason

we calculate a probability that an edge exists between two nodes, without concern

for the edge direction. This means that networks that differ only by the direction

of edges (such as networks in the same equivalence class) are considered as the

same network structure for the purposes of calculating the prior probability. In

this way, the literature-based knowledge is used to provide a starting point on

relationships between genes whilst the expression data is then used to infer the

directionality of relationships. For example, if the literature-based prior provides

evidence for a relationship between genes A and B and the expression data infers

that gene A activates gene B, then a network containing an edge A → B would

score higher during the learning process than a network with the edge B → A,

on the basis of the information provided by the expression data.

To translate the correlation values to edge probabilities, we adopt an approach

that is based on the confidence level (in statistics) of the correlation values. This

is because even correlation values that are small (in absolute terms) may represent

a significant association, if they are relatively higher than the majority of values.

The method used generates a p-value that represents the confidence level for the

correlation value of each gene-pair.

To do this, we first generate the distribution of correlation values for all pos-

sible gene pairs, and fit this to a normal distribution. In other words, the mean

µ and standard deviation σ of a normal distribution are generated, based on the
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Figure 4.2: For the fitted normal distribution of correlation values for yeast genes

(parameters µ̂ = 0.002 and σ̂ = 0.02), the p-value for each correlation value,

based on the fitted normal distribution is plotted

correlation values. For the organisms considered in the empirical evaluation later,

we find that a normal distribution fits well, with the mean very close to zero (e.g.

for yeast µ = 0.002). Then, for each gene-pair correlation value of interest, its

associated p-value can be calculated based on how far the correlation value de-

viates from the fitted normal distribution mean — so outlying correlations are

more significant, and given a low p-value. The p-value is calculated by using

a two-tailed one-sample Z-test, which allows us to test whether a value differs

significantly from the mean of a normal distribution. For example, for the dis-

tribution of yeast correlation values, the p-values computed for each correlation

value are plotted in Figure 4.2. We can see that, in absolute terms, some fairly

small correlation values have low p-values, since they differ significantly from the

mean. Finally, we define the probability for an edge existing between the gene

pair as P (edge exists) = 1 − p. This means that the probability the edge does

not exist is P (edge does not exist) = p.

Note that the method described above is equivalent to determining a two-

tailed confidence interval around the mean containing the correlation value c.

The probability P (edge exists) can be calculated as the probability of a value
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X falling within this interval. Since µ is close to zero, this approximates to

P (X ≤ |c|).

4.5 Evaluating the use of literature-based priors

This section reports on the experiments performed to evaluate the use of the lit-

erature prior knowledge. To do this a comparison is carried out between networks

learnt from microarray expression data only, with networks learnt from the same

expression data with a literature-based prior. The influence of the prior is also

varied using weighting. Initial experiments were carried out on gene sub-networks

from two basic organisms — yeast and the bacteria E. coli, followed by a network

of genes in a higher eukaryote (human).

4.5.1 Evaluation procedure

To evaluate the performance of networks learnt with a literature prior compared

to those networks learnt from expression data alone, we compare the regulatory

relationships found in the networks: transcription factors (TFs) and the target

genes regulated by these TFs, which are the child genes of TFs in the networks.

Microarray expression datasets are used from three different organisms: yeast,

E. coli and human. For each microarray dataset, the expression values were

discretised into three states using an equal frequency based method (i.e. for each

gene, one third of values are categorised as ‘low’, one-third as ‘normal’ and one-

third as ‘high’). For each organism, a literature-based gene correlation matrix

was constructed based on all abstracts contained in Medline.

For each organism, hierarchical clustering was used to identify groups of re-

lated genes in the literature correlation matrix, and a subgroup of genes was

formed by combining the clusters that contained TFs. Each subgroup contained

200-300 genes, which allowed the inference of a larger-scale network whilst main-

taining the efficiency of learning. The rationale behind this selection procedure

was to increase the likelihood that the genes selected are related in the literature,

meaning that the prior knowledge can have a significant effect on the network

learnt. If genes were selected for which there is little prior knowledge, it is difficult
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to measure the effect of using prior knowledge. Selecting genes from clusters that

include documented TFs also increases the occurrence of ‘true’ (documented)

regulatory relationships within the subgroup of genes, since these will only occur

with known TFs as parent genes.

Due to the large number of genes in the selected subgroup, a restriction was

imposed on possible network structures — parent nodes must be documented

TFs. As well as increasing the efficiency of the network structure search during

learning, this meant that each edge in the learnt network had the potential to

be documented as a regulatory relationship (thus removing the possibility of un-

avoidable false positives that would occur when a parent node is not a documented

TF).

For each dataset, seven bootstrapped networks were learnt: the expression

data network (with prior weight 0) and six posterior networks, learnt with the

prior weight set at 0.2, 0.4, 0.5, 0.6, 0.8 and 1 respectively. As described in

Section 3.3.4 generating a bootstrapped network is more robust than learning

a single network structure. The following terminology is used throughout the

remainder of the chapter. A network learnt from microarray expression data

with a literature-based prior (i.e. prior weight > 0) is the posterior network. A

network learnt from expression data only (i.e. a prior weight of 0) is referred to

as the expression data network.

Previous research on learning GRNs has often evaluated learnt networks by

comparing them to documented gene interactions that form a ‘true network’ (usu-

ally compiled from online databases of confirmed regulatory interactions) in terms

of true and false positives. This type of evaluation is described in Section 3.4.1.

However, note that this type of comparison should be treated with some caution

for these experiments, since information distilled into a database containing reg-

ulatory interactions essentially comes from the literature, which is also where our

prior information comes from. However, a comparison to documented interactions

can still assist us in measuring the effect of using a prior to learn the network.

Therefore, we do use a comparison of the AUC measures (which represent the

degree of overlap between the learnt and ‘true’ networks) between the expression

data and posterior networks.
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Another method of network analysis is the prediction of gene expression values

on an independent dataset (described in Section 3.4.2). If a gene node in a

posterior network has increased accuracy in prediction on an independent dataset

than the same gene node in an expression data network, we can say that the

prior does add value to the learnt network. Due to the restriction on the network

structure during learning, where only documented TFs can be parent nodes, we

compare the prediction accuracies on only the TF nodes between the expression

data and posterior networks.

In order to measure the statistical significance of the differences between TF

prediction accuracies across networks with different prior weights, the bootstrap

learning process is run several times for each dataset. Then, the Cochran-Mantel-

Haenszel (CMH) test (McDonald, 2008) is applied, which can be used for repeated

tests of independence. The objective of the test is to establish whether two

variables are independent, conditional on a third variable that identifies the repeat

tests. The null hypothesis is that the two variables are independent of each other

within each repetition — that having one value of one variable does not mean

it is more likely to have one value of the second variable, or in other words that

there is no significant difference between the two variables. In this case, we wish

to establish whether the prediction performances of two different networks are

independent where each TF identifies the repeat tests. Therefore, in order to

obtain a significant result, the null hypothesis should be rejected in favour of the

alternate hypothesis, that there is a significant difference between the prediction

performances of the TFs in each network.

4.5.2 Application: yeast

For yeast, we based network learning on cell-cycle expression data (Spellman

et al., 1998) for a group of 204 genes, selected from all genes in the dataset by the

procedure described in Section 4.5.1. 22 of the 204 genes are identified as TFs in

the Yeastract database (Teixeira et al., 2006), which lists documented regulatory

interactions in yeast.
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4.5.2.1 Comparison to documented interactions

Figure 4.3 shows the AUC for the networks learnt with each prior weight. The

expression data network (a prior weight of 0) obtains an AUC of 0.56. As the

prior weight increases, so does the AUC, up to the prior weight of 0.8, where the

AUC peaks at 0.65. Figure 4.5 compares the documented links (true positives)

in the expression data only network with those in the network learnt with prior

weight 0.8, which has the highest AUC. Although the detail of the networks

cannot be seen as they are so large, it can be seen by eye that there are many

more documented edges in the network learnt with prior weight 0.8. Taking into

account edges with confidence greater than 0.2 only, the TP rate for the expression

data only network is 0.076 and for the network learnt with prior weight 0.8, the

TP rate is 0.26. FP rates are similar in both networks (around 0.005).

At a prior weight of 1 the AUC dips slightly to just under 0.65. (Note that the

prior weight of 1 does not indicate that the whole network is based on literature

prior knowledge, rather it indicates that the prior knowledge is fully weighting

in the score during learning). This indicates that including the prior does add

knowledge to the learnt network. However a balance between the literature and

expression data is required — the full prior weight of 1 does not obtain the optimal

network.

4.5.2.2 Expression value prediction

Expression values were predicted for all TFs in each network (different prior

weights) on an unseen cell-cycle expression dataset (Pramila et al., 2006). In

general, TFs in the posterior networks obtain higher predictive accuracies than

the same TFs in the expression data network (see Table 4.1). Using the CMH test

across all TFs, the posterior networks attain significantly higher accuracies with

p ≤ 0.002. TFs in the posterior network learnt with a prior weight of 0.6 exhibit

the most significant difference to the expression data network, with p = 0.00001.

The prediction accuracies for each TF in the networks learnt with prior weights

of 0 and 0.6 respectively are shown in Figure 4.4. The expression value prediction

and comparison to documented interactions (Figure 4.3) show the same networks
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Figure 4.3: Comparison of Area Under the ROC Curve (AUC) values for each

yeast network generated with a different prior weight from 0 (no prior) to 1 (fully

weighted prior).

performing well — the network learnt with prior weight 0.6 also gains a high

AUC value, although it is not the absolute maximum.
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Figure 4.4: Comparison of expression value prediction between the yeast networks

learnt with prior weight 0 and 0.6 for the TF genes.

Posterior Average TF prediction accuracy p-value

network Expression only Posterior from

(prior weight) network network CMH-test

0.2 0.409 0.441 0.00280

0.4 0.409 0.463 0.00001

0.5 0.409 0.442 0.00210

0.6 0.409 0.459 0.00001

0.8 0.409 0.446 0.00004

1.0 0.409 0.456 0.00001

Table 4.1: Yeast expression value prediction results. This table compares the

expression data only (prior weight 0) network with each posterior network (prior

weights 0.2-1), through the average TF prediction accuracies and the significance

of the CMH-test
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4.5.3 Application: E. coli

For the second set of experiments we considered network learning on E. coli

expression data (Sangurdekar et al., 2006). This dataset records transcriptional

responses to more than 30 chemical and physiological perturbations. The selected

group of 262 genes (again, selected from all genes in the dataset by the procedure

described in Section 4.5.1) contains 17 TFs, according to the RegulonDB online

database of E. coli regulatory interactions (Salgado et al., 2006).

4.5.3.1 Comparison to documented interactions

Figure 4.6 shows the AUC for the networks learnt with each prior weight. The

pattern exhibited is very similar to the yeast results. The expression data network

(a prior weight of 0) obtains an AUC of 0.67. As the prior weight increases, so

does the AUC, up to the prior weight of 0.8, where the AUC peaks at 0.81. At

a prior weight of 1 the AUC dips slightly to just under 0.8. This shows that

the use of the prior adds many edges that represent confirmed interactions but

are not represented in the expression data. This may be because the expression

data focuses on a particular type of experiment — chemical and physiological

perturbations. The prior knowledge can help in adding regulatory relationships

that are not exhibited in the microarray experiments.

Figure 4.8 compares the confirmed interactions in the expression data only

network with those in the network learnt with prior weight 0.8, which has the

highest AUC. As with the yeast networks, there are more documented edges in the

network learnt with prior weight 0.8. Taking into account edges with confidence

greater than 0.2 only, the TP rate for the expression data only network is 0.35

and for the network learnt with prior weight 0.8, the TP rate is 0.55. FP rates

are similar in both networks (around 0.01). As in the yeast results, the optimum

prior weight is not 1, but 0.8 — so a balance is required between the prior

knowledge and expression data. It is worth noting that E. coli is a particularly

well-studied organism and this may contribute towards such improvements in

network performance in terms of AUC — there is more literature available, which

is also more reliable and accurate, than for a less-studied organism.
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0 0.2 0.4 0.5 0.6 0.8 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
U

C

Prior weight

E. coli

Figure 4.6: Comparison of AUC values for each E. coli network generated with a

different prior weight from 0 (no prior) to 1 (fully weighted prior).

4.5.3.2 Expression value prediction

Expression values were predicted for all TFs in each network (different prior

weights) on an unseen dataset (Faith et al., 2007), which contains a wide range

of different experiments with over 250 samples. However, this dataset does not

contain data for all genes in the subset, so for each TF predictions are made using

only the bootstrap samples where there are no target genes with missing data.

For six TFs there are no bootstrap samples without missing target gene data so

they are not included.

Table 4.2 details the average TF prediction accuracies for each posterior net-

work in comparison to the expression data only network, and the corresponding

p-value calculated using the CMH test. There is an increase in TF predictive

accuracies in the posterior networks, and this is a significant increase (p ≤ 0.05)

for four of the posterior networks. In particular, the posterior network generated

with prior weight 1 (full prior weighting) shows the most significant difference

(p = 0.00001). Figure 4.7 plots the prediction accuracies for each TF in the

networks learnt with prior weights of 0 and 1.
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Figure 4.7: Comparison of expression value prediction between the E. coli net-

works learnt with prior weight 0 and 1 for the TF genes.

Posterior Average TF prediction accuracy p-value

network Expression only Posterior from

(prior weight) network network CMH-test

0.2 0.332 0.349 0.03200

0.4 0.332 0.344 0.42500

0.5 0.332 0.355 0.31900

0.6 0.332 0.356 0.00600

0.8 0.332 0.358 0.03400

1.0 0.332 0.364 0.00001

Table 4.2: E. coli expression value prediction results. This table compares the

expression data only (prior weight 0) network with each posterior network (prior

weights 0.2-1), through the average TF prediction accuracies and the significance

of the CMH-test
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4.5 Evaluating the use of literature-based priors

4.5.4 Application: human

To demonstrate that literature-based prior knowledge approach can be useful for

the modelling of GRNs in higher eukaryotes, a third dataset is used, which con-

cerns muscle differentiation studied in cultures of primary human muscle precur-

sor cells. A time-series (7 time points between 0 and 14 days of differentiation)

of expression profiles of in vitro muscle differentiation has been generated for

six human individuals: three healthy and three patients with Duchenne muscu-

lar dystrophy (DMD), which are known to display certain differentiation defects.

More details can be found in (Sterrenburg et al., 2006). The selected group of 258

genes consists of literature-based clusters, where each cluster contains at least one

documented TF. For this biological system, there is no comprehensive database

of regulatory relationships available, and no other suitable microarray expression

datasets for evaluating prediction accuracy. Instead, experts in muscular dystro-

phy from the Biosemantics Association evaluated the biological interpretation of

the learnt networks.

In particular, this evaluation involved examining the differences between the

posterior networks generated using different prior weights. As might be expected,

the effect of increasing the prior weight is the inclusion of more edges supported

by the literature. Figure 4.10 shows the networks for prior weights 0 and 0.4

respectively. In these networks blue edges have a high prior probability (> 0.7)

in the literature correlation matrix (indicating a high level of support in the

literature prior knowledge). Red edges have a confidence greater than 0.2 in the

expression data only network (indicating a high level of support in the microarray

expression data). Black edges have support in both the literature correlation

matrix and the expression data only network. We can see that there are few

black edges in the expression data only network (prior weight 0), indicating few

edges with strong support in the literature. However in the network learnt with

prior weight 0.4, there is more of a mix of red and blue edges, indicating a mix

of knowledge sources.

A further hypothesis is that spurious links, i.e. edges between genes that ex-

hibit a pattern of co-regulation (e.g. correlated expression patterns) but have no

regulatory relationship, will disappear from the network as the prior knowledge
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4.5 Evaluating the use of literature-based priors

gains more weight in the learning process. And this does seem to be observed. In

particular, in the networks with a prior weight of 0.4 or greater, we can identify

subnetworks that are related to certain biological functions such as cell cycle con-

trol. The cell cycle network is relevant to the biological system under study since

cell cycle arrest is one of the first steps in myoblast differentiation. In particu-

lar, compare the nodes of CCNH (for CCNH, also see Figure 4.9 for subnetwork

detail for the prior weights 0 and 0.4) and NCOR2 across networks, which gain

literature-supported edges in the networks with prior weight 0.4 and above. In the

network with prior weight of 0.4, CCNH, which belongs to the family of cyclins

that are involved in cell cycle control, forms a central node with several daugh-

ter genes (CDKN1B, CDK4, CDK7, CDK9, CCND3, FRAP1, MDM2). Fewer

of these edges are present in the expression data only network (prior weight 0).

There is also literature support for the regulatory relationship between CCNH

and MDM2 and CDKN1B (Datta, 2002; Mandalb et al., 1998).

NCOR2, a nuclear co-receptor that inhibits muscle differentiation, is another

central node in the network with prior weight 0.4. Consistent with literature (Bai-

ley et al., 1999), NCOR2 demonstrates reduced expression during differentiation,

in particular in DMD myotubes. In the network with prior weight 0.4, there

are links visible between NCOR2, SKIP and the histone deacetylases (HDAC3,

PCAF) that are known to work together in the acetylation of the important mus-

cle transcription factors MYOD1 and MEF2 (Gregoire et al., 2007). As before,

this presumably central role of NCOR2 and the histone deacetylation pathway is

only evident upon incorporation of the literature prior.

Other possible gene relationships for which there is literature support are not

present in the learnt networks. However, this is expected since the networks are

learnt from expression data from a highly specific biological system in which not

all possible relationships will be existent and also since not all literature-derived

relationships are of regulatory nature.

The manual inspection of networks by experts led to an opinion that a lit-

erature prior weight of between 0.4 and 0.6 produced networks with the most

relevant regulatory links. Higher prior weights appear to lead to the inclusion of

too many edges due to literature associations that are not of regulatory nature.

Note this is lower than the optimum prior weights found for the yeast and E. coli
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CCNH

LMAN1 FRAP1 CDKN1B RSU1 MDM2 FGF6

AKT3

(a) Prior weight 0

CCNH

CNTN4 GDI1 VDP CRBN TNIP1 EIF4A1 RPS6KA3 FRAP1 CDK7 CDK9 CDK6 MDM2 CCND3 BCL2 SFRS1 WEE1

CDKN1B CCND2

(b) Prior weight 0.4

Figure 4.9: Each network shows the links to and from the gene CCNH, a central

node of the cell-cycle network. Nodes that are outlined in black (not gray) are

confirmed targets of CCNH. As the prior weight increases, we can see that the

number of confirmed targets also increases

networks, which were both set at between 0.6 - 0.8. This may be because there is

less literature related to genes in the human organism, whereas yeast and E. coli

are both well-studied organisms. Where there is less literature, it may be less

reliable, so more weight needs to be assigned to the microarray expression data.
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4.6 Discussion

This chapter has focused on the use of prior knowledge to improve the perfor-

mance of BNs learnt from microarray gene expression data. Whilst the microarray

provides the most available genome-wide data source on gene expression, there

are concerns over the reliability and comparability of different datasets. How-

ever, the use of prior knowledge sources, such as transcription factor binding site

location data or literature-based information can help to alleviate these concerns

and potentially improve the modelling process.

This chapter has presented some of the first research on the incorporation of

prior knowledge from a large body of relevant literature for BN learning of gene

networks. The use of literature-based gene concept profiling means information

contained in a huge number of documents (for example from a database of papers

such as Medline) can be represented using a gene correlation matrix. We make use

of an informative prior probability distribution over BN structures, the natural

mechanism for incorporating prior knowledge into BN learning, together with a

method for computing the probability of a network structure using edge-wise de-

composition. Building on these existing techniques, this chapter has contributed

a method for translating literature-based gene-pair correlations to network edge

prior probabilities and investigated the effects of weighting the influence of the

prior knowledge during learning.

Comparable related work on integrating prior knowledge into BN learning

for GRNs has focused less on the biological content of prior knowledge. Where

literature-based knowledge sources were used, these were based on databases

such as KEGG. The use of advanced text mining techniques provides a powerful

advantage over this previous research, as it allows up-to-date information from a

huge amount of literature to be used. In addition, in previous research where real

datasets have been used for evaluation, typically this has been on a small scale

using less than 40 genes in total. In this work, we have performed evaluation on

networks of 200-250 genes, for three different organisms.

In the experiments presented in this chapter, posterior networks were learnt

using different weights on the prior, ranging from 0.2 to 1, and a network from

expression data only, which has an equivalent prior weight of 0. Two methods of
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network performance evaluation were used to compare the different networks. In

the first, true and false positive rates are used to compare the learnt networks to

a ‘true’ network of documented regulatory interactions. This type of comparison

should be treated with some caution since information since documented regu-

latory are contained in the literature, which is also where our prior information

comes from. However, it is still helpful in measuring the effect of using a prior

to learn the network. The prediction of expression value on TF gene nodes is

used as an alternative evaluation method (on yeast and E. coli). If the posterior

networks exhibit increased accuracy in prediction on a independent dataset then

we can say that the prior does add value to the learnt network.

When compared to documented relationships, the posterior networks were

closer to the ‘true’ network than the expression data network. In yeast and E.

coli, the posterior network with a prior weight of 0.8 gave AUCs of 0.65 and 0.81,

improvements over the expression data network AUCs of 0.56 and 0.67 respec-

tively. This shows that the prior can add many edges that represent confirmed

interactions, but are not exhibited in the expression data. Microarray experi-

ments are often focused on a particular subsystem of genes, so prior knowledge

can assist in ‘filling the gaps’ for genes that are not the particular experimental

focus of the expression dataset.

In general, the accuracy of expression value prediction for TF genes in the

posterior networks was greater than for the same genes in the expression data

network. Like the comparison to a true network, there is an optimal prior weight

in terms of prediction accuracy, with the network learnt with prior weight 0.6

obtaining the largest improvement over the expression data network in yeast.

This indicates that the posterior network structure is more robust for making

predictions outside of the original dataset.

A lack of documented regulatory interactions for human meant that evalua-

tion of the learnt networks was carried out with the help of experts in muscular

dystrophy (which is the focus of this particular microarray dataset). The results

provided evidence that incorporation of literature information does result in re-

moval of edges that represent spurious correlations and also generates networks

containing modules of functionally related genes.
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However, careful weighting of the literature information appears to be needed.

For yeast and E. coli an optimal AUC was achieved with a prior weight of 0.8.

For the human network, a manual inspection by experts indicated that the op-

timal prior weight was around 0.4 - 0.6. It appears to be a careful balance —

whilst the inclusion of the prior information helps to reduce spurious regulatory

relationships, higher prior weights can lead to the inclusion of too many edges

due to literature associations that are not of regulatory nature (e.g. proteins in

the same multi-protein complex). The lower optimal prior weight for the human

network also seems to indicate that the amount of literature has a bearing on

the most appropriate prior weight — yeast and E. coli are well-studied organ-

isms with a lot of related literature. Where there is less literature, for example

with the human organism, more weight needs to be assigned to the microarray

expression data.
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Chapter 5

Combining multiple microarray

gene expression datasets

5.1 Introduction

With the wider use of microarray expression profiling technology and subsequent

rapid increase of publicly available microarray data comes the opportunity to pro-

duce GRN models based on multiple datasets. Drawing together a richer and/or

broader collection of data has the potential to produce GRN models that are

more robust, have greater confidence and place less reliance on a single dataset.

In this chapter we compare two frameworks for combining microarray datasets

to model GRNs: pre- and post-learning aggregation. When learning from multiple

datasets, there is a choice for when to aggregate knowledge within the datasets.

In pre-learning aggregation, data is combined prior to learning, and a model is

learnt from the combined dataset. In post-learning aggregation individual models

are learnt from each dataset, and these are combined after learning. The resulting

combined model represents prominent features which occur in all, or a subset of,

the individual dataset models.

Combining expression datasets directly, as in pre-learning aggregation, can

be difficult as experiments are often conducted on different microarray platforms,

and in different laboratories, leading to inherent biases in the data that are not
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5.2 Pre-learning aggregation

always removed through pre-processing such as normalisation. Additionally, com-

parison between different datasets can be difficult since measurement units may

vary across platforms (see Section 2.2.4 for more details on bias and normalisation

of microarray data). The key advantage of a post-learning aggregation framework

is that it can combine microarray datasets generated by different platforms, re-

search groups and laboratories without necessarily requiring any normalisation

or transformation of the data.

This chapter contributes two novel approaches for post-learning aggregation,

each based on aggregating high-level features of Bayesian network models that

have been generated from different microarray expression datasets. Bayesian net-

works meta-analysis is based on combining confidence levels attached to network

edges whilst Consensus Bayesian networks identify consistent network features

across all datasets. Both approaches are applied to multiple datasets from syn-

thetic and real (E. coli and yeast) networks and it is demonstrated that both

methods can improve on a network generated from a single microarray dataset,

or networks learnt using a pre-learning aggregation approach, where a combined

dataset is formed by concatenating a collection of datasets and then applying

standard scale normalisation.

The remainder of the chapter is organised as follows. In Sections 5.2 and 5.3 we

describe pre- and post-learning aggregation methods in more detail. Section 5.4

details our experimental results on three real sub-networks. Finally, Section 5.5

summarises and discusses the findings.

5.2 Pre-learning aggregation

Pre-learning aggregation is the simplest approach for using multiple datasets to

reverse-engineer a BN model. When applying the pre-learning aggregation ap-

proach, datasets are concatenated, if necessary after pre-processing steps such

as normalisation, and a BN model is learnt from the combined dataset. For the

purposes of the comparison between pre- and post-learning aggregation in this

chapter, scale normalisation (as described in Section 2.2.2.3) is used on each mi-

croarray dataset to be combined. Scale normalisation has the benefit of making

the arrays within a dataset comparable, and it also means that arrays between
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datasets are comparable. Thus, we can use scale normalisation to combine mul-

tiple microarray datasets into one, allowing the generation of a single BN from

multiple studies.

5.3 Post-learning aggregation

In post-learning aggregation, individual models are learnt from each dataset, and

these are combined after learning. As discussed in Chapter 3, in this research BNs

are used to model GRNs from each microarray datasets. This section presents two

novel approaches for post-learning aggregation with BNs. The first method is a

Consensus approach that identifies the intersections — that is, common edges —

amongst the network structures generated from different datasets. Only consis-

tent features and dependencies appear in the final Consensus network, reducing

the occurrence of spurious relationships. The second technique is based on meta-

analysis, an established field of research for combining the statistical outcomes

of medical studies. We use an inverse-variance weighting meta-analysis method

to combine confidence levels that are attached to each network edge. The two

methods are described next, followed by a review of related work on combining

BN structures.

5.3.1 Consensus Bayesian networks

The Consensus approach (see Algorithm 1) is based on the identification of consis-

tencies across a set of networks — edges that appear in all, or a certain proportion

of the networks in the set are included in the Consensus network structure. For

each input dataset, a bootstrapping approach is used to learn individual PDAG

structures with confidence estimates attached to each edge. We use thresholding

(as described in Section 3.3.4) to obtain a final PDAG from each bootstrapped

network. Whilst bootstrapped BNs and thresholding have been used previously

to learn more robust GRN models (Friedman et al., 2000; Pe’er et al., 2001),

we use the thresholded bootstrapped networks as inputs to the Consensus al-

gorithm in order to find consistencies across networks that have been generated

from multiple datasets.
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5.3 Post-learning aggregation

Consensus Bayesian networks

Input: Set of n individual networks (PDAG representation), consensus

threshold (between 0 and 1)

Output: Consensus network

for each pair of nodes i,j do

/* Build Consensus network structure */

if an edge eij exists between nodes i and j in a proportion of individual

networks ≥ consensus threshold then
include edge eij in the Consensus network

end

/* Assignment of edge direction */

if edge eij exists in the Consensus network then

if there is no conflict in the input edge directions then
Consensus edge eij is the same direction (whether directed or

undirected)

else

if There is a majority direction (or undirection) then
Assign edge eij in the majority direction

else
Assign edge eij as ‘unknown’ direction

end

end

end

end

Algorithm 1: Consensus Bayesian networks
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5.3 Post-learning aggregation

The Consensus algorithm is based on a simple idea: if an edge appears in

multiple input networks, it is more likely to represent a true interaction. The

algorithm proceeds as follows. Each pair of nodes is considered in turn and an

edge between them is created in the Consensus network if such an edge exists in a

proportion of the input PDAGs that exceeds the consensus threshold. Assigning

the edge direction is a little more complex. If there is no conflict regarding that

edge’s direction in the input networks then its direction/undirection remains the

same in the Consensus network. However, if there is conflict, this introduces

some uncertainty regarding the edge direction. If there is a majority in the

input networks regarding edge direction, then the edge is assigned the majority

direction in the Consensus network. Thus, directed edges with enough support

will appear in the Consensus network. If there is no majority then the edge is left

as ‘unknown direction’. Note that we make a distinction in the Consensus network

between edges that are undirected and those that are ‘unknown’. An edge that is

undirected can be reversed, as in equivalent graphs. However uncertainty exists

over the direction of an ‘unknown’ edge, or whether it can be reversed. We flag

up ‘unknown’ edges in the graphs by using edges that are directed both ways,

whereas undirected edges have no arrowheads.

5.3.2 Bayesian network meta-analysis

Meta-analysis refers to a set of statistical methods for combining the result of

several studies that address a set of related research hypotheses. Meta-analysis

originated in medical statistics (Sutton et al., 2000) but recently has been used

to identify highly expressed genes across multiple microarray datasets (Conlon

et al., 2006; Hu et al., 2006). In medical statistics, meta-analysis is used to

combine outcome measures such as incidence rates (e.g. the rate at which new

cases of a disease occur in a population) from multiple medical studies.

We have developed an approach called Bayesian networks meta-analysis1 (see

Algorithm 2) that uses the fixed-effects meta-analysis method to combine the

confidence levels for each edge over a set of bootstrapped networks, producing

1Bayesian network meta-analysis should not be confused with Bayesian meta-analysis, which
involves using Bayesian models to perform the meta-analysis.
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5.3 Post-learning aggregation

a single network that has an aggregated confidence level attached to each edge.

The fixed-effects model assumes no heterogeneity between study results. Whilst

this is obviously a näıve assumption, we find that it produces better results for

this application than the more complicated random-effects model that accounts

for study heterogeneity.

Bayesian Networks Meta-Analysis

Input: Set of n individual networks with confidences attached to each

edge (e.g. bootstrapped networks)

Output: Meta-analysis network with aggregated confidence levels

attached to each edge

for each edge from node i → j (denoted eij) do
let Tij(k) be the confidence level for edge eij(k) in the kth network.

Calculate the aggregated confidence level T̄ for edge eij

using log(T̄ ) =

n∑

k=1

wk log(Tij(k))

n∑

k=1

wk

where wk = dij(k), the number of networks learnt during bootstrapping

where an edge i → j exists

end

Algorithm 2: Bayesian Networks Meta-Analysis

The general fixed effect model for meta-analysis is the inverse variance-weighted

method (DerSimonian & Laird, 1986). Each study outcome measure is given a

weight that is inversely proportional to its variance. For n independent studies,

let Ti be the observed outcome measure with variance vi and weight wi. Then,

an estimate of an aggregate outcome measure, given all studies, is calculated as

follows:

T̄ =

∑k
i=1 wiTi∑k
i=1 wi

where wi =
1

vi

In BN meta-analysis, we define the study outcome measure as the confidence

level estimates that are attached to each network edge. Thus, the fixed-effect
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meta-analysis model is applied to every network edge to obtain its combined

confidence level estimate. We treat the confidence level as an incidence rate

(i.e. the proportion of networks in which a particular network edge exists). For

each input dataset, if the bootstrap approach is run m times resulting in m

networks, then the confidence level, or incidence rate, for a particular edge eij

that runs from node i to node j is
dij

m
where dij is the number of networks where

eij exists. Then, we define the outcome measure as the log incidence rate and its

approximate variance (Sutton et al., 2000) as:

log(Tij) = log(dij/m), var(log(Tij)) =
1

dij

This means that the meta-analysis weight is defined as:

wij =
1

vij

= dij

This type of meta-analysis is essentially a weighted averaging technique where

edges are weighted using their own confidence level. Thus, edges with high con-

fidences are strongly weighted and more likely to have a high confidence level in

the final Meta-analysis network.

Similarly to Consensus Bayesian networks, bootstrapping is used to gener-

ate the input individual networks that have confidences attached to each edge.

However, in contrast to the Consensus method, Bayesian network meta analysis

does not require thresholding of the input networks to obtain PDAGs, since it

directly combines the confidences attached to each edge. However, the output

meta-analysis network can be thresholded (using the same method that is de-

scribed in Section 3.3.4 for bootstrapped networks) to obtain a PDAG — and

this is what we do in order to evaluate our meta-analysis networks.

5.3.3 Related work

Previous research on combining BNs generally falls into two broad categories —

qualitative and quantitative combination. Quantitative combination is based on

aggregating the probability distributions in the networks (Pennock & Wellman,

1999). Qualitative combination has been referred to as topological fusion (Matzke-

vich & Abramson, 1992). This is based on combining the graphical structures of
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multiple networks using graph union (i.e. combining all edges in all networks).

Since graph union can introduce cycles into the network structure, arc reversal

is also used. This is where an arc A → B is reversed and then arcs are added

between the parent nodes of A to B, and from the parent nodes of B to A.

This maintains the underlying relationships between variables under the princi-

ple that it preserves the flow of information (Shachter, 1986). The final fused

graph contains all arcs (some reversed) and nodes that are in the input DAGs.

In comparison to topological fusion, Consensus Bayesian networks focuses on

graph intersection rather than union and also accounts for network equivalence

classes which are not considered in topological fusion. At the consensus threshold
1
n

(that corresponds to every edge from each of the n networks appearing in

the combined structure), the Consensus approach is equivalent to graph union.

However, the topological fusion network does not do as well as a 1/n Consensus

network, as it is liable to the inclusion of misdirected edges. The key difference

is that the Consensus method represents networks using equivalence classes — so

if edges are reversible they are left undirected.

Specifically in microarray data analysis for learning GRNS, there is no research

on combining BNs, however Wang et al. (2006) use a post-learning aggregation

framework where gene networks are represented using non-linear differential equa-

tions to combine multiple microarray gene expression datasets.

5.4 Comparison of pre- and post-learning aggre-

gation methods

In this section we report on the experiments performed to evaluate the use of the

post-learning aggregation Consensus and Meta-analysis approaches on multiple

microarray datasets and compare them to the use of pre-learning aggregation

(combining the datasets and using scale normalisation prior to the generation

of a network from the concatenated dataset) and the performance of the indi-

vidual input networks, each generated from a single microarray dataset. Initial

experiments were carried out on a set of four datasets for a synthetic network
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of 13 genes. We then progressed to two real applications: E. coli and yeast

sub-networks.

5.4.1 Comparison procedure

For each application, every input dataset was scale-normalised and a network with

confidences attached to each edge was learnt (using a bootstrapping approach

with m = 50 iterations). The following aggregate networks were constructed:

• A single Meta-analysis network was constructed, where each edge has an

attached confidence level.

• Multiple sets of Consensus networks were generated, where each set corre-

sponds to a different bootstrap confidence threshold (0.1 to 0.9, at steps of

0.1) for the input networks generated from each dataset. This means that

the input bootstrapped networks were all thresholded at the same value to

form PDAGs, and these formed the input to the Consensus method. Each

set of Consensus networks contains networks generated for each consensus

threshold from 0 to 1, at steps of 1/n (where n is the number of datasets).

• A bootstrapped network was generated from a concatenated and scale-

normalised dataset (referred to as the Normalisation Only network).

As described in Section 3.4.1, the learnt networks are evaluated by comparing

them to documented gene interactions. These were obtained from various sources

according to the application. Whilst the synthetic network was fully known, E.

coli regulatory interactions are documented in the online database RegulonDB

Salgado et al. (2006) and yeast interactions (both confirmed and potential) are

listed in the YEASTRACT database Teixeira et al. (2006).

For each network type a ROC curve is plotted, where each point corresponds

to a confidence level or a consensus threshold. An AUC value for the network is

calculated based on this ROC curve. For the Meta-analysis and Normalisation

Only networks each point of the ROC curve refers to the TP and FP rates of

the PDAG extracted from the network at different bootstrap confidence thresh-

olds (from 0 to 1 at steps of 0.1). For Consensus networks, each point of the
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Dataset Number of Observations

1 200

2 400

3 600

4 600

Table 5.1: Summary of synthetic datasets

ROC curve refers to the TP and FP rates of the Consensus network at different

consensus thresholds (from 0 to 1, at steps of 1/n). This means there are mul-

tiple ROC curves for the Consensus approach, each one constructed for a set of

input networks obtained from a different bootstrap threshold. Since the Meta-

analysis approach directly combines bootstrap confidences, and there is no initial

thresholding step as for the Consensus approach — it has one ROC curve only.

In order to obtain statistical estimates on the significance of the results, we

ran this process several (15) times for each dataset. Thus, mean TP and FP

rates (in order to estimate a mean ROC curve) and AUC measurements were

obtained for each method. Then a paired t-test was used to compare the relative

performances of the different approaches and measure whether the differences

between their mean AUCs are statistically significant.

5.4.2 Application: synthetic network

The synthetic regulatory network consists of 13 genes as shown in Figure 5.1a.

Four time-series expression datasets were generated for the network using differ-

ential equations to mimic a transcriptional network. The change of the expression

of each gene is determined by a function composed of three parts: activation by

a single other gene, repression by a single other gene and decay. Each of these

parts has one parameter, which is (uniformly) randomly selected from a prede-

fined range. Each dataset generated varies because the parameters for activation,

inhibition and decay are chosen randomly for each gene, the predefined range of

these parameters may vary, the perturbations vary and other parameters of the

simulation (such as the length of the time lag) may also vary. Each dataset had

a varying number of samples ranging from 200-600, as detailed in Table 5.1.
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(b) Consensus network

Figure 5.1: Synthetic regulatory networks. (a) True network. (b) Synthetic

consensus network. Edges are shaded or marked according to robustness (i.e.

their consensus threshold c) — bold edges obtain a high consensus threshold

(c ≥ 0.75). Bold and dashed edges have 0.50 ≤ c < 0.75, whereas the dashed

(only) edges have c ≤ 0.25.
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Figure 5.2: AUC performance of learnt synthetic networks

Figure 5.2 compares the difference in the mean AUC for each aggregation ap-

proach against each other and against the mean AUC of each individual dataset

network (that are shown using horizontal lines). We also compare the combina-

tion of all datasets against the combination of a subset of the datasets (where the

subset is chosen based on the performance of the networks). We refer to the net-

works generated by datasets 1-4 as Data1, Data2, Data3 and Data4 respectively,

whilst the datasets themselves are referred to as dataset 1, dataset 2, dataset 3

and dataset 4.

Figure 5.2 shows that the Consensus approach performs best on the set of

individual PDAGs extracted using a bootstrap threshold of 0.1. In this case

the approach obtains a mean AUC of 0.76 (for a ROC curve that is obtained

from set of Consensus networks, for Consensus thresholds from 0 to 1, at steps

of 1/4 since there are n = 4 datasets). According to the paired t-test, this

Consensus network set outperforms 3 of the 4 individual networks (Data1, Data2

and Data4), as well as the Normalisation Only and Meta-Analysis networks with

statistical significance (p < 0.01). Meta-analysis, which obtains a mean AUC of
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0.68, and Normalisation Only (obtaining a mean AUC of 0.70) only significantly

outperform Data2 and Data4.

By selecting a consensus threshold we can obtain a single network structure

from a set of Consensus networks. For example, a bootstrap threshold of 0.1 for

the input networks, with a consensus threshold of 1.0 (where every edge in the

Consensus network must appear in all input networks) provides the best TP and

FP rates, which are 0.50 and 0.07 respectively (network not shown). In other

words, it is able to identify half of the edges in the true network with a fairly low

FP rate.

For the Consensus and Meta-analysis approaches, the robustness of an inter-

action can be identified using the confidence level or consensus threshold attached

to its edge. The ‘robustness’ of an edge in a Consensus network indicates in how

many datasets it is found. Thus we can view a set of Consensus networks as

a single network with each edge having a consensus threshold, or as a set of

networks, each generated at a different Consensus threshold. The ‘robustness’

attached to a Meta-analysis edge is slightly different, as it incorporates the origi-

nal bootstrapped confidences. In this case it represents the strength of the edge’s

confidence over all the individual input networks. This is particularly useful for

visualisation of the learnt networks. Figure 5.1b shows the learnt Consensus

network (obtained from input networks thresholded at a confidence threshold of

0.1) with edges shaded according to their consensus threshold. It can be seen by

eye there is a relationship between the more robust edges and the true network

(shown in Figure 5.1a).

Figure 5.2 shows that Data1, Data2 and Data3 are much closer to the true

network than Data4 (since they have higher AUC values). Data4 contains many

FP edges. Upon closer inspection of dataset 4, we find that its randomly selected

time lag length parameter is much larger than for the other datasets, perhaps

explaining why the performance of Data4 is weaker. To eliminate the influ-

ence of dataset 4 we ran the Normalisation Only, Meta-analysis and Consensus

approaches on datasets 1-3 only. Over the three datasets, Normalisation Only

and Meta-analysis perform much better, their mean AUC increasing to 0.82 and

0.74 respectively. In fact, Normalisation Only outperforms all other networks

with statistical significance p < 0.01, whereas the Consensus and Meta-analysis

111



5.4 Comparison of pre- and post-learning aggregation methods

approaches are still unable to significantly outperform Data2. The difference

between the performance of the Consensus and Meta-analysis approaches is no

longer statistically significant. Since Data4 contains FP edges with high boot-

strap confidences, Meta-analysis and Normalisation Only perform far more reli-

ably when dataset 4 is removed from the input. By comparison, the Consensus

approach is not so greatly affected by the removal of Data4 (see Figure 5.2).

Since the Consensus approach identifies consistencies across the set of individual

dataset networks, it is able to discard the false positives introduced by Data4.

5.4.3 Application: E. coli SOS response network

The second application considered is an example of a single transcriptional module

in E. coli - an SOS repair system. The module consists of approximately 30 genes

and one repressor TF, LexA. UV irradiation and other DNA damaging agents are

known to trigger the induction of the stress-related SOS response, a coordinated

increase in the level of expression in the set of genes, which is negatively regulated

by LexA (Quillardet et al., 2003). We selected a number of these genes (based

on data availability) to form a sub-network (see Figure 5.3). Table 5.2 provides

a summary of the four selected datasets, which are all focused on experiments

related to SOS response. The datasets each originate from different research

groups and microarray platforms including both 2-channel technology (cDNA

microarrays) and single-channel arrays (Affymetrix olignucleotide microarrays).

For the Affymetrix data, in order to create an equivalent to cDNA microarray

log ratio values, we subtracted the average log expression level of a gene from

one experiment from the log expression level for that gene in a given experiment,

allowing comparisons of different genes to each other.
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5.4 Comparison of pre- and post-learning aggregation methods

Dataset Description Platform No. Observations

Courcelle et al. (2001) UV irradiation cDNA 15

Faith et al. (2007) Various Affymetrix 254

Khil et al. (2002) DNA damage cDNA 8

Sangurdekar et al. (2006) Various inc. cDNA 240

UV irradiation

Table 5.2: Summary of E. coli datasets

Norm. Meta 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.45

0.5

0.55

0.6
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All datasets
2 datasets

Consensus bootstrap threshold

Faith

Sang.

Cour.

Khil

Figure 5.4: AUC performance of learnt E. coli networks

Figure 5.4 compares the difference in the mean AUC for each aggregation

approach against each other and against the mean AUC of each individual input

network (that are shown using horizontal lines). We also compare the combination

of all datasets against the combination of a subset of the datasets (where the

subset is chosen based on the performance of the input networks).

Figure 5.4 shows that the Consensus networks generated from sets of input

networks thresholded at lower bootstrap confidences perform most successfully

of the aggregation approaches (the best results are obtained with a bootstrap
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5.4 Comparison of pre- and post-learning aggregation methods

confidence threshold of 0.1). In this case the Consensus approach obtains a mean

AUC of 0.58, outperforming three of the four individual input networks and the

Normalisation Only and Meta-analysis approaches (with statistical significance

p < 0.01). The low bootstrap threshold may be explained by the fact that

there are very few edges with a high confidence level (e.g. over 0.5 or 0.6) and

these only occur in the Faith and Sangurdekar networks, for which the datasets

contain a larger number of observations. Meta-analysis obtains a mean AUC

of 0.52 (significantly outperforming only one of the four individual networks),

whilst the mean AUC for Normalisation Only is just 0.47 and it is significantly

outperformed by two of the individual dataset networks.

We believe that the nature of the SOS module plays a part in the high number

of FP edges and relatively low AUC, in comparison to the results on synthetic

data. It is a sparse network — in fact a Näıve Bayes model — and so all vari-

ables are correlated, becoming independent conditional on the regulator LexA.

This makes it more difficult to identify spurious interactions. Figure 5.5 shows a

Consensus network (with a consensus threshold of 1.0 and generated from input

PDAGs calculated at bootstrap confidence threshold of 0.1). Whilst interactions

between LexA and six genes are found, there are many other discovered interac-

tions — e.g. the UVR family are obviously related. In previous experiments on

the Courcelle dataset we were able to identify the regulator LexA consistently

from a group of candidate transcription factors (regulator genes) for each target

gene using BNs (Peeling et al., 2007). However, identifying the regulator when

choosing from within a group of correlated genes is far more challenging. This

of course also has a bearing on the calculation of FP edges between the learnt

models and the ‘true’ network. In addition, it is likely that the ‘true’ network is

in fact incomplete, which assists in explaining why the absolute performance of

all input networks is much lower in comparison to the synthetic data experiments.

Similarly to the synthetic data, some datasets perform better than others.

In this case, the networks generated from datasets with relatively small num-

bers of observations — Courcelle and Khil — perform more weakly, their net-

works obtaining AUCs of 0.49 and 0.44 respectively. We ran Normalisation Only,

Meta-analysis and Consensus on the Faith and Sangurdekar networks only. This

improved the results for the Consensus approach, increasing the mean AUC to
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Figure 5.5: E. coli consensus network generated from 2 datasets (0.1 bootstrap

threshold) — 1.0 consensus threshold (all edges appear in both datasets)

0.62. It outperforms both the Faith and Sangurdekar networks with p = 0.025.

Meta-analysis also makes an improvement, the mean AUC increasing from 0.52

to 0.57, but is unable to outperform the Faith network.

On synthetic data (especially on the three ‘best’ datasets), the simple Normal-

isation Only approach produced one of the best performing networks. However

on the E. coli data, the Normalisation Only approach does not obtain such suc-

cessful results. In fact, the Normalisation Only networks are the worst performing

networks, and do worse in terms of AUC than 3 of the individual dataset net-

works. However, this may be explained by the fact that the synthetic data are

not generated to contain any experimental or platform biases whereas these are

inherent in the real E. coli data.

5.4.4 Application: yeast heat stress network

We take the example of 9 transcription factors (TFs) related to heat-shock re-

sponse from Wang et al. (2006) in order to evaluate the algorithm on a sub-

network of a manageable size and make a comparison between the two methods1.

1In Wang et al. (2006) they use a network of 10 TFs. We remove the gene SOK2 due to
the many missing values in some of the datasets.
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REB1

RPN4

SKN7

SIP4

YAP1

TYE7

ROX1

HSF1

SFL1

Figure 5.6: Yeast heat-stress regulatory network: true network structure

Two of the TFs selected (HSF1 and SKN7) are known to be directly involved

in heat-shock response and are documented as regulating 4 TFs among the 9.

The sub-network is shown in Figure 5.6. We use microarray datasets that are

publicly available on the YeastBASE expression database. Most selected datasets

are from studies that include heat-shock response experiments — see Table 5.3.

Figure 5.7 compares the difference in the mean AUC for each aggregation

approach against each other and against the mean AUC of each individual dataset

network (that are shown using horizontal lines). As before, we also compare the

combination of all datasets against the combination of a subset of the datasets

(where the subset is chosen based on the performance of the input networks).

Once again, the Consensus network set (generated from all input networks

at a low bootstrap confidence threshold of 0.1) obtains the best results of the

aggregating approaches, outperforming all individual input networks, obtaining

a mean AUC of 0.53. Using the paired t-test, we find this network set outperforms

3 of the 5 individual input networks with statistical significance p < 0.01. The

Meta-analysis and Normalisation Only networks obtain mean AUCs of only 0.46

and 0.47 respectively. They are significantly outperformed by the Consensus
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5.4 Comparison of pre- and post-learning aggregation methods

Dataset Description Platform No. Obs

Beissbarth et al. (2000) Heat-shock response cDNA 12

Eisen et al. (1998) Cold-shock and cDNA 14

heat-shock response

Gasch et al. (2000) Environmental changes cDNA 173

inc heat-shock response

Grigull et al. (2004) Heat-shock response cDNA 27

Spellman et al. (1998) Cell-cycle cDNA 73

Table 5.3: Summary of yeast datasets

network set and three of the five individual input networks.

Comparison of the AUC for each individual input network shows that three

of the networks perform noticeably poorly. If we remove these networks from

the input to the algorithms we find a marked improvement for all aggregation

approaches (see Figure 5.7). The Consensus approach obtains the best results,

with a mean AUC of 0.55 whilst the individual networks for the Gasch and Spell-

man datasets obtain mean AUCs of 0.53 — a statistically significant difference

with p = 0.10. In this case, we find the best Consensus networks are generated

when the input PDAGs have been obtained by thresholding the bootstrapped

networks at relatively higher thresholds of 0.3 - 0.4. This is because the Gasch

and Spellman networks have higher confidences attached to their edges than the

networks generated from the other three datasets. The Meta-analysis and Nor-

malisation Only approaches also show an improvement, so much so that there is

no statistically significant difference in the AUC for the networks generated by

them and the Consensus approach.

In Figure 5.7, we find that there is a significant dip in AUC at the 0.2 bootstrap

threshold Consensus network. This is explained by that fact that there is a peak

in edge confidences between 0.1 and 0.2 in the individual input networks (data

not shown). Whilst a 0.2 thresholded individual PDAG includes the same edges

as a 0.3 PDAG, a lower threshold means that more FP edges may be included,

causing the AUC to decrease. Similarly, lowering the threshold from 0.2 to 0.1,

more edges are included, but in this case they are TP edges, causing an increase
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Figure 5.7: AUC performance of learnt yeast networks

in AUC.

In comparison to the work by Wang et al. (2006), both the Consensus and

Meta-analysis networks are more successful based on our performance criteria.

The Wang et al. network obtains a TP rate of 0.17 and a FP rate of 0.75. In

comparison, our Consensus networks (from all networks with a bootstrap thresh-

old of 0.1) obtain mean TP and FP rates of 0.58 and 0.54 respectively at a 0.8

consensus threshold and 0.16 and 0.09 at a 1.0 consensus threshold. Figure 5.8

shows such a Consensus network (0.8 consensus threshold) that contains 13 TP

edges and 7 FP edges. This network shows which edges are more robust (i.e.

found in more individual input networks). We should also point out that Wang

et al. only use some of the time-series in the Gasch dataset to generate their

aggregate network, whereas our Consensus network is generated from a broader

set of studies.
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Figure 5.8: Yeast consensus network generated from all datasets (0.1 bootstrap

threshold) — 0.8 consensus threshold

5.5 Discussion

The purpose of this chapter has been to investigate whether post-learning aggre-

gation for generating GRNs from multiple microarray datasets (that is, learning

models from each dataset and combining the models) can produce better results

than concatenating the datasets after scale normalisation and then learning the

model — a simple pre-learning aggregation method. We have presented two novel

post-learning aggregation approaches for combining multiple microarray datasets

to generate GRNs and compared them against a simple pre-learning aggregation

approach, as well as the performance of the individual input networks that have

been generated from each dataset.

Each of the new approaches is based on aggregating high-level features of BN

models that have been generated from a set of individual microarray datasets.

Thus, they possess the benefits of post-learning aggregation approaches, mean-

ing they can be used to combine datasets generated by different platforms, re-

search groups and laboratories and do not necessarily require normalisation of

the datasets, which can be complicated on cross-platform microarray datasets.
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Meta-analysis BNs combine confidence levels attached to network edges using

an inverse-variance weighted method whilst Consensus BNs identify regulatory

interactions that are found consistently across all datasets. Both methods pro-

duce networks with a measure of ‘robustness’ attached to each edge, which in a

Consensus network indicates in how many datasets it is found. The ‘robustness’

attached to a Meta-analysis edge is slightly different, as it incorporates the origi-

nal bootstrapped confidences. In this case it represents the strength of the edge’s

confidence over all the individual input networks.

The pre- and post-learning aggregation approaches were compared with each

other as well as against the performance of the individual input networks. On

clean, unbiased synthetic data a simple pre-learning aggregation approach (the

Normalisation Only network) performs very well — significantly outperforming

both Consensus and Meta-analysis networks and the individual input networks.

However, on real data that is biased and generally noisier, this did not hold.

In fact, Normalisation Only often performed worse than many of the networks

generated from a single dataset. On E. coli data, we found that Meta-analysis and

Consensus networks both provided a significant improvement over Normalisation

Only. In particular, the Consensus approach increased the AUC by over 0.1. On

the yeast sub-network, the absolute increase in AUC was not as great, but was still

statistically significant. Thus, on the basis of the experiments presented in this

chapter, post-learning aggregation does provide an advantage over concatenating

normalised datasets for learning from multiple real microarray datasets.

Whilst Consensus and Meta-analysis outperform Normalisation Only when

learning from multiple microarray datasets, we also found that unless the worst-

performing datasets were removed, the networks produced by post-learning aggre-

gation approaches did not always outperform all the individual input networks.

This leads to the question, is there a benefit to learning from multiple microarray

datasets if the combined models do not outperform all individual dataset models?

We believe so. When little is known about the datasets, post-aggregation learn-

ing can be used to identify the more robust and consistent interactions across

datasets and filter out noisy and spurious relationships. The Consensus approach

identifies consistencies amongst the collection of datasets and so it is least affected

by poorly performing input networks. On the other hand, since Meta-analysis
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is a weighted-averaging technique, where edges with a high confidence level are

given more influence, it can work well with only one well-performing dataset as

the influence of lower confidence edges is weak. Conversely, however, its perfor-

mance can be easily influenced by a single dataset that contains false positives

and negatives with high confidence levels.

Since the Consensus approach is more robust to poorly performing input net-

works and is therefore more consistent in the resulting network performance, we

conclude that it provides the greatest benefits for combining multiple microarray

datasets. However, there is room for improvement in the method. For example,

it would be desirable to reduce the number of parameters. When it is used in

conjunction with bootstrapping to learn the input networks, the user is required

to choose a bootstrap and a consensus threshold (although the final network can

be viewed with edge ‘robustness’ rather than choosing a consensus threshold).

In comparison, Meta-analysis is relatively simpler and ‘parameter-free’, since the

bootstrap confidences are directly used to compute the aggregated network (how-

ever, if the user wishes to extract a PDAG, a threshold must be chosen).

Additionally, it was found that the datasets which generated the worst per-

forming networks were generally those with a small number of samples (at least,

in the case of real data). Including these datasets with a small number of samples

can actually have a negative effect by shifting focus from a larger dataset. There-

fore it may be advantageous to only accept datasets that are more reliable or of

higher quality (e.g. those containing a larger number of samples), or at least to

lessen the influence of lower-quality datasets. In the following chapter these issues

are addressed with a generalised Consensus approach that requires fewer param-

eters, together with input dataset/network selection and weighting which allows

different strengths of influence to be assigned to each input dataset/network.
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Chapter 6

Incorporating network reliability

6.1 Introduction

The previous chapter presented Consensus Bayesian networks, an approach for

combining network models generated from different microarray gene expression

datasets. Although experimental results on real microarray datasets indicated

that a Consensus model produced from a set of datasets is more accurate than a

model generated from a single dataset, the method does have shortcomings. It is

a parameter-heavy method, relying on the user to select confidence thresholds for

bootstrapped input networks and the overall consensus threshold for the output

network. Furthermore, the experimental results also indicated that in some cases,

using only a subset of available datasets can produce a better Consensus model

than when using all available datasets. This chapter addresses these limitations

by presenting the following contributions:

• An improved Consensus approach with reduced parameters — Consensus

Bootstrapped Bayesian Networks (CBBNs)

• A simple measure of network reliability

• The incorporation of network reliability measures into the Consensus method

in order to take into account the reliability or quality of each input network
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The Consensus approach is extended in two different ways. Firstly, a gener-

alised Consensus approach is presented that can act directly on input networks

with confidences attached to each edge. This means that the more robust boot-

strapped network models (rather than PDAG models produced by thresholding a

bootstrapped network) can be used as direct inputs to the Consensus algorithm.

As well as removing a level of parameters (i.e. the selection of a confidence level at

which to threshold the bootstrapped network) this should improve the reliability

and performance of the output Consensus model by allowing all the information

in the bootstrapped network to be used.

Second, two methods are introduced for incorporating network reliability mea-

sures into the Consensus approach, in order to place more influence on certain

input networks. Experimental results presented in chapter 5 found that the re-

liability of networks varies across the datasets from which they are generated.

For example, the performance of the Consensus network can be better when it is

generated from networks for a subset of the datasets available, rather than the

total set, especially if some datasets are particularly noisy or biased. In order

to address the question of whether the use of reliability measures can improve

the final Consensus model, this chapter considers how to assess the reliability

of networks and compares different weighting- and selection-based methods for

varying the influence of input networks with the Consensus method.

The remainder of the chapter is organised as follows. In Section 6.2 the

extended Consensus approach is explained in more detail. Following this, in

Section 6.3, methods for measuring the reliability of networks are considered.

Further to this, two methods are introduced for including network reliability

measures in the Consensus method. This section also includes a brief literature

review on considering bias when learning or modelling from multiple datasets.

A comparison of the different methods for incorporating network reliability is

presented in Section 6.4. Experimental results on synthetic and real data are

included and discussed. Finally, Section 6.5 discusses the overall conclusions

from this chapter.
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6.2 Consensus Bootstrapped Bayesian Networks

6.2 Consensus Bootstrapped Bayesian Networks

This section presents a generalised Consensus approach, Consensus Bootstrapped

Bayesian networks (CBBNs), that can act directly on input networks with confi-

dences attached to each edge. In the application we consider, these confidences

are generated using a bootstrapping approach. The output Consensus network,

at a given consensus threshold, is also a network with confidences attached to

each edge. This means that the user can select a level of robustness (consensus

threshold) for the Consensus network, and then the resulting output network pro-

vides a confidence for the existence of each edge. Since the generalised approach is

based on networks with edge confidences, it also removes the problem of assigning

uncertain edge directions from the original algorithm. Section 6.2.1 describes the

algorithm in detail whilst the following Section 6.2.2 explains how weighting can

be incorporated into the method to allow each input network to have a different

influence on the final Consensus network. Section 6.2.3 compares the original

Consensus approach with the new algorithms detailed here, highlighting the key

differences.

6.2.1 Algorithm

The CBBNs approach takes as input a group of bootstrapped networks and a

consensus threshold t, and as output it returns a Consensus network which is of

the same form as the input networks — each edge has a confidence attached. In

the input bootstrapped networks, the confidence attached to each edge is referred

to as the input confidence. In the Consensus network we refer to the confidence

level attached to each edge as the consensus confidence.

The algorithm proceeds as follows. For the input set of bootstrapped net-

works, the edge between each pair of nodes is considered in turn. For each

possible edge a set C of input confidences is created, which contains the input

confidences for that edge from each input network. Next, we order the input con-

fidences in C from highest to lowest. Then a subset Cmax ⊆ C is created, where

Cmax contains the highest input confidences in C, and the size of this subset is

based on the consensus threshold t and the number of input networks n such that

|Cmax| = floor(nt). Recall that the consensus threshold t is between 0 and 1
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(and can be thought of as a percentage1), so |Cmax| ≤ n. Then, we define the

consensus confidence, the confidence for each edge in the final Consensus network

at consensus threshold t, as the minimum input confidence in the subset Cmax.

In this way, the consensus confidence is taken from the set of input confidences.

This makes the process analogous to the original approach. In the original ap-

proach, an edge exists in the Consensus network if it appears in a proportion of

the input networks that exceeds the consensus threshold. In the new approach,

an edge’s consensus confidence is defined by the minimum input confidence in

the input networks with the highest input confidences, where the proportion of

these input networks exceeds the consensus threshold. By following the algorithm

described for each possible edge in the network, we build a Consensus network

where each edge has an attached consensus confidence. A Consensus network can

be formed for each consensus threshold t. The algorithm is detailed step-by-step

in Algorithm 3.

This means that for a set of n networks, a 1/n consensus threshold would lead

to the consensus confidence for each edge to be the maximum input confidence

for that edge across all input networks (i.e. the maximum input confidence in

the set C). Conversely, under a 1.0 (100%) consensus threshold, the consensus

confidence for each edge would be the minimum input confidence. In general, a

low consensus threshold leads to higher consensus confidences in the Consensus

network, whilst a high consensus threshold leads to lower consensus confidences

in Consensus network. This is analogous to the original Consensus approach,

where under a 1/n consensus threshold, an edge need only exist in one of the

input networks to be included in the Consensus network, so there are likely to

be more edges in the Consensus network than under a 1.0 consensus threshold,

where an edge in the Consensus network must appear in every input network. In

this respect, the benefit of the new CBBNs approach over the original approach

is that a consensus confidence is applied to each edge in the Consensus network,

which provides more information on the reliability of each edge in the Consensus

network. For example, if a particular edge attains a high input confidence in

1Note that in this chapter, the consensus threshold may be referred to as a number between
0 and 1, or the equivalent percentage, which can be a more intuitive form of notation in this
instance
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Consensus Bootstrapped Bayesian Networks

Input: Set of n bootstrapped networks, consensus threshold (between 0

and 1)

Output: Consensus network

for each pair of nodes i,j do

1. Create set C =
{
cij1

, ..., cijn

}
where cijk

is the input confidence

for the edge between nodes i → j in the kth input network

2. Reorder and re-index the input confidences in C from highest

to lowest where cij1
is the highest input confidence and cijn

is

the lowest

3. Create subset Cmax ⊆ C such that A = |Cmax| = floor(nt) and

Cmax =
{
cij1

, ..., cijA

}

4. Define the edge consensus confidence as Conij = min(Cmax)

end

Algorithm 3: Consensus Bootstrapped Bayesian networks
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each input network, then it will still attain a high consensus confidence in the

Consensus network at a low consensus threshold.

The CBBNs process on an example set of input networks is shown in Fig-

ure 6.1. On the top line are the three input bootstrapped networks, displayed as

matrices of edge input confidences between node pairs. The bottom line shows

three Consensus networks, each for a different consensus threshold (t = 1/3,

t = 2/3 and t = 1). The Consensus networks are also displayed as matrices of the

edge consensus confidences. We can see that in the Consensus network for the

lowest consensus threshold t = 1/3, each edge has the maximum input confidence

for that edge across all input networks. In the Consensus network for the middle

consensus threshold t = 2/3, each edge has the second ordered input confidence

for that edge across all input networks. Finally, in the Consensus network for the

highest consensus threshold t = 1, each edge has the minimum input confidence

for that edge across all input networks. On the right of the figure, the set C

of ordered input confidences across the input networks for the edge from nodes

1 → 3 is shown. Each confidence is linked to its corresponding consensus thresh-

old. For example, for the Consensus network at t = 2/3, the size of subset Cmax

is |Cmax| = nt = 3 × (2/3) = 2. Thus Cmax = {0.81, 0.79} and so the consensus

confidence for edge 1 → 3 at t = 2/3 is min(Cmax) = 0.79.

6.2.2 Incorporating weights

In the CBBNs method described in the previous section each input network has

an equal influence in the Consensus algorithm. When we incorporate weighting,

each input network can be given a weight that is proportional to its influence

on the final Consensus network. The calculation of input network weights is

addressed in Section 6.3. For now, we assume that the weights for all input

networks sum to 1. It is fairly simple to generalise the CBBNs algorithm to deal

with unequal influences of each input network. The process is identical to the

CBBNs approach described in Section 6.2.1, except each edge input confidence is

paired with its network weight.

The algorithm proceeds as follows (also see Algorithm 4 for step-by-step de-

tails). Each edge is considered in turn. For each edge, a set C is created of input
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Network 1 Network 2 Network 3

0 0.10 0.81 0.20
0.08 0 0.11 0.06
0.15 0.09 0 0.03
0.12 0.07 0.13 0

0 0.10 0.79 0.25
0.04 0 0.14 0.03
0.30 0.01 0 0.09
0.18 0.10 0.88 0

0 0.11 0.45 0.22
0.66 0 0.20 0.07
0.17 0.05 0 0.11
0.01 0.08 0.67 0

Consensus 1/3 
(max. confidence)

Consensus 
2/3

Consensus 3/3 
(min. confidence)

0 0.11 0.81 0.25
0.66 0 0.20 0.07
0.30 0.09 0 0.11
0.18 0.10 0.88 0

0 0.10 0.79 0.22
0.06 0 0.14 0.06
0.17 0.05 0 0.09
0.12 0.08 0.67 0

0 0.10 0.45 0.20
0.04 0 0.11 0.03
0.15 0.05 0 0.03
0.01 0.07 0.13 0

Edge 1,3
Input confidences
C = {0.81,0.79,0.45}

Input networks 
– displayed as input confidence matrices

Output Consensus networks
– displayed as consensus confidence matrices

Consensus
threshold

Consensus 
confidence

0.45

0.79

0.81

3/3

2/3

1/3

Figure 6.1: Consensus Bootstrapped Bayesian networks. On the top line are the

three input bootstrapped networks, displayed as matrices of edge input confi-

dences between node pairs. The bottom line shows the Consensus Bootstrapped

BNs, also displayed as matrices of edge consensus confidences, for three consensus

thresholds (from 1/n to 1 at steps of 1/n where n = 3). On the right, the set C

of ordered input confidences from the input networks for the edge from node 1 to

3 is shown and the table associates the consensus confidence for each consensus

threshold.
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0.10.1

0.110.1

0.120.4

0.130.3

0.240.1

Edge 

confidence

Network 

weightConsensus 
10%

Consensus 
40%

Consensus
80%

Consensus
90%

Consensus
100%

Figure 6.2: Weighted Consensus networks: deciding the consensus confidence

for a single edge. The input confidences from five input networks are ordered

descendingly, paired with the network weights that range from 0.1 to 0.4. The

consensus confidences associated with a range of consensus thresholds from 10%

to 100% (0.1 to 1.0) are indicated. For example, the consensus confidence 0.24

is associated with the lowest consensus threshold of 10%, whilst the consensus

confidence 0.1 is associated with the highest consensus threshold of 100%.
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confidence-network weight pairs, where the kth pair contains the input confidence

for that edge in the kth input network, and the weight wk of the kth input net-

work. The pairs in C are ordered descendingly by input confidence, as in the

CBBNs approach. Then a subset Cmax ⊆ C of this ordered set is created, which

contains the pairs with the highest input confidences. The size of the subset

Cmax depends on the network weights and the consensus threshold t: the sum

of network weights of the pairs in subset Cmax must equal or exceed the con-

sensus threshold t. Then, the edge consensus confidence is the minimum input

confidence in the subset Cmax.

Weighted Consensus Networks

Input: Set of n bootstrapped networks, each with an attached weight wi

indicating its influence such that
∑n

i=1 wi = 1 and a consensus

threshold (between 0 and 1)

Output: Consensus network

for each pair of nodes i,j do

1. Create set C =
{
(cij1

, w1), ..., (cijn
, wn)

}
where cijk

is the edge

confidence for the edge between nodes i → j and wk is the

weight for the kth input network

2. Reorder and re-index the confidence-weight pairs in C from highest

to lowest confidence where cij1
is the highest edge confidence

and cijn
is the lowest

3. Create subset Cmax ⊆ C such that Cmax =
{
(cij1

, w1), ..., (cijA
, wA)

}

where
∑

k=1:A wk ≥ t

4. Define the edge consensus confidence as Conij = minconf (Cmax)

end

Algorithm 4: Weighted Consensus networks

The subset selection process is illustrated in Figure 6.2 for a single edge ex-

ample. In this case there are five input networks with weights ranging from 0.1 to
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6.2 Consensus Bootstrapped Bayesian Networks

0.4. The network weight — edge input confidence pairs are ordered by input con-

fidence so that C = {(0.1, 0.24), (0.3, 0.13), (0.4, 0.12), (0.1, 0.11), (0.1, 0.1)}. We

build the subset Cmax by considering the pairs in turn, from the highest input

confidence pair to the lowest input confidence pair. For example, for the consen-

sus threshold 0.8 (80%) we build Cmax by continually adding pairs (in confidence

order from highest to lowest) until the weights sum to or exceed 0.8. In this case,

this means that Cmax = {(0.1, 0.24), (0.3, 0.13), (0.4, 0.12)} since the weights sum

to 0.8. Then the consensus confidence for this edge is 0.12, the minimum con-

fidence in the subset. Another way to view this is to say that for consensus

thresholds from 0 to 0.1, Cmax contains the pair (0.1,0.24) and the consensus

confidence is 0.24. For consensus thresholds from 0.11 to 0.4, Cmax contains the

pairs (0.1,0.24) and (0.3,0.13) meaning that the consensus confidence is 0.13, and

so on.

The Weighted Consensus networks approach updates the CBBNs approach

so that input networks with higher weights have more influence over each edge’s

consensus confidence than input networks with lower weights. For example, for

the single edge example shown in Figure 6.2, the input network with the highest

input confidence of 0.24 only has a weight of 0.1, so it only influences the final

Consensus network for a small interval of consensus thresholds (0-0.1 or 0-10% in

this particular example). By contrast, the input network with weight 0.4 has an

influence over a larger interval of consensus thresholds (41-80%). In the CBBNs

approach, the input confidences from each network have an influence over equal

intervals of the consensus threshold. For the same example, using the CBBNs

approach, the input network with the highest confidence of 0.24 would influence

the consensus confidence for a larger interval of consensus thresholds from 0-20%.

However, by assigning a low weight to this network, its influence can be reduced.

This may be appropriate if the user has less confidence in the reliability of this

network. Section 6.3 discusses how the input networks weights can be calculated,

based on the network’s reliability.
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6.3 Measuring network reliability

6.2.3 Comparison to the original Consensus algorithm

Whilst the CBBNs algorithm draws on the same algorithmic basis as the original

approach that is detailed in Chapter 5 — the idea that an interaction between

nodes is more reliable if it is exhibited in more datasets or networks — the algo-

rithms that are detailed in the previous sections ( 6.2.1 and 6.2.2) are essentially

new methods that act on different inputs and produce a different type of output.

Whilst the original method uses PDAGs to represent the input and output net-

works, the CBBNs and Weighted CBBNs approaches take as input bootstrapped

networks (i.e. networks with confidences attached to each edge) and also output

a single network that has confidences attached to each edge. This allows the

use of more robust bootstrapped network models as input, which should help to

improve the reliability of the output Consensus network.

Whilst it is possible to use bootstrapped networks with the original Consensus

approach, as the algorithm requires PDAGs as the input network format it is

necessary to threshold bootstrapped networks first in order to produce PDAGs.

This leads to another layer of parameters, as the user must select a confidence

threshold for each input data source. This highlights the key benefit of CBBNs

and Weighted CBBNs — that the more robust bootstrapped networks can be

used directly to produce a Consensus model.

Since the inputs and outputs of the original and updated algorithms are differ-

ent, it is not straightforward (or appropriate) to make a direct performance com-

parison between them. Instead, we compare the CBBNs and Weighted CBBNs

approach against the individual input networks and against a network gener-

ated from an aggregate dataset formed by combining the input datasets followed

by scale normalisation (a pre-learning aggregation approach), as carried out in

Chapter 5 for the original algorithm.

6.3 Measuring network reliability

This section considers how the measure of a network’s quality or reliability can

be calculated, and how this can be integrated into the CBBNs or Weighted Con-

sensus algorithms described in the previous section. First, a method based on
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network predictive accuracy for measuring network reliability is presented in Sec-

tion 6.3.1. Following this, in Section 6.3.2 we describe how prediction-based net-

work reliability measures can be translated to weights for use with the Weighted

Consensus networks approach. In Section 6.3.3 a further method is presented,

which uses prediction-based network reliability measures to select and discard

the input networks for use with the CBBNs algorithm. The final part (see Sub-

section 6.3.4) of this section considers related work on varying the influence of

individual inputs when learning or modelling from multiple data sources.

6.3.1 A prediction-based reliability measure for networks

The robustness, or ability to generalise, of a network can be measured based on

how well its node values can be predicted over independent datasets. A network

that can predict node values with high accuracy on other independent datasets

can be said to be more robust and reliable. This is a fairly intuitive measure of

robustness as in particular, it shows that the network does not overfit the dataset

from which it was generated, as it can perform well on other datasets.

The procedure for node value prediction over an unseen, independent dataset

is described in detail in Section 3.4.2. A brief reminder is provided here. The

conditional probability distributions for each node are estimated using the same

dataset from which the network structure was learnt. Then the parameterised

network model is used to predict the value of each node, based on the values of its

influencing nodes in the network, over samples from independent datasets. The

success of prediction on each node can be measured using prediction accuracy,

which is the proportion of samples where the predicted value is correct.

To calculate prediction-based reliability measures for a set of networks, the

following method is used. For each network prediction accuracy is calculated

for each node in the network, over a random sample of observations equally dis-

tributed across the other datasets from which the other networks were generated.

Then a median prediction accuracy is calculated for each network, derived across

all nodes (the use of the median is to account for outliers, nodes that perform

unusually badly or well). In this chapter, the median predictive accuracy is used

as the measure of network reliability. Note that in the experiments described
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6.3 Measuring network reliability

later in this chapter, since the input networks are generated from a bootstrap set

of DAGs, the prediction accuracy for each node and network is averaged across

the bootstrap set of networks.

In general a positive correlation can be found between the median predic-

tive accuracy of a network (where the median is taken across all nodes in the

network) on independent data samples and the AUC of the network, when com-

pared against the true (documented) network. For example, Figure 6.3 shows

the correlation between median predictive accuracy and AUC for a collection of

synthetic datasets generated based on the same network structure. The Pearson

Correlation Coefficient for the data in this plot is ρ = 0.59 (p = 0.00002). This

relationship provides further motivation for the use of predictive accuracy as a

measure of network quality or reliability.
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Figure 6.3: Correlation between network median predictive accuracy and AUC

for a collection of synthetic datasets. The synthetic datasets were generated based

on the same true network, using differential equations and with different levels of

added noise (see Section 6.4.1 for more details).
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6.3.2 Prediction-based network weighting

The prediction-based reliability measures for a set of networks can be translated

to network weights, compatible for use with the Weighted Consensus networks

approach that is described in Section 6.2.2. Simply, each network weight is cal-

culated by its median prediction accuracy as a percentage of the total sum of

median prediction accuracies across the set of all networks:

wi =
ai∑N

k=1 ak

where N is the number of networks, wi is the weight for network i and ai is the

median predictive accuracy for network i. This method of calculation ensures that

all weights sum to 1, as required by the Weighted Consensus networks algorithm.

Then each weight represents the proportional influence for that network in the

Consensus algorithm.

6.3.3 Prediction-based network selection

Experimental results presented in the previous chapter indicated that in some

cases, using only a subset of available input datasets/networks can produce

a better performing Consensus model than when using all available datasets.

Therefore, as an alternative, the prediction-based reliability measures for a set

of networks can also be used to select a subset of input networks for the CBBNs

approach (as described in Section 6.2.1, where each network has an equal influ-

ence on the Consensus process). In this case, instead of weighting the influence

of individual networks, the least reliable networks are simply discarded from the

input.

Using the prediction-based reliability measure, the input networks can be

ranked from most reliable to least reliable. There are then a number of ways in

which a line can be drawn between the most and least reliable networks, and the

least reliable networks discarded from the input:

• Networks-above-x selection.

In this case a threshold x for the median predictive accuracy is selected. All
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networks with median predictive accuracy ≥ x are selected, and networks

with median predictive accuracy < x are discarded.

• Best-n-networks selection.

In this case, n is a number or proportion of the available networks. This is a

simple method where the top n networks (i.e. the n networks with the high-

est median prediction accuracy) are selected as input, and the remaining

networks discarded.

One issue with these network selection methods is that they introduce another

parameter into the Consensus process. Later in this chapter, the methods of net-

work weighting and network selection are compared to see which is more effective

at improving the final Consensus model. A further goal of the comparison is to

consider how the parameters for each network selection approach (i.e. the median

predictive accuracy threshold x and the number or proportion of input networks

n) can be chosen in order to optimise the final Consensus network performance.

6.3.4 Related work

Whilst using weights to vary the influence of each dataset when learning or mod-

elling from multiple data sources is obviously not new, most previous research

has focused on combining classifiers, whereas we are concerned with learning and

combining network structures. In particular, the idea of combining models has

some similarities to ensemble learning, such as boosting (Schapire, 2003), which

aims to combine several weak classifiers into one strong classifier. In general the

weak classifiers are combined according to some weighting that is related to their

accuracy. Similarly, Bayesian Model Averaging (BMA) (Hoeting et al., 1999) is

a technique that calculates a (weighted) average over the posterior distributions

of a set of potential models. There has been research in using BMA with BNs for

classification and prediction. However, BMA is not model combination. Instead

it is designed to address uncertainty in model selection given a particular dataset.

Both types of technique are designed to improve classification or prediction for

a model across a single dataset. By contrast, we are concerned with combining

models generated from multiple datasets, which have their own biases and levels
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of noise. This means that we may have a high quality dataset requiring a high

weight, and a low quality dataset that requires a low weight. Ensemble learning

and BMA have not been designed to deal with this type of input.

6.4 Network selection or network weighting: a

comparison

This section reports on the experiments performed to evaluate the use of the

CBBNs approach on multiple microarray datasets. The standard CBBNs ap-

proach is compared with the prediction-based weighted and prediction-based se-

lection Consensus approaches. It is also compared against the performance of the

individual input networks and the ‘Normalisation Only’ approach — a network

generated from a combined dataset that is formed by concatenating and normal-

ising the individual datasets — as was carried out in the previous chapter for

the original Consensus algorithm. An additional objective of these experiments

is to evaluate which is the best method for prediction-based selection in conjunc-

tion with the CBBNs approach: networks-above-x selection or best-n-networks

selection. In order to do this a number of Consensus networks are generated for

prediction-based selection, based on the use of different subsets of input networks.

Section 6.4.1 details the datasets used and the experimental design. Sec-

tions 6.4.2 - 6.4.3 present results on synthetic and real microarray datasets.

6.4.1 Datasets and experiment design

In order to examine the relationship between the input network quality and the

performance of the resulting Consensus network, experiments were first carried

out on synthetic microarray datasets to provide a controlled setting, before mov-

ing on to evaluation on a real data application. In this section, the different

types of datasets that are used are described, and the experiments performed

and evaluation is explained.

The synthetic datasets are based on a synthetic network, which is generated

based on a regulatory network structure of 13 genes. This is the same network that

is used for the experiments detailed in the previous chapter (see Section 5.4.2). In
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Figure 6.4: Adding Gaussian noise to a clean dataset

order to investigate how network quality affects the Consensus approach a num-

ber of further datasets were generated by adding Gaussian noise, with various

variances, to each dataset. The effects of the various noise levels on one gene

in dataset 1 is shown in Figure 6.4. This means we have clean datasets, gener-

ated directly from the differential equations and datasets with added noise. Each

dataset was discretised using an equal frequency method with three bins. Input

bootstrapped networks were then generated from each dataset. Each Consensus

approach was run on different collections of input networks, which are detailed in

Appendix A, Table A.1. Each set of input networks contains 4 networks, where

each network is generated from a version of one of the original four datasets (no

set contains more than one version of each dataset). An additional 4 collections

of datasets were also generated, where Gaussian noise of different variances (ran-

domly selected between 0.1 and 0.8) was added to each gene. These are denoted

as ‘variable noise by gene’. The sets of networks are ordered in Table A.1 by

their collective level of reliability, which is measured as the median of median

predictive accuracies for the input networks generated from each dataset in the

set. In general, the Gaussian noise applied across the datasets increases as the

collective level of reliability of the network set decreases.

For the real data application, we use the same five yeast microarray expression

datasets used in the previous chapter (see Section 5.4.4). This is a sub-network

of 9 regulatory genes that are related to heat-shock response. The microarray

datasets are publicly available on the YeastBASE expression database — see

Table 5.3 for more details. The learnt networks are evaluated by comparing

them to documented gene interactions, obtained from the online YEASTRACT

database (Teixeira et al., 2006).
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As described earlier, there are 18 collections of datasets for the synthetic

networks and one set of real yeast gene expression datasets. For each collection

of datasets — which is referred to as a case — a bootstrapped network is learnt for

each individual dataset. For each case, the bootstrapped networks are then used

as inputs to the Consensus approach. The following network types are generated

for each case:

• Standard CBBNs method — generated from all input networks — referred

to as the CBBN network

• Prediction-based weighted network, generated from all input networks —

referred to as the weighted network

• Prediction-based selection networks, generated from subsets of all input

networks, where the networks selected are those with the highest median

predictive accuracies — referred to as the selection networks

• A bootstrapped network generated from a concatenated and scale-normalised

dataset (referred to as the Normalisation Only network), in order to facili-

tate comparison to pre-learning aggregation

For the prediction-based selection method, a number of different networks are

generated. For example, since there are four input networks in total, two subsets

would be used to generate Consensus networks. The first subset would contain the

three networks with highest median prediction accuracies, and the second subset

would contain the two networks with the highest median prediction accuracies.

This is because one objective of these experiments is to establish the best method

for prediction-based selection. By examining the Consensus network performance

results for prediction-based selection, in conjunction with the median prediction

accuracies of the selected input networks, we can establish whether networks-

above-x selection or best-n-networks selection works best, and comment on how

the parameters x and n can be chosen effectively.

The performance of the Consensus networks is evaluated by comparing them

against the true network in terms of TP and FP interactions. As described in

Section 3.4.1, this comparison can be represented by a single AUC value. A
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higher AUC value (assuming values are above 0.5) indicates a better performing

network. Note that a different network is generated for each consensus threshold

from 0 to 1 (0-100%). This means that the AUC value may vary across consensus

thresholds for each different approach. Therefore in the comparison, for each

approach we consider the maximum AUC value achieved and the corresponding

consensus threshold.

6.4.2 Application: synthetic networks

The AUC performance comparison plot (top) in Figure 6.5 shows the maximum

AUC performance for each approach by network set (referred to as sets 1-18). In

addition, the AUC of the best performing input network is recorded on the plot.

Recall that a Consensus network of each type is generated for each consensus

threshold from 0-1 (0-100%). This means that the maximum AUC performance

(as shown in the plot) relates to a specific consensus threshold or interval of

consensus thresholds. The consensus threshold interval comparison plot (bottom)

in Figure 6.5 shows the length of the consensus threshold interval for which each

approach achieves its maximum AUC value. In Appendix A, Table A.2 shows

the same information in tabular form. For each approach and set of networks,

the maximum AUC value and the consensus threshold or interval of thresholds

for which this is achieved are listed. Additionally, this table lists the number of

input datasets for which the best performance is achieved with the prediction-

based selection approach.

6.4.2.1 Performance comparison of approaches

The AUC performance comparison plot (top) in Figure 6.5 (with full details given

in Table A.2) shows the following:

• The CBBN approach outperforms, or equals, the performance of the best

performing input network in 12 of the 18 cases.

• The CBBN approach outperforms, or equals, the performance of the Nor-

malisation only network in 16 of the 18 cases.
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Figure 6.5: Synthetic results: across all network sets, a comparison of the maxi-

mum AUC and the length of consensus threshold interval for which this is achieved
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• The prediction-based weighting and selection approaches outperform or

equal the CBBN approach in all 18 cases. In 16 of these cases, both the

weighting and selection also both outperform or equal the performance of

the best performing input network. In 17 of these cases, both the weight-

ing and selection also both outperform or equal the performance of the

Normalisation only network.

• The prediction-based weighting approach outperforms the selection ap-

proach in 2 cases, and the prediction-based selection approach outperforms

the weighting approach in 3 cases. In all other cases both approaches have

an equal maximum AUC.

Based on these results, we can see that the two new approaches, prediction-

based weighting and selection, always improve on or at least equal the perfor-

mance of the standard CBBN. In particular, the new approaches are able to

outperform the best performing input network and the Normalisation only net-

work in more cases than the standard CBBN. However, there is less of a difference

in performance between the weighting and selection methods — in the majority

of cases they achieve equal maximum AUCs. In order to obtain a p-value in-

dicating the statistical significance of these findings, a paired t-test was used,

the results of which are shown in Table 6.1. All Consensus-based approaches

outperform the Normalisation only network with p ≤ 0.003. The weighting and

selection approaches also both outperform the best input network with statistical

significance (p=0.016 and 0.006 respectively), whilst the CBBN approach only

obtains a p-value of 0.27 for outperforming the best input network. The weight-

ing and selection approaches also outperform the CBBN method with statistical

significance (p=0.008 and 0.009 respectively), but there is no significant difference

between the weighting and selection approaches (p=0.63).

The AUC performance comparison plot (top) in Figure 6.5 also shows a rela-

tionship to the collective level of reliability of the network sets. Recall that the

network sets are ordered in terms of their collective reliability (i.e. overall, the

networks in set 1 have a higher prediction accuracy than those in set 18). It can

be seen in this plot that in general the maximum AUC decreases as the collective

level of reliability decreases, which is what we would expect. However, we also
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Paired t-test

Approach 1 Approach 2 p-value

CBBN Normalisation only 0.003

Weighting Normalisation only 0.0003

Selection Normalisation only 0.0004

CBBN Best input network 0.27

Weighting Best input network 0.016

Selection Best input network 0.006

Weighting CBBN 0.008

Selection CBBN 0.009

Weighting Selection 0.63

Table 6.1: Synthetic results: statistical significance performance comparison be-

tween approaches. Using a paired t-test, this table shows the p-value for whether

Approach 1 significantly outperforms Approach 2.

notice that although the weighting and selection approaches equal or outperform

the CBBN and best input network in the majority of cases, the largest increases

in performance are found with the most reliable collections of datasets (e.g. sets

1-6). This implies that whilst the weighting and selection Consensus approaches

are beneficial for combining datasets with any level of noise, combining better

quality data can produce even greater increases in performance.

6.4.2.2 Selection of the consensus threshold

The comparison of approaches discussed in the previous section ( 6.4.2.1) is based

on the maximum AUC achieved by each method, where maximum AUC corre-

sponds to a specific interval of consensus thresholds. Figure 6.5 shows that this

interval varies by network set. Therefore, an issue that is raised for all approaches

is, how do we predict the exact consensus threshold where the maximum AUC

value is to be found? In order to consider this in more detail, Fig 6.6 compares

the AUC performance for the different approaches, across all consensus thresh-

olds from 0-1 (0-100%), for a selection of the network sets. In these plots we can

see how the performance of each method can vary considerably across the range
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Figure 6.6: Synthetic networks: approaches performance comparison for a se-

lection of individual network sets. The x-axis indicates the consensus threshold

(between 0-100%) whilst the y axis indicates the network’s AUC value.

of consensus thresholds.

First, we can see that the performance of the prediction-based weighting ap-

proach varies considerably by consensus threshold. The thresholds where the

AUC changes correspond to ‘weighting boundaries’ — thresholds at which an

additional network is able to influence the final Consensus network. In general,

these weighting boundaries correspond to the areas around the standard equal

weighted boundaries — at around the 25%,50% and 75% thresholds. This is

because in these cases the networks weights are relatively close to being equal

weights. However, even in these cases, the use of weights can cause a significant

improvement in AUC. For example, in sets 4 and 5, there is a significant peak at
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around the 25% threshold for the AUC value of the weighted Consensus network.

In particular, in set 5 at around the 25% threshold, the AUC value rises from

around 0.77 (CBBN) to 0.85 (prediction-based weighting). However, there are

also intervals of consensus threshold where the weighting can cause a significant

decrease in AUC. For example, in set 4 at around the 25% consensus thresh-

old, there is a significant decrease in the AUC value just prior to its significant

increase.

Therefore, selection of the optimum consensus threshold for prediction-based

weighting is not a trivial task. In comparison, for the CBBN or prediction-based

selection approaches, we know that AUC value will only change at specific con-

sensus thresholds (e.g. 25%,50% and 75% where there are four input networks).

There are many more thresholds that can change the weighted Consensus net-

work, due to different combinations of the weights. Although in some cases (e.g.

sets 2,4 or 5), the weighted network equals or outperforms the selection net-

works, using network selection provides a key advantage — consistency. Where

the AUC improves prediction-based selection, it does so for a much larger inter-

val of consensus threshold. For example, in set 5, the prediction-based weighted

Consensus network shows the highest AUC value for a specific consensus thresh-

old, whereas the prediction-based selection Consensus network shows the same

high AUC value for the 0-50% thresholds. This is also highlighted in the consen-

sus threshold interval comparison plot (bottom) in Figure 6.5, which shows that

the prediction-based selection network always achieves the maximum AUC for a

larger interval than the prediction-based weighting network.

For prediction-based selection, the results indicate that there could be a re-

lationship between the reliability of the individual networks and the optimum

consensus threshold. For example in set 1 (see Figure 6.6), which comprises net-

works generated from clean data, the optimum consensus thresholds are between

50 and 100%. In set 2, which contains networks generated from data with a

small amount of added noise, the consensus thresholds are between 25 and 50%

provide the best AUC values for all approaches. In sets 3-6, which comprise nois-

ier datasets, the optimum consensus thresholds are low — 25% or under. This

finding could demonstrate that the consensus threshold is dependent on the co-

herency of the input network set. A set of high predictive accuracies imply that
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a set of input networks that are coherent — that is they fit well across all the

individual datasets. A set of input networks with low predictive accuracies may

not be so coherent and the low accuracies may indicate that the networks are

quite different. In this case, when a low consensus threshold is chosen it means

that edges appearing in only a few networks have a better chance of appearing

in the final Consensus network, which can be beneficial when the networks are

quite varied. Conversely, in the case where the set of input networks is highly

coherent, high consensus edges are more likely to be robust and reliable. This is

because the networks are more likely to be similar, so low consensus edges are

more likely to be due to noise. However, the relatively small number of cases

and limited scope of the synthetic network used means no firm conclusions can

be made here. Section 6.5 proposes how this can be investigated further, using

machine learning for the discovery of patterns in a larger range of network sets.

6.4.2.3 Method comparison for the network selection approach

Prediction-based selection involves improving the final Consensus network by the

selection of a subset of the input networks, based on their reliability (as mea-

sured using prediction accuracy). In Section 6.3.3, two methods were proposed

for selecting a subset of input networks — networks-above-x (selecting networks

with prediction accuracy greater than x) and best-n-networks (selecting the best

n networks, when they are ordered by their median prediction accuracy). Fig-

ure 6.7 provides boxplots that show the distribution of x and n for n = 2,3 and

4. Further details are provided in Appendix A. For each network set Table A.3

shows the optimum number of selected input networks (n) and the highest me-

dian prediction accuracy of the networks that have not been selected (this is the

threshold x). The lowest median predictive accuracy of the selected networks is

also shown.

Firstly, the boxplots and table clearly show that there is no single value for

x, i.e. it is not possible to choose a prediction accuracy threshold x for network

selection that is appropriate to all cases, since the distributions of highest median

predictive accuracies overlap for n = 2,3 and 4. (Table A.3 shows that the highest

median predictive accuracy of the unselected networks varies from 0.15 to 0.44.)
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6.4 Network selection or network weighting: a comparison

Given the variability of the dataset noise in each set, this is not surprising —

a set of very noisy networks (e.g. set 18) will all have much lower predictive

accuracies than a set of more reliable networks (e.g. set 1). Therefore it is not

appropriate to select a single threshold x, as it could lead to the selection of no

input networks.

However, further inspection of Figure 6.7a reveals that there is a relationship

between n and x. Where fewer networks are selected, the selected networks have a

higher threshold for x, the highest median predictive accuracy of the networks not

selected. The same pattern is also seen if we compare the lowest median predictive

accuracy of the selected networks with n (see Figure 6.7b). Together, these

patterns imply that network sets with higher predictive accuracies (i.e. higher

reliability) require a lower number of input networks, whilst network sets with

lower predictive accuracies (i.e. lower reliability) require more input networks.

This is the type of pattern that we would expect — when we have higher

quality data, we do not need so much of it, and conversely when we have lower-

quality data, we need more of it in order to build the best performing model.

However, as concluded previously for the selection of the consensus threshold,

the number of cases and limited scope of the network used in these experiments

means no firm conclusions can be drawn here. In particular, the boxplots in

Fig 6.7 show that a single set of thresholds on the network predictive accuracies

cannot be derived for the selection of n, the number of input networks, since

the distributions overlap. However, deriving some general rules may be possible

based on a larger and broader range of datasets. Therefore, Section 6.5 proposes

the use of machine learning to discover patterns in a larger range of network sets,

in order to guide the choice of n.

6.4.3 Application: yeast heat-stress network

In this section, the new Consensus approaches are applied to a set of real yeast

microarray datasets, that have been generated by different heat-stress microarray

studies. Figure 6.8 shows the AUC for each Consensus approach, across all con-

sensus thresholds from 0 to 1, as well as the Normalisation only network and the

best performing individual input network AUC (which is the network generated
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(a) Highest median predictive accuracy of unselected networks
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(b) Lowest median predictive accuracy of selected networks

Figure 6.7: Prediction-based selection. (a) shows boxplots of the distribution of

x, the highest median prediction accuracy of the networks that have not been

selected by n the optimum number of selected networks, whilst (b) shows boxplots

of the distribution of the lowest median prediction accuracy of the networks that

have been selected by n the optimum number of selected networks
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Figure 6.8: Yeast heat stress network: comparison of approaches by AUC

from the Spellman dataset). The prediction-based selection approach uses the

best three networks in order to achieve the maximum AUC.

Figure 6.8 shows that:

• The best performing input network (Spellman) achieves an AUC of 0.566

• The Normalisation only network achieves an AUC of 0.471

• The CBBN achieves a maximum AUC of 0.574 between 61-80% consensus

thresholds

• The prediction-based weighting network achieves a maximum AUC of 0.623

at the 78% consensus threshold

• The prediction-based selection network achieves a maximum AUC of 0.613

between 34-67% consensus thresholds

The prediction-based weighting network achieves the highest AUC, making an

improvement of almost 0.05 in AUC over the CBBN approach. However, this is
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6.4 Network selection or network weighting: a comparison

Dataset Median predictive Prediction-based Individual

accuracy weight network AUC

Beissbarth 0.25 0.17 0.43

Eisen 0.26 0.18 0.43

Gasch 0.31 0.22 0.50

Grigull 0.30 0.21 0.49

Spellman 0.31 0.22 0.57

Table 6.2: Yeast heat stress datasets: prediction-based reliability measures

only at a single consensus threshold of 78%. Figure 6.8 shows that it is around the

thresholds relating to equal weights (20%,40%,60%,80%) where the prediction-

based weighting network attains the largest increases in AUC. This is because

the prediction-based weights vary only slightly from a uniform distribution (see

Table 6.2).

The prediction-based selection network also achieves a significant improve-

ment in the maximum AUC when compared to the CBBN or input networks. The

best result is achieved when the best three input networks are selected (where

‘best’ is defined by the highest median prediction accuracies, giving the Gasch,

Grigull and Spellman networks, see Table 6.2). This network attains a maximum

AUC of 0.613 between the consensus thresholds of 34% and 67%. This shows

that the removal of the two noisiest datasets can significantly improve the perfor-

mance of the final Consensus network. Although the prediction-based weighting

Consensus network attains a slightly higher maximum AUC of 0.623 at a 78%

consensus threshold, this is at a single consensus threshold. As noted in the re-

sults for the synthetic network, prediction-based selection improves the network

performance more consistently across the consensus thresholds. Additionally, as

input networks are removed in the selection approach, this reduces the number

of different consensus threshold intervals that need to be considered, making the

selection of the ‘best’ consensus threshold potentially much easier.
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6.5 Discussion

This chapter has furthered the Consensus approach for combining multiple mi-

croarray datasets, resulting in three main contributions. First, the introduction of

an improved Consensus approach, Consensus Bootstrapped Bayesian Networks

(CBBNs), which allows the more robust bootstrapped network models (rather

than PDAG models produced by thresholding a bootstrapped network) to be

used as direct inputs to the Consensus algorithm. Second, this chapter has pre-

sented an examination of how network reliability can affect the final Consensus

network. A measure of reliability for sets of networks, based on the prediction of

node values has been introduced. Finally, methods for incorporating the use of

network reliability measures into the Consensus algorithm have been proposed.

Prediction-based network weighting allows different weights to be assigned to each

network in order to vary the influence of each input network, whilst prediction-

based network selection uses only a subset of the available input networks, based

on their reliability, in order to produce a Consensus model. This chapter has also

presented a comparison of these different Consensus approaches, using synthetic

and real microarray datasets.

Experiments were performed on 18 collections of synthetic microarray expres-

sion datasets and one group of real yeast microarray datasets. The experiments

on the groups of synthetic datasets have allowed the Consensus approaches to be

evaluated over many different cases, where the noise levels in each dataset are

varied. For example, in some cases all datasets were very noisy, whereas in other

cases each dataset was of high quality, and in other cases noise levels were mixed

across the datasets.

Next, the conclusions of the comparison are summarised with respect to the

original aims:

• In general, the new CBBNs approach outperforms the pre-learning aggrega-

tion ‘Normalisation only’ network and all individual input networks.

In the synthetic data based experiments, the CBBN approach outperformed

all input networks in 66% of cases, and the Normalisation only network in

89% of cases. The CBBN approach outperformed all input networks and

the Normalisation only network in the real yeast data case.
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• Prediction-based weighting improves the performance of the Consensus net-

work, i.e. in general, the prediction-based weighted Consensus network out-

performs the CBBNs approach.

In all cases presented in the comparison, prediction-based weighting was

able to equal or improve the performance of the Consensus network, in

comparison to the standard CBBNs approach. A paired t-test indicated

that there was a significant improvement in performance.

• Selecting a subset of input networks creates a performance improvement in

the Consensus network, i.e. in general, prediction-based selection outper-

forms the standard CBBNs approach.

In all cases presented in the comparison, prediction-based selection was able

to equal or improve the performance of the Consensus network, in compar-

ison to the standard CBBNs approach. A paired t-test indicated that there

was a significant improvement in performance.

• In general, prediction-based weighting or prediction-based selection consis-

tently produce the best performing Consensus network, but there is no sig-

nificant difference in performance between weighting and selection.

Despite this, prediction-based selection provides an important benefit —

consistency of performance across a larger interval of consensus thresholds.

Often, the weighting approach would attain a maximum AUC at a spe-

cific consensus threshold, whereas prediction-based selection could attain

the same maximum AUC for a larger range of consensus thresholds. This

is potentially advantageous when trying to select the optimum consensus

threshold.

This establishes that the prediction-based selection approach provides im-

provement in terms of network performance, and in addition the performance of

the final Consensus network is more consistent over consensus thresholds. How-

ever, one original aim remains unanswered with respect to the selection approach:

how is the number of input networks to be chosen? The results from synthetic

data showed that there is a relationship between the reliability of the available
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input networks and the optimum number of these networks to be selected; essen-

tially, fewer input networks are required with high-quality data, and conversely

with lower-quality data, more input datasets are required in order to build the

best performing model.

The final original objective refers to the selection of the optimal consensus

threshold. The AUC performance of the final Consensus network, whichever

approach is used, can vary considerably by consensus threshold. However, for

prediction-based selection in particular, the experimental results indicated that

there could be a relationship between the reliability of the individual input net-

works and the optimum consensus threshold. More reliable sets of input networks

attained their maximum AUC values with higher consensus thresholds than nois-

ier, less reliable sets of input networks.

However, the experiments presented in this chapter have been carried out on

a limited set of data. For example, the synthetic network sets are all based on

the same, small-scale network, and noise has been added in an artificial manner.

Each case contained four available input datasets/networks. In order to draw

firmer conclusions, a larger set of different datasets, based on different networks

would be required.

Finally, to close this chapter, the author proposes the use of machine learn-

ing to discover patterns between network reliability and the optimum number of

input networks or consensus threshold, based on a larger and broader range of

network set cases. Whilst it can be straightforward to spot patterns in network

quality by eye or simple analysis for a small group of cases, for a larger set of cases

this is infeasible. This motivates the use of machine learning to automatically

discover patterns and relationships of interest, based on a set of example cases.

Further to this, machine learning techniques could be used to induce heuristics,

or rules of thumb, for the selection of input networks or the consensus thresh-

old. Exploratory research to investigate this proposal is presented in Chapter 7.

Rule learning provides the most natural representation for the type of heuris-

tics we wish to learn, since if-then rules are transparent and human-readable.

Most importantly, this means that the learnt heuristics can be easily applied by

the user to the problem of network and consensus threshold selection. Chap-

ter 7 presents the rule-learning methodology and preliminary results for inferring
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heuristics based on the synthetic case results presented in this section, together

with further network cases.
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Chapter 7

Inducing heuristics for the

Consensus approach

7.1 Introduction

Chapter 6 investigated the concept of network reliability and how this can im-

pact the Consensus network model. A key conclusion was that prediction-based

network selection can be used to improve the Consensus network performance

in many cases. This is where only a subset of the available input networks are

selected in order to produce the best performing Consensus model. However, an

important problem remains concerning how to select the optimal number of input

networks.

Additionally, one important parameter needs to be chosen by the user: the

consensus threshold. The consensus threshold allows the user to select the level

of ‘robustness’ of the final Consensus network. For example, a low threshold of

25% will allow network edges with limited support in the final model, whereas a

threshold of 100% requires each edge to appear in each input network. However,

how do we choose the most appropriate consensus threshold based on the input

datasets/networks available, or the consensus threshold that produces the best

performing model?
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This chapter presents preliminary research in addressing these issues by using

machine learning to induce heuristics, ‘rules of thumb’, in the form of classification

rules, for selecting input networks and choosing different consensus thresholds.

The remainder of this chapter is organised as follows. Section 7.2 describes the

problem of constructing heuristics in more detail and motivates the use of machine

learning. In Section 7.3, rule learning, the chosen machine learning method is de-

scribed. Learnt heuristics are presented in Section 7.4, followed by the application

of the learnt heuristics to examples from real microarray expression datasets in

Section 7.5. Finally, the chapter concludes with a summary and discussion in

Section 7.6.

7.2 Motivation

Heuristics, or ‘rules of thumb’, can assist the user in selecting the input networks

and consensus threshold for the Consensus approach. Such heuristics must be

based on information that can be extracted from the input networks themselves.

For example, the input network AUCs cannot be used, as this is based on knowl-

edge of the true network, which is usually unavailable. Instead, the heuristics

should be based on measures of input network quality. This research uses the

network predictive accuracy (measured on the other input datasets) as a measure

of network quality, as explained in Chapter 6 (see Section 6.3).

When constructing heuristics for network and consensus threshold selection,

it makes sense to examine the patterns in quality amongst the input networks

— which is, in this case, measured using the network predictive accuracies. For

example, consider Figure 7.1, which shows the input network predictive accuracies

for input networks for synthetic cases 1-6 (from Chapter 6, see Section 6.4). In

these plots the y-axis represent the network’s median predictive accuracy. Note

that we are only concerned with comparison on the y-axis and the x-axis is not

used. The black lines indicate the predictive accuracies for input networks, and

the red line shows a predictive accuracy of 0.33 (which represents a ‘random’

accuracy threshold, since the expression values are discretised into three bins).

Recall that each of these sets is based on a total of four input networks, and for

sets 1,2,3 and 6, the optimal number of input networks is 2. For sets 4 and 5,
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the optimal number of input networks is 4 (this can be seen in Fig 6.6). Some

patterns can be seen immediately by eye. For example, in general, the cases for

which two input networks is optimal have higher predictive accuracies than those

for which four input networks is optimal. Therefore, based on this information,

a heuristic for selecting two input networks may be ‘if at least two networks have

predictive accuracy above 0.33 then two input networks is the optimal selection’.
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Figure 7.1: Patterns in input network predictive accuracies for synthetic cases 1-6.

The y-axis represent the network’s median predictive accuracy. Black lines indi-

cate the predictive accuracies for input networks. The red line shows a predictive

accuracy of 0.33

In order to construct reliable heuristics, a large set of different cases is required.

Whilst it can be straightforward to spot patterns in network quality by eye for a
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small group of cases, for a larger set of cases this is infeasible. This motivates the

use of machine learning to automatically induce the heuristics, based on a set of

example cases.

Concept learning (Mitchell, 1997) is a machine learning approach that can be

used to induce a general description of a target class or category of objects, based

on a set of example cases, which are labelled as positive or negative instances of

that particular category. For example, for the problem of learning heuristics for

the selection of input networks or consensus thresholds, the target classes would

be the optimal number of input networks, or the optimal interval of consensus

thresholds. There are many different techniques that can be applied as concept

learners. The various techniques are usually differentiated by their method for

representing the learnt concept description. For example, decision trees represent

the learnt description as a tree-structure model. Bayesian networks can also be

used a concept learning technique, where one node in the network represents the

target concept. Our chosen concept learning technique is rule learning, where the

learnt description is represented as a set of if-then rules. Rule learning provides

the most natural representation for the type of heuristics we wish to learn, since

if-then rules are transparent and human-readable. Most importantly, this means

that the learnt heuristics can be easily applied by the user to the problem of

network and consensus threshold selection. The following section describes rule

learning in more detail.

7.3 Rule learning

This section introduces the rule-based concept learning approach. Before describ-

ing the algorithm for inducing rules in more detail, in Section 7.3.1 we begin with

a description of the algorithm inputs and outputs, relating them to an example

that is based on the type of heuristic we wish to induce. Following this, in Sec-

tion 7.3.2, the basic rule learning algorithm is described. Section 7.3.3 motivates

the use of relational rule learning. Finally Section 7.3.4 introduces ACE, a data

mining system that implements relational rule learning, which is used to learn

the rule-based heuristics in this chapter.

159



7.3 Rule learning

7.3.1 Inputs and Outputs

In order to learn a set of rules that describe a target concept class or category,

the following inputs to the algorithm are required:

• A target class

• A set of training examples, labelled as positive and negative instances of

the target class

• A dataset of observations, or attributes, of the training examples

Table 7.1 shows how these inputs relate to the problem of interest — learning

heuristics for the selection of input networks or consensus thresholds — using

a small, ‘toy’ example. In this example, the target class is ‘two-networks ’ —

representing cases where the optimal network selection is the two input networks

with the highest predictive accuracies. First, in order to induce a set of rules

that describe this class, a set of training examples is required. In Chapter 6,

Section 6.4 presented a number of sets of synthetic networks and the results of

applying the Consensus approach to them. These cases can be used as training

examples, where each set is labelled as ‘positive’ if two networks form the optimal

input network selection, and ‘negative’ otherwise. In Table 7.1 the first six sets

(synthetic cases 1-6) are shown. Finally, as well as the positive/negative label,

further attributes or observations are required for each training example. These

attributes will be used to form the body of the if-then rule. For this problem,

the attributes are the measures of quality for each input network — i.e. the

predictive accuracy of each input network. Note that the input networks are

ordered by their predictive accuracies.

The output of the algorithm is a set of if-then rules that satisfy the positively-

labelled training examples, but do not satisfy the negatively-labelled examples.

An if-then rule takes the format IF body THEN head, where the body is a list

of attribute conditions to be satisfied, and the head is the target concept. For

the problem described in Table 7.1, an example rule is shown in Figure 7.2. This

rule satisfies all the positive examples and none of the negative examples. It says

if the predictive accuracy of Network 1 exceeds 0.34, then the optimum number
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Target concept: two-networks

Training Class Attributes — predictive accuracies

examples label Network 1 Network 2 Network 3 Network 4

Set 1 + 0.50 0.46 0.44 0.40

Set 2 + 0.51 0.48 0.39 0.39

Set 3 + 0.40 0.36 0.35 0.33

Set 4 - 0.33 0.23 0.22 0.16

Set 5 - 0.30 0.18 0.18 0.18

Set 6 + 0.36 0.33 0.19 0.18

Table 7.1: Learning heuristics for network selection: inputs to the rule learning

algorithm

of inputs networks is 2. Since the network accuracies are ordered by size, this is

equivalent to saying that if at least one network has predictive accuracy greater

than 0.34, then the optimum number of inputs networks is 2.

IF Network 1 ≤ 0.34 THEN two-networks

Figure 7.2: Learning heuristics for network selection: example output rule

7.3.2 Algorithm basics

Classic rule learning algorithms such as CN2 and FOIL (Clark & Niblett, 1989;

Quinlan & Cameron-Jones, 1993) use two key concepts as the basis to their al-

gorithms — the sequential covering loop and the general-to-specific search. The

idea of sequential covering is to learn a set of rules, rule-by-rule. At each step,

a rule is learnt that satisfies, or covers, as many positive training examples as

possible, and no negative examples. After each rule is learnt, the positive train-

ing examples that are satisfied by the rule are removed from the set of examples.

Then, if positive training examples remain in the set, the learning process contin-

ues and a new rule is learnt that again covers as many positive training examples

as possible, and no negative examples. This iterative process continues until all
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positive training examples have been satisfied — in other words, no more positive

training examples remain in the set.

Sequential covering is a method for iteratively learning a set of rules, but

how exactly is each rule in the set constructed? The most popular approach for

learning an individual rule is the general-to-specific search. In this approach,

a search through the space of possible if-then rules is performed. Each rule

encountered during the search is scored based on how many positive and negative

training examples it covers. The search space is structured using the general-to-

specific ordering. Figure 7.3 shows an example search space for the learning

heuristics application. At the beginning of the search, very general rules, that

cover many examples (both positive and negative) are considered. Usually, the

search begins with the most general rule possible, which is the rule with the

empty body. The rule classifies every example as the target concept, so it covers

all positive examples, but also all negative examples. As the search progresses,

the rule is specialised by adding attribute conditions to the body. The addition of

attribute conditions to the rule body should reduce the number of examples that

it covers. The idea is to reduce the negative examples covered by the rule, whilst

maintaining a high number of covered positive examples. The search will stop

when a pre-defined stopping condition is met. This may be when no negative

examples are covered by the rule, or when the rule achieves a particular score

that is based on the number of positive and negative training examples it covers.

7.3.3 Relational rule learning

In this research, we use a particular rule learning approach, known as relational

rule learning, or Inductive Logic Programming (ILP) (Dzeroski & Lavrac, 2001;

Lavrac & Dzeroski, 1994). ILP implements the same rule-learning algorithmic

basis as described in Section 7.3.2, but uses first-order predicate logic (FOPL) to

represent if-then rules. This means the rules are able to be more expressive than

standard if-then rules, as they can contain variables and also make use of more

complex data structures such as lists. The latter is particularly useful for the

learning heuristics application, as it means the network predictive accuracies can

be stored in an unordered list. This is beneficial as it means it is easier to deal
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IF {}
THEN two-networks

IF {Network1 < Y1}
THEN two-networks

IF {Network2 < Y2}
THEN two-networks

IF {Network3 < Y3}
THEN two-networks

…

IF {Network1 < Y1,
Network2 < Y2}

THEN two-networks

IF {Network1 < Y1,
Network3 < Y3}

THEN two-networks

IF {Network1 < Y1,
Network4 < Y4}

THEN two-networks

…

Figure 7.3: General to specific search for rules
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with different numbers of input networks in each example. ILP also makes use

of ‘background knowledge’ as input, in addition to the training examples data in

order to construct rules. This is the features, or attribute conditions, that are

used in the body of the learnt if-then rules, and since they are represented using

FOPL they can be complex yet represented in a simple way.

In order to show how FOPL can represent the training examples, background

knowledge (attributes) and output rules, we extend the ‘toy’ example for the

learning heuristics application, which was used earlier in this section. Table 7.2

shows a set of training examples, with associated example data and background

knowledge. The example data — the predictive accuracies of each network —

are represented in list format, where networks are unordered — allowing the

representation of cases with different numbers of input networks. For example,

Set 23 has three input networks, and Set 34 has six input networks. At the

bottom of the table, three background knowledge features are listed. The first is

n networks above(N,PredAccBound ). This returns ‘true’ for a training example

when N and PredAccBound are substituted for a number of networks and a pre-

dictive accuracy respectively, and there are N input networks with predictive accu-

racy above or equal to PredAccBound . For example, n networks above(4,0.4 ),

where N is 4 and PredAccBound is 0.4, satisfies the training examples Sets

1,2 and 34. Similarly, n networks below(N,PredAccBound ) returns ‘true’ for

a training example when there are N input networks with predictive accuracy

below or equal to PredAccBound . Finally the background knowledge feature

predacc cluster(PredAccBound1,PredAccBound2 ) returns ‘true’ for a train-

ing example when there is a group of network predictive accuracies that are

very close to each other (within 0.02), bounded by PredAccBound1 below and

PredAccBound2 above. Note that it would be possible to represent these features

in a standard propositional (non-relational) rule learning algorithm. However,

FOPL provides an easier and more natural representation.

As described earlier, an if-then rule takes the format IF body THEN head,

where the body is a list of conditions to be satisfied, and the head is the target

concept. In FOPL, this is represented as follows:

head :- body
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Target concept: two-networks

Training Class Example data

examples label Predictive accuracies

Set 1 + [0.50,0.46,0.44,0.40]

Set 2 + [0.51,0.46,0.44,0.40]

Set 3 + [0.40,0.36,0.35,0.33]

Set 4 - [0.33,0.23,0.22,0.16]

Set 5 - [0.30,0.18,0.18,0.18]

Set 6 + [0.36,0.33,0.19,0.18]

Set 19 + [0.30,0.32,0.30,0.28]

Set 23 - [0.27,0.32,0.33]

Set 34 - [0.52,0.53,0.47,0.49,0.50,0.50]

Background knowledge

n networks above(N,PredAccBound )

n networks below(N,PredAccBound )

predacc cluster(PredAccBound1,PredAccBound2 )

Table 7.2: Learning heuristics for network selection: FOPL inputs to the rule

learning algorithm
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An example rule is shown in Figure 7.4. This rule says that two input networks

is optimal if there are at least 4 networks with predictive accuracy above 0.26, and

at least 4 networks with predictive accuracy below 0.32, and there is a cluster

of accuracies bounded below at 0.28. This rule satisfies one positive training

example — Set 19 — and no negative examples.

two-networks :- n networks above(4,0.26),

n networks below(4,0.32),

predacc cluster(0.28,OpenBound ).

Figure 7.4: Learning heuristics for network selection: example output rule, rep-

resented using FOPL

7.3.4 ACE

The particular implementation of ILP that is used in this research is the ICL (in-

ductive concept learning) component of the ACE data mining system (Blockeel

et al., 2002; De Raedt et al., 2001). ACE uses the sequential covering loop and

general-to-specific search to induce rules. It also has a number of other advan-

tages. It uses a beam search when constructing individual rules. This means it

considers multiple paths simultaneously in the search space, and therefore it is

less likely to learn sub-optimal rules. It has mechanisms for dealing with noise,

in particular by allowing induced rules to cover a number of negative training

examples. It also has a number of different scoring functions that can be used

to assess the accuracy of rules. Some scoring functions favour more general rules

that cover a large number of positive examples, whilst still covering some negative

examples, whilst other scoring functions favour specificity, by requiring that the

number of covered negative examples is very small (which can be at the expense

of the number of positive examples covered). ACE represents the training ex-

amples, attributes or background knowledge, and output rules using FOPL. The

application of ACE to learn heuristics for the selection of input networks and

consensus thresholds is presented next in Section 7.4.
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7.4 Experimental results

This section reports on the rule learning carried out to produce heuristics for (a)

the optimal number of input networks for the prediction-based selection approach,

and (b) the optimal consensus threshold. First, in Section 7.4.1 the algorithm

inputs — the target classes/concepts, training examples and background knowl-

edge are described. The parameter settings in ACE are also detailed. Following

this, Section 7.4.2 details the learnt rules for 2 network inputs and associated

consensus thresholds are described. (Further results are provided in Appendix A.

In Section 7.4.3 the results are discussed in more detail.

7.4.1 Rule learning inputs

For the set of training examples, the results from Chapter 6 (section 6.4) are used.

This provides 18 training examples, each based on a synthetic true network and a

set of synthetic microarray datasets, as described in Section 6.4.1. Additionally,

further training examples were generated using SynTReN (Van den Bulcke et al.,

2006), an application for generating synthetic regulatory networks and microarray

expression datasets. This enables learning to be carried out on a wider range of

different collections of microarray datasets, and using synthetic networks means

the results can still be evaluated against a ‘gold standard’ true network.

Given a global true network, SynTReN is able to generate synthetic microar-

ray datasets based on the entire network, or a subnetwork. Subnetworks are

generated using ‘cluster-addition’ or ‘neighbour-addition’ methods. The Syn-

TReN application can be downloaded with sample global networks for yeast and

E. coli, which have been built from databases of documented interactions. This

means that extracted subnetworks are more likely to present true patterns of

gene regulation, rather than an arbitrary network structure. In SynTReN, gene

interactions are modelled using Michaelis-Menten and Hill kinetics. The user can

also define the amount of biological and experimental noise that is present in the

data.

A number of different cases (36) were generated using SynTReN. Each case

was based on a different randomly-generated subnetwork from the yeast or E. coli

global networks and contained between three and six microarray datasets. Each

167



7.4 Experimental results

subnetwork was limited to a maximum of 30 genes for efficiency reasons. Each

dataset had a varying number of samples — from 10 to 100, and random values

set (between 1% and 50%) for biological and experimental noise.

This means that for each training example, the maximum possible number

of input networks is between 3 and 6. Combining the original synthetic network

examples with those generated using SynTReN provides a total of 54 training

examples. Each example, with its data attributes (i.e. the predictive accuracy of

each input network), is listed in Table A.4 in Appendix A.

The target classes for rule learning relate to the original objectives: to in-

fer heuristics for the the optimal number of input networks, and the consensus

threshold. First, we focus on the number of input networks. A class label is as-

signed to each training example, based on the optimal number of input networks

for that case. If a prediction-weighted or individual input network has a better

performance, these are ignored for these experiments, as the purpose is to find

the optimal number of input networks for the prediction-based network selection

Consensus approach. The assigned labels can be seen in Table A.4. Where the

performance of the Consensus network on a different number of inputs is almost

equal (where the AUCs are closer than 0.01), multiple labels may be assigned. For

example, in Set 2, 2 or 4 network inputs are equally successful, so both labels are

assigned. In total, out of all training examples 16 are labelled as two-networks,

17 are labelled as three-networks, 17 are labelled as four-networks, 8 are la-

belled as five-networks and 4 are labelled as six-networks. Rule learning is

performed for each possible class label, where for each class the positive training

examples are those examples assigned with that label, and the negative training

examples are all the examples without that label.

The second objective of learning heuristics relates to finding the optimal con-

sensus threshold. The consensus threshold intervals are dependent on the to-

tal number of input networks. For example, if there are four input networks,

there are four possible consensus thresholds: 1-25%,26-50%,51-75% and 76-100%.

Therefore, a set of heuristics is learnt based on each network selection class la-

bel: two-networks,three-networks,etc. The classes for the optimal consensus

threshold were divided as follows:
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2 datasets: low : 1-50% high 51-100%

3 datasets: low : 1-33% mid : 34-66% high : 67-100%

4 datasets: thres1 : 1-25% thres2 : 26-50% thres3 : 51-75%

thres4 : 76-100%

Note that due to the low number of training examples labelled as five-networks

or six-networks, learning the heuristics for the optimal consensus threshold

based on five or six network inputs was not carried out. Each training example

was assigned a class label for the optimal consensus threshold (see Table A.4).

When learning the consensus threshold, for each class label combination the pos-

itive training examples are those examples assigned with both class labels, and

the negative training examples are all those example labelled with the network

selection class label, but without the consensus threshold class label. For exam-

ple, when learning a heuristic for the low consensus threshold for two-networks

examples, positive training examples are those labelled low and two-networks,

and negative training examples are those labelled high and two-networks. Note

that when learning for the consensus threshold, the data associated with each

example includes only the predictive accuracies for the input networks used, and

not those for all available networks. For example, if there were 4 possible input

networks, but learning was carried out for the consensus threshold on 2 input

networks, only the predictive accuracies for those 2 networks can be used in a

learnt rule for the consensus threshold.

As well as class-labelled training examples, it is also necessary to provide back-

ground knowledge to the learning algorithm. The background knowledge is used

as features for the body of the rules. Table 7.3 provides a list of the background

knowledge used for learning, together with a natural language description for each

feature. The first few features are fairly simple, relating to the total number of

possible input networks, or the number of input networks with predictive accuracy

above or below a certain bound. However, predacc cluster(PredAccBound1,

PredAccBound1 ) and predacc gap(LowerBound1, LowerBound2, UpperBound1,

UpperBound2 ) are slightly more complex. predacc cluster satisfies training ex-

amples when there is a group of network predictive accuracies that are very close

to each other (within 0.02), bounded by PredAccBound1 below and PredAccBound2
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above. predacc gap satisfies training examples where there is a large gap (greater

than 0.07) between ordered predictive accuracies. For example, this would be sat-

isfied by sets 2,4,5 and 6 in Figure 7.1. The accuracies at the lower end of the

‘gap’ are bounded between LowerBound1 and LowerBound2 and accuracies at

the upper end of the ‘gap’ are bounded between UpperBound1 and UpperBound2 .

The ACE data mining system (see Section 7.3.4) is used to learn rules based

on the labelled training examples and background knowledge. ACE has a number

of user-defined parameters. In the learning experiments carried out, the default

parameters were used, except for the following. The minimum positive coverage

was increased to 2, in order to avoid very specific rules that satisfy only one

positive training example each. There are two possible rule scoring mechanisms

that can be used to direct the search. These are the weighted relative accuracy

(WRA), which favours more specific rules that satisfy few negative examples,

and the standard m-estimate, which favours more general rules that cover larger

numbers of positive examples, but this also risks covering more negative examples.

Although we favour more general rules, we did use WRA where the m-estimate

produced rules that covered a large number of negative examples (> 10).

7.4.2 Rule learning outputs

Next, the heuristics learnt are presented and commented on. In this section the

rules for 2 network inputs are detailed. Learnt rules for 3-6 network inputs are

covered in Appendix A. The following rules were learnt for two-networks, using

the weighted relative accuracy scoring mechanism in ACE:

two-networks :- total networks below(4),

n networks above(2,0.33),

n networks below(3,0.49).

Covers 13/16 positive examples and 5/39 negative examples

170



7.4 Experimental results

Feature Description

total networks above(N ) The total number of possible

input networks is greater than

or equal to N

total networks below(N ) The total number of possible

input networks is greater than

or equal to N

total networks(N ) The total number of possible

input networks is N

n networks above(N,PredAccBound ) There are N input networks with

predictive accuracy greater than

or equal to PredAccBound

n networks below(N,PredAccBound ) There are N input networks with

predictive accuracy less than

or equal to PredAccBound

predacc cluster(PredAccBound1, There is a group of network

PredAccBound2 ) predictive accuracies that are within

0.02, bounded by PredAccBound1

below and PredAccBound2 above

predacc gap(LowerBound1 There is a gap of over 0.07 in the

,LowerBound2, network predictive accuracies such

UpperBound1,UpperBound2 ) that accuracies at the lower end are

bounded between LowerBound1

and LowerBound2 and accuracies

at the upper end are bounded

between UpperBound1

and UpperBound2

Table 7.3: Learning heuristics: background knowledge features
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This rule means that:

IF the total number of possible input networks is 4 or below

AND there are at least 2 networks with predictive accuracy above

or equal to 0.33

AND there are at least 3 networks with predictive accuracy below

or equal to 0.49

THEN two networks is the optimal input

two-networks :- total networks below(5),

n networks above(4,0.26),

n networks below(4,0.32),

predacc cluster(0.28,OpenBound ).

This rule means that:

IF the total number of possible input networks is 5 or below

AND there are at least 4 networks with predictive accuracy above

or equal to 0.26

AND there are at least 4 networks with predictive accuracy below

or equal to 0.32

AND there is a cluster of accuracies, bounded below at 0.28

THEN two networks is the optimal input

Covers 2/3 positive examples and 0/39 negative examples

The first rule is fairly general, covering almost all the positive examples, al-

though it also covers some negative examples. This rule only satisfies examples

with 4 or fewer possible input networks, which is the majority of training exam-

ples. Although the second rule does not cover any negative examples, it is very

specific as it only covers 2 positive examples.

Next, rules were learnt to establish which consensus threshold to apply, low

or high, in order to obtain the optimal network performance:

low :- n networks below(1,0.43).

Covers 11/12 positive examples and 1/4 negative examples
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This rule means that:

IF One network (of the two with highest predictive accuracies)

has predictive accuracy below or equal to 0.43

THEN the optimal consensus threshold is low (1-50%)

high :- n networks above(2,0.46).

Covers 3/4 positive examples and 1/12 negative examples

This rule means that:

IF Both networks have predictive accuracy above or equal to 0.46

THEN the optimal consensus threshold is high (51-100%)

In general these rules specify that cases where there are higher predictive

accuracies require a high consensus threshold, and cases with lower predictive ac-

curacies require a low consensus threshold. The boundary for ‘lower’ and ‘higher’

predictive accuracies is found to be between 0.43 and 0.46.

7.4.3 Discussion

This section has presented the learning of heuristics, in the form of if-then rules

for the selection of input networks and the consensus threshold for the prediction-

based selection Consensus approach. The training examples were based on the

synthetic cases generated for the experiments performed in chapter 6 and new

networks and datasets generated using SynTReN. Each example was assigned

class labels, based on the best-performing prediction-based selection Consensus

network and consensus threshold. The background knowledge was based on sim-

ple features such as the total number of possible input networks, and the number

of input networks with predictive accuracy above/below a certain bound. More

complex background knowledge features representing ‘clusters’ and ‘gaps’ in the

input network predictive accuracies were also used.

First, rules were learnt for network selection, that is, to find the optimal num-

ber of input networks. The target classes were two-networks, three-networks,

four-networks, five-networks and six-networks. Note that when selecting

two networks for example, we assume that these two networks are those with the
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highest predictive accuracies. The heuristics learnt are mainly based on the ab-

solute values of the predictive accuracies. For example, a common rule structure

is based on the requirement that a certain number of networks must have predic-

tive accuracies between given bounds. Another feature of many rules is that they

specify the total number of possible input networks in the example. This implies

a dependency of the optimal number of input networks on the total number of

available input networks, which might be expected. However, it also means that

the learnt heuristics are slightly biased towards the examples with four possible

input networks, as these make up the majority of the training examples. There

were also not enough examples with a total number of input networks greater than

4, in order to construct reliable heuristics for five-networks or six-networks.

Second, rules were learnt for the selection of the optimal consensus threshold.

Since the number of possible consensus threshold intervals is dependent on the

number of input networks, a different set of rules was learnt for each number of

input networks. A pattern is evident across the heuristics learnt for consensus

threshold selection: cases where there are more networks with higher predictive

accuracies require a higher consensus threshold, and cases with more networks

that have lower predictive accuracies require a lower consensus threshold. The

criteria for ‘high’ and ‘low’ predictive accuracies depends upon the number of

consensus threshold intervals, and is stated in the learnt rules. This finding

demonstrates that the consensus threshold is dependent on the coherency of the

input network set. High predictive accuracies imply that a set of input networks

are coherent — that is they fit across all the individual datasets from which they

were generated. A set of input networks with low predictive accuracies may not

be so coherent and the low accuracies may indicate that the networks are quite

different. In this case, when a low consensus threshold is chosen for it means

that edges appearing in only a few networks have a better chance of appearing

in the final Consensus network, which can be beneficial when the networks are

quite varied. Conversely, in the case where the set of input networks is highly

coherent, high consensus edges are more likely to be robust and reliable. This is

because the networks are more likely to be similar, so low consensus edges are

more likely to be due to noise.
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Heuristics outcome Actual outcome

Test Predictive Input Consensus Input Consensus

case accuracies networks threshold networks threshold

Yeast [0.25,0.26,0.31,0.30,0.32] 2 low 3 mid

heat-stress

Yeast [0.35,0.36,0.34,0.32] 4 thres2 4 thres2

cell-cycle

E. coli [0.43,0.56,0.41,0.61] - high 2 high

SOS

Table 7.4: Learning heuristics: test case outcomes

7.5 Testing the heuristics on real data examples

The learnt heuristics presented in Section 7.4 are based on a set of synthetic

training examples. This section discusses the application of the learnt rules to

real data examples. In machine learning, testing learnt concept descriptions on

unseen, real, examples is a key element of the learning process. In particular,

it evaluates whether the learnt model overfits the training examples. Three real

data examples are used to evaluate the heuristics. In Appendix A, the three test

cases are described and commented on in detail. In this section we provide a

discussion and summary of the test case results.

A summary of the findings is shown in Table 7.4. The input network selec-

tion is correctly predicted in 1/3 cases and the consensus threshold is correctly

predicted in 2/3 cases. This is a small set of test cases, but does indicate that

heuristics can assist in selecting input networks and consensus thresholds. In

particular, the last two test cases confirm the general pattern of higher network

predictive accuracies implying higher consensus thresholds. However, the real

data evaluation has also highlighted two important issues:

• Limited coverage of synthetic data training examples

For example, in the E. coli test case, no rules for network selection fit

the example. In order to generate some reliable and general heuristics,

a considerable number of training examples are required, covering a wide
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range of networks and dataset noise levels. In these experiments, due to

running time constraints, we only have 54 examples, which has proved to

be not enough to cover one test case in this evaluation.

• ‘Overlapping’ heuristics

In the yeast cell-cycle test case, a number of heuristics for network selection

were applicable. In this situation, there may need to be a process for re-

solving exactly how many datasets to use. For example, to use the smallest

indicated number of input networks for simplicity reasons.

7.6 Summary

This chapter has presented the use of machine learning to induce rule-based

heuristics, which can assist the user in selecting the optimal number of networks

and the consensus threshold for input to the Consensus algorithm. Using estab-

lished relational rule learning techniques, such heuristics were successfully induced

based on synthetic training examples.

The learnt rules revealed interesting patterns in the input network predictive

accuracies (a measure of network reliability or coherence), that could be used

in deciding the number of input networks or consensus threshold. For example,

a common rule structure was based on the requirement that a certain number

of networks must have predictive accuracies between given bounds. A partic-

ular pattern of this type was evident across the heuristics learnt for consensus

threshold selection: cases where there are more networks with higher predictive

accuracies require a higher consensus threshold, and cases with more networks

that have lower predictive accuracies require a lower consensus threshold. This

finding implies an interesting consequence: the consensus threshold is dependent

on the coherence, or similarity, within the set of input networks. A feature of

many rules for input network selection is the specification of the total number of

available input networks. Whilst some dependency of the optimal number of in-

put networks on the total number of available input networks might be expected,

it may also indicate some overfitting of the training examples.
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The research presented in this chapter has only been the initial step in gen-

erating useable heuristics for selecting parameters for the Consensus approach.

Whilst the test data evaluation showed that the learnt heuristics can be easily

and usefully applied to real data, they were only able to make successful predic-

tions in the yeast cell-cycle network case. The evaluation established that the

set of training examples was not broad enough to cover some of the test cases.

For example, in these experiments the number of available input networks only

varied between three and six. In order to construct a set of heuristics that can

be applied to almost any situation, the learning process would need many more

cases, that vary across the base network, the number of available datasets and the

microarray data noise levels. This would allow global patterns to be uncovered.
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Chapter 8

Conclusions

This chapter draws together the conclusions reached based on the research

presented in this thesis. First, the main contributions are summarised. This is

followed by a discussion of the limitations of the research presented. Finally,

potential avenues for further research are presented, based on both addressing

the research limitations and extending the applicability of the work.

8.1 Thesis contributions

Gene Regulatory Networks (GRNs) describe how the expression level, or activity,

of genes affect the expression of the other genes. Microarray technology allows

the expression of thousands of genes to be measured simultaneously and is the

major source of data for reverse-engineering GRN models based on gene expres-

sion levels. Microarrays are widely used, which has led to many publicly available

datasets of gene expression measurements and subsequently an explosion of re-

search in the reverse-engineering of GRN models based on microarray-generated

data. However, the technology has a number of limitations as a data source for

the modelling of GRNs, due to concerns over reliability and the reproducibility

of experimental results. This research presented in this thesis has focused on

the use of additional data sources - either complementary prior knowledge, or

multiple microarray studies - to alleviate these limitations in using a single mi-

croarray study for the reverse engineering of GRNs. The following subsections
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summarise the contributions made with respect to reverse-engineering Bayesian

network based models of GRNs.

8.1.1 Incorporation of prior knowledge

The drawbacks of using only microarray data to reconstruct GRNs can be al-

leviated by incorporating other complementary data sources as prior knowledge

in the modelling process. There are many other data sources that contribute

to available knowledge on GRNs, for example experimental-based data such as

transcription factor binding site location knowledge or protein-protein interac-

tion data, as well as text-based knowledge, which includes information locked in

scientific papers.

This thesis has presented some of the first research in the incorporation of

prior knowledge that has been generated from a large body of scientific papers,

for Bayesian network based GRN models. The use of advanced text-mining tech-

niques means information contained in a huge number of documents (for example

from a database of papers such as Medline) can be represented in a simple gene-

pair association matrix format. Chapter 4 presented a method for integrating this

information into learning Bayesian network based GRN models by translating it

into a prior probability distribution over candidate network structures.

An empirical evaluation, using data and networks for three different organ-

isms, showed that the use of literature-based prior knowledge can improve both

the number of true regulatory interactions present and the predictive performance

of the learnt model, in comparison to a network learnt solely from expression data.

In particular, varying the influence of the prior knowledge on the learning process

was considered through the use of weighting. The experimental results indicated

that careful weighting of the prior knowledge does appear to be needed. A low

weighting on the prior knowledge can mean many spurious gene interactions are

included in networks. Conversely, a high weighting may result in the inclusion of

network edges that do not reflect regulatory relationships, as there is less empha-

sis on the expression data. Furthermore, the most suitable weighting value may

be related to the amount of reliable prior knowledge available. Where there is less

literature, for example with the human organism, the best results were obtained
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when less weight was assigned to the prior knowledge, in comparison to the yeast

and E. coli organisms which required higher prior weights for the best results.

These are well-studied organisms for which there is a large amount of literature.

8.1.2 Combining multiple microarray datasets

The rapid increase of publicly available microarray data provides the opportunity

to produce GRN models based on multiple microarray datasets. Such models are

potentially more robust with greater confidence, and place less reliance on a single

dataset. Chapter 5 introduced the concepts of pre- and post-learning aggregation.

In pre-learning approaches, such as using simple scale normalisation prior to the

concatenation of datasets, a model is learnt from a combined dataset, whilst

in post-learning aggregation individual models are learnt from each dataset and

the models are combined. The resulting combined model represents prominent

features which occur in all, or a subset of, the individual dataset models. A

key advantage of the post-learning aggregation framework is that it can combine

microarray datasets generated by different platforms, research groups and lab-

oratories without requiring normalisation. This thesis has presented two novel

post-learning aggregation methods for Bayesian network based GRN modelling.

Bayesian networks meta-analysis is based on combining statistical confidences

that are attached to network edges whilst Consensus Bayesian networks identi-

fies consistent network features across all datasets.

Chapter 5 compared pre- and post-learning aggregation through an empirical

evaluation on synthetic and real collections of microarray datasets. This demon-

strated that both post-learning aggregation methods can produce GRN models

that improve on models learnt from a single dataset or a combined dataset (i.e. a

pre-learning aggregation approach). Overall, Consensus Bayesian networks was

the better-performing aggregation approach, as it identifies consistencies amongst

the collection of input networks and so it is least affected by those networks that

perform poorly. However, there is room for improvement in the method - in

particular, it is a parameter-heavy method when used in conjunction with boot-

strapped input networks. An additional finding was that in some cases, using only
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a subset of available datasets produced a better performing Consensus model than

when using all available datasets.

8.1.3 Incorporating dataset selection or weighting based

on reliability

In order to further investigate the effect of input dataset quality when combining

multiple microarray datasets, Chapter 6 presented further development of the

Consensus Bayesian networks approach. An improved Consensus approach was

presented - Consensus Bootstrapped Bayesian Networks (CBBNs), which allows

the more robust bootstrapped network models to be used as direct inputs to the

Consensus algorithm, meaning a reduction in the number of parameters. Addi-

tional improvements to the technique also allows the incorporation of weighting

of the input networks based on their reliability or quality. A measure of reliabil-

ity for sets of networks, based on the prediction of node values was introduced,

together with methods for incorporating the use of network reliability measures

into the Consensus algorithm. Prediction-based network weighting allows dif-

ferent weights to be assigned to each network in order to vary the influence of

each input network, whilst prediction-based network selection uses only a subset

of the available input networks, based on their reliability, in order to produce a

Consensus model.

An empirical evaluation compared prediction-based network selection (i.e. us-

ing individual input networks generated by only a subset of available datasets)

with prediction-based weighting. This demonstrated that network selection pro-

vides a more consistent improvement in GRN model performance than using

network weighting.

However, an important problem remained concerning how to select the opti-

mal number of input networks and the consensus threshold. Whilst relationships

between the reliability of input networks and the optimum consensus threshold

were indicated in the analysis of the experimental results, the small-scale of the

evaluation meant no firm conclusions could be established here. As a first step

in addressing this issue, Chapter 7 presents preliminary research exploring the
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use of machine learning to induce heuristics, ‘rules of thumb’, in the form of clas-

sification rules, for selecting the input networks and consensus threshold. This

alleviates the issue of choosing parameters for the user.

8.2 Limitations

Empirical evaluation has shown that the incorporation of literature-based prior

knowledge or combining multiple microarray datasets using Consensus Bayesian

networks can provide a positive improvement over the use of a single microar-

ray datasets for the reverse-engineering of Bayesian network based GRN models.

However, there are a number of limitations to the research presented in this thesis,

which are discussed in this section.

First, the techniques presented have only been designed for and tested with

static Bayesian networks. In static Bayesian networks, temporal interactions are

not considered. As discussed in section 3.2.3, modelling temporal interactions in

gene regulation is important, as it allows cyclic behaviour to be represented. Ad-

ditionally, time-delayed gene interactions cannot be presented in static Bayesian

networks. However, developing the techniques for static models has provided a

solid foundation from which to extend the techniques for dynamic behaviour.

This is discussed next in section 8.3 as possible future work.

A second point is that all empirical evaluations in this thesis have used discre-

tised microarray gene expression datasets. Discretisation is a technique commonly

applied to gene expression data when reverse-engineering GRN models and is of

particular benefit with real datasets that have a small number of samples and/or

can be noisy. It is a simple method that still allows complex regulatory structures

to be modelled whilst avoiding the need to deal with complex parameterised con-

tinuous distributions. However, it means that conclusions cannot be drawn about

the broader use of the techniques, when applied to continuous gene expression

data.

Furthermore, in the evaluation of Consensus Bayesian networks, the groups

of multiple microarray datasets used were relevant to the network under consid-

eration (for example, E. coli datasets from DNA damage experiments were used

for the SOS response module). The use of different types of experimental studies
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with the Consensus process may lead to problems concerning the semantics of the

input networks. In other words, the edges in different input networks may have

subtly different meanings based upon the different experiments from which they

have been generated. Additionally, the networks considered were small in size.

Therefore, the applicability of the techniques to a broader range of microarray

studies and larger global-size networks has not been considered.

8.3 Further work

The following subsections outline potential avenues for future research, which

are based on addressing the limitations discussed in the previous section, and/or

extending the applicability of the techniques presented in this thesis.

8.3.1 Extension of modelling techniques

Additional further work could involve extending the modelling techniques in a

number of ways. As discussed in section 8.2, the techniques presented in this

thesis have only been used with static Bayesian networks, although modelling

temporal behaviour is important for GRNs. In particular, this should improve the

directionality of learnt interactions and allow cyclic behaviour to be introduced

to the models. Temporal information can be incorporated through time nodes

and dynamic BNs (which were briefly discussed in chapter 3). The methodology

for the incorporation of prior knowledge should be directly applicable to dynamic

BNs. However, the Consensus Bayesian networks algorithms may need to be

adjusted to deal with temporal nodes.

8.3.2 Optimising the weighting influence of prior knowl-

edge

As discussed in section 8.1.1, when incorporating prior knowledge into Bayesian

network based GRN models the most suitable weighting value may be related to

the amount of reliable prior knowledge available. It would be useful to investigate

this further in order to develop a heuristic for setting the value of the prior weight.
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8.3.3 Applicability of Consensus Bayesian networks to di-

verse microarray studies

As discussed in section 8.2, Consensus Bayesian networks has only been evaluated

with small networks on sets of similar microarray studies. Further research could

investigate whether more diverse datasets could be combined as effectively, and

for larger global networks. Some improvements to the technique may be required,

for example by using additional nodes to represent the experiment or study type.

8.3.4 Combining prior knowledge and multiple microar-

ray datasets

In this thesis, the incorporation of prior knowledge and the combination of mul-

tiple microarray datasets for the reverse-engineering of GRN models have been

considered separately. A next step is to consider integrating both multiple mi-

croarray datasets and prior knowledge in the same learning process. There are

a number of ways in which this could be carried out. For example, for use with

Consensus Bayesian networks, prior knowledge could be integrated separately into

each individual input network using the methods described in Chapter 4. An al-

ternative method would be to integrate the prior knowledge into the combined

network produced by Consensus Bayesian networks. Since Consensus Bayesian

networks is based on combining networks, the technique has the potential to inte-

grate many other heterogeneous types of data - provided that network models can

be built from these datasets. Therefore, the incorporation of other data sources

or expert knowledge such as transcription factor binding sites, protein-protein in-

teraction data and textual information extracted from scientific literature, could

be incorporated into the combined GRN model in this way.

8.3.5 New expression data technology

High-throughput technology for gene expression is constantly evolving. Microar-

ray technology was developed in the 1990s and first used for a genome-wide

expression study for yeast in 1997. Now, a decade later, new technologies are

emerging for measuring the expression of huge numbers of genes. Most notable
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are SAGE (Serial Analysis of Gene Expression), LongSAGE and MPSS (Mas-

sively Parallel Signature Sequencing). These technologies represent the ‘digital’

age for gene expression profiling and can provide more reliable and less noisy

data; rather than an estimate of expression that is available with microarrays,

these new technologies can give an absolute count of the mRNA produced by the

expression of a gene.

These technologies are new and expensive and are not yet being used as widely

as microarrays. As a result, few datasets exist in the public domain. However, it

would be relatively easy to adapt current microarray analysis techniques to work

on these new types of expression data. Therefore, in future the new techniques

presented in this thesis could be adapted for use on these new types of expres-

sion data. For example, Consensus Bayesian networks could be used to combine

models from both new types of expression data and microarray expression data.
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Appendix A

Additional tables and results

This appendix contains additional tables and results relating to Chapters 6

and 7.

A.1 Chapter 6 additional tables and results

Table A.1 details the different collections of synthetic input networks for the

experiments in Chapter 6. Table A.2 provides full details of the performance

comparison of different approaches on the synthetic networks. Finally, Table A.3

gives full details for the method comparison results on prediction-based selection.
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Network Gaussian noise variance Collective

set added to each dataset reliability

ID 1 2 3 4 level

1 clean clean clean clean 0.45

2 0.1 0.1 0.1 0.1 0.44

3 0.1 0.1 0.1 0.8 0.40

4 0.2 0.2 0.1 0.1 0.38

5 0.2 0.2 0.2 0.2 0.36

6 0.2 0.2 0.8 0.2 0.35

7 0.2 0.8 0.1 0.1 0.31

8 0.8 0.4 0.1 0.1 0.31

9 variable noise by gene 0.31

10 variable noise by gene 0.31

11 0.1 0.1 0.8 0.4 0.30

12 variable noise by gene 0.28

13 variable noise by gene 0.27

14 0.4 0.1 0.1 0.4 0.26

15 0.1 0.2 0.4 0.8 0.26

16 0.2 0.4 0.8 0.4 0.23

17 0.4 0.4 0.4 0.4 0.23

18 0.8 0.8 0.8 0.8 0.18

Table A.1: Collections of input networks for synthetic datasets (generated by

differential equations). This table provides details of the Gaussian variance added

to each of the datasets for each set of input networks. The ‘collective reliability’

of a network set is measured by the median of the median predictive accuracies

for the networks generated from each dataset. Note that in general, the Gaussian

noise applied across the datasets increases as the collective reliability level of the

network set decreases.
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A.2 Chapter 7 additional tables and results

Network Optimum no. of Highest median Lowest median

set of input predictive accuracy of predictive accuracy of

ID networks (n) unselected networks (x) selected networks

1 2 0.44 0.46

2 2 0.40 0.48

3 3 0.20 0.39

4 2 0.39 0.39

5 2 0.36 0.36

6 2 0.34 0.34

7 3 0.22 0.28

8 4 0.20 0.20

9 4 0.18 0.18

10 2 0.32 0.32

11 2 0.25 0.34

12 4 0.16 0.17

13 3 0.34 0.35

14 4 0.25 0.25

15 2 0.19 0.33

16 4 0.17 0.17

17 4 0.15 0.15

18 4 0.16 0.16

Table A.3: Method comparison for prediction-based selection

A.2 Chapter 7 additional tables and results

A.2.1 Training examples for learning

Table A.4 lists the training examples and attributes for the learning heuristics

application presented in Chapter 7.
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Training Example data Class labels

examples Predictive accuracies # input consensus

networks threshold

Set 1 [0.50,0.46,0.44,0.40] two-networks high

Set 2 [0.51,0.46,0.44,0.40] two-networks low

four-networks

Set 3 [0.40,0.36,0.35,0.33] two-networks low

Set 4 [0.33,0.23,0.22,0.16] four-networks thres1

Set 5 [0.30,0.18,0.18,0.18] four-networks thres1

Set 6 [0.36,0.33,0.19,0.18] two-networks low

three-networks mid

four-networks thres1

Set 7 [0.35,0.23,0.23,0.18] four-networks thres1

Set 8 [0.41,0.41,0.40,0.19] three-networks low

four-networks thres1

Set 9 [0.35,0.35,0.15,0.25] two-networks low

Set 10 [0.30,0.21,0.32,0.35] four-networks thres2

Set 11 [0.35,0.21,0.28,0.35] three-networks mid

Set 12 [0.43,0.39,0.28,0.36] two-networks low

Set 13 [0.37,0.35,0.16,0.34] two-networks low

Set 14 [0.36,0.25,0.27,0.25] four-networks thres1

Set 15 [0.33,0.32,0.18,0.29] two-networks low

Set 16 [0.33,0.26,0.17,0.30] four-networks thres2

Set 17 [0.32,0.26,0.15,0.30] three-networks low

four-networks thres1

Set 18 [0.33,0.31,0.18,0.30] four-networks thres3

Set 19 [0.30,0.32,0.30,0.28] two-networks low

Set 20 [0.38,0.41,0.37,0.35,0.41] four-networks thres2

Set 21 [0.38,0.37,0.35,0.41] three-networks high

Set 22 [0.35,0.35,0.35,0.37] three-networks high

Set 23 [0.35,0.35,0.37] two-networks high

Set 24 [0.30,0.28,0.25,0.26,0.26] two-networks low

five-networks -

Set 25 [0.27,0.32,0.33] three-networks low

Set 26 [0.38,0.36,0.33,0.34] three-networks low

Set 27 [0.36,0.33,0.34] two-networks low
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Training Example data Class labels

examples Predictive accuracies # input consensus

networks threshold

Set 28 [0.44,0.43,0.41,0.43,0.44] three-networks low

Set 29 [0.44,0.41,0.43,0.44] two-networks low

Set 30 [0.30,0.28,0.34,0.32,0.29,0.28] six-networks -

Set 31 [0.30,0.34,0.32,0.29,0.28] five-networks -

Set 32 [0.45,0.49,0.30,0.49] two-networks high

Set 33 [0.45,0.49,0.49] two-networks high

Set 34 [0.49,0.49,0.49] three-networks high

Set 35 [0.57,0.69,0.55,0.66,0.69] five-networks -

Set 36 [0.57,0.69,0.66,0.69] four-networks thres4

Set 37 [0.82,0.84,0.84,0.85,0.82,0.82] five-networks -

Set 38 [0.82,0.84,0.85,0.82,0.82] four-networks thres3

Set 39 [0.30,0.29,0.32] three-networks low

Set 40 [0.30,0.25,0.24,0.30,0.25] five-networks -

Set 41 [0.30,0.25,0.24,0.30] four-networks thres1

Set 42 [0.30,0.25,0.24] three-networks low

Set 43 [0.50,0.50,0.43] three-networks mid

Set 44 [0.52,0.53,0.47,0.49,0.50,0.50] six-networks -

Set 45 [0.53,0.47,0.49,0.50,0.50] five-networks -

Set 46 [0.53,0.49,0.50,0.50] three-networks mid

Set 47 [0.49,0.50,0.50] three-networks low

Set 48 [0.27,0.26,0.26,0.30] four-networks thres1

Set 49 [0.26,0.26,0.30] three-networks low

Set 50 [0.33,0.34,0.29,0.32,0.34,0.31] six-networks -

Set 51 [0.33,0.29,0.32,0.34,0.31] five-networks -

Set 52 [0.33,0.32,0.34,0.31] four-networks thres2

Set 53 [0.32,0.34,0.31] three-networks mid

Set 54 [0.30,0.28,0.27,0.25,0.26,0.26] six-networks -

Table A.4: Learning heuristics: training examples and class labels
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A.2.2 Learnt heuristic rules

In this section, learnt heuristic rules for 3-6 network inputs are presented.

A.2.2.1 Rules for 3 network inputs

The following rules were learnt for three-networks, using the standard m-

estimate scoring mechanism in ACE:

three-networks :- total networks below(3),

n networks below(1,0.31).

Covers 5/17 positive examples and 0/38 negative examples

This rule means that:

IF the total number of possible input networks is 3 or below

AND there is at least 1 network with predictive accuracy below

or equal to 0.31

THEN three networks is the optimal input
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three-networks :- total networks(4),

n networks above(4,0.18),

n networks below(4,0.43),

predacc cluster(OpenBound,0.35).

Covers 5/12 positive examples and 1/38 negative examples

This rule means that:

IF the total number of possible input networks is 4

AND there are at least 4 networks with predictive accuracy above

or equal to 0.18

AND there are at least 4 networks with predictive accuracy below

or equal to 0.43

AND there is a cluster of accuracies, bounded above at 0.35

THEN three networks is the optimal input

three-networks :- total networks below(5),

n networks above(2,0.44),

n networks below(2,0.50),

predacc cluster(OpenBound,0.43).

Covers 5/7 positive examples and 3/38 negative examples

This rule means that:

IF the total number of possible input networks is 5 or below

AND there are at least 2 networks with predictive accuracy above

or equal to 0.44

AND there are at least 2 networks with predictive accuracy below

or equal to 0.50

AND there is a cluster of accuracies, bounded above at 0.43

THEN three networks is the optimal input

These three rules effectively divide the positive training examples into cate-

gories by the number of possible input networks. The first rule covers cases with

3 networks, the second only covers cases with 4 networks. The third rule covers

cases with 5 or fewer input networks. This means they are fairly specific rules.

Similarly to the rules for two-networks they are mainly based on bounding the

predictive accuracy of the input networks.
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Next, rules were learnt to establish which consensus threshold to apply, low,

mid or high, in order to obtain the optimal network performance with three input

networks:

low :- n networks below(3,0.33).

Covers 5/9 positive examples and 0/8 negative examples

This rule means that:

IF all 3 networks have predictive accuracy below or equal to 0.33

THEN the optimal consensus threshold is low (1-33%)

mid :- n networks below(1,0.31),

n networks above(1,0.34).

Covers 3/5 positive examples and 0/12 negative examples

This rule means that:

IF there is at least 1 network with predictive accuracy below

or equal to 0.31

AND there is at least 1 network with predictive accuracy above

or equal to 0.34

THEN the optimal consensus threshold is mid (34-66%)

high :- n networks above(3,0.35),

n networks below(2,0.49).

Covers 3/3 positive examples and 2/14 negative examples

This rule means that:

IF all 3 networks have predictive accuracy above

or equal to 0.35

AND there are at least 2 networks with predictive accuracy below

or equal to 0.49

THEN the optimal consensus threshold is high (67-100%)

Similarly to the consensus threshold rules for two-networks, these rules specify

that cases where there are higher predictive accuracies require a higher consensus

threshold, and cases with lower predictive accuracies require a lower consensus
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threshold. The boundary for ‘lower’ and ‘higher’ predictive accuracies seems to be

found to be between around 0.34. For example in the rule for the low threshold,

all three networks should have predictive accuracy below or equal to 0.33. For the

mid threshold there should be at least one network with accuracy above 0.34, but

also one network with predictive accuracy below 0.31. Finally, the rule for the

high threshold specifies that all 3 input networks should have predictive accuracy

above 0.35.

A.2.2.2 Rules for 4 network inputs

The following rules were learnt for four-networks, using the standard m-estimate

scoring mechanism in ACE:

four-networks :- predacc gap(LB1,LB2,UB1,0.27),

n networks below(3,0.31).

Covers 8/17 positive examples and 0/38 negative examples

This rule means that:

IF there is a ‘gap’ in the predictive accuracies, where the

accuracies at the upper end of the gap are bound above

by 0.27

AND there is at least 1 network with predictive accuracy below 0.31

THEN four networks is the optimal input

four-networks :- total networks(4),

n networks above(4,0.18),

n networks below(1,0.32),

predacc cluster(0.44,OpenBound ).

Covers 5/9 positive examples and 3/38 negative examples

This rule means that:

IF the total number of possible input networks is 4

AND there are at least 4 networks with predictive accuracy above 0.18

AND there is at least 1 network with predictive accuracy below 0.32

AND there is a cluster of accuracies, bounded below at 0.44

THEN four networks is the optimal input
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The first rule covers examples with very low predictive accuracies — there is a

gap, where the accuracies at the higher end of the gap are below 0.27, and at least

three networks have predictive accuracy below 0.31. The second rule covers cases

where the accuracies are higher — for example, there is a cluster of accuracies

around 0.44.

Next, rules were learnt to establish which consensus threshold to apply, thres1

or thres2, in order to obtain the optimal network performance. Rules are not

learnt for the other thresholds, due to a lack of positive training examples in these

classes — there are only 2 examples for thres3, and 1 example for thres4.

thres1 :- n networks above(2,0.19),

n networks below(2,0.27).

Covers 7/8 positive examples and 1/9 negative examples

This rule means that:

IF there are at least 2 networks with predictive accuracy above

or equal to 0.19

AND there are at least 2 networks with predictive accuracy below

or equal to 0.27

THEN the optimal consensus threshold is thres1 (1-25%)

thres2 :- n networks below(2,0.39),

n networks above(1,0.34).

Covers 5/5 positive examples and 3/12 negative examples

This rule means that:

IF there are at least 2 networks with predictive accuracy below

or equal to 0.39

AND there is at least 1 networks with predictive accuracy above

or equal to 0.34

THEN the optimal consensus threshold is thres2 (26-50%)

Again, these rules specify that cases where there are higher predictive ac-

curacies require a higher consensus threshold, and cases with lower predictive

accuracies require a lower consensus threshold. For a threshold between 1-25%,

there should be at least two networks with predictive accuracy above 0.19 and
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two networks with predictive accuracy under 0.27. For a threshold between 26-

50%, there should be at least one network with predictive accuracy above 0.34

and one network with predictive accuracy under 0.39.

A.2.2.3 Rules for 5 or 6 network inputs

Finally, ACE was used to construct rules for five-networks and six-networks,

using the WRA scoring mechanism in ACE:

five-networks :- total networks(5),

n networks above(4,0.46).

Covers 3/8 positive examples and 0/47 negative examples

This rule means that:

IF there are 5 possible input networks

AND there are at least 4 networks with predictive accuracy above

or equal to 0.46

THEN five networks is the optimal input

five-networks :- total networks(5),

n networks above(1,0.29).

Covers 3/5 positive examples and 0/47 negative examples

This rule means that:

IF there are 5 possible input networks

AND there is at least 1 network with predictive accuracy below

or equal to 0.29

THEN five networks is the optimal input

six-networks :- total networks(6).

Covers 4/4 positive examples and 2/51 negative examples

This rule means that:

IF the total number of possible input networks is 6

THEN six networks is the optimal input

Due to a lack of training examples for five-networks and six-networks,

these rules are not very useful. They mainly rely on the number of possible input
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networks since there are so few examples with five or six possible input networks.

Although the rules for five-networks do include other conditions as well, they

are very specific rules and likely to overfit the training data.

A.2.3 Test case results

In this section the full details of applying the learnt heuristics real data test cases

are provided.

A.2.3.1 Yeast: heat-stress network

The first real data example used is the yeast heat-stress network used in chapters 5

and 6. This is a sub-network of 9 regulatory genes that are related to heat-shock

response. The five microarray datasets are publicly available on the YeastBASE

expression database — see Table 5.3 for more details. The learnt networks are

evaluated by comparing them to documented gene interactions, obtained from the

online YEASTRACT database (Teixeira et al., 2006). The heuristics presented

in Section 7.4.3 were applied to this case in order to find the optimal network

selection and consensus threshold. A comparison of the optimal network selection

and consensus threshold prediction using the heuristics, compared to the actual

outcome, is shown in Table 7.4. Figure A.1 shows the AUC performance of the

prediction-based selection networks, each based on a different number of selected

in input networks.

The learnt heuristics are not able to correctly predict the number of in-

put networks as 3. This is because the example matches the second rule for

two-networks, which allows for five available input networks.

A.2.3.2 Yeast: cell-cycle network

The second real data case again concerns yeast microarray expression datasets,

but this time focuses on the cell-cycle network. The subnetwork consists of 19

genes that are involved in the cell-cycle process (Spellman et al., 1998). Four

publicly available microarray datasets were used, each generated by experiments

focusing on the yeast cell-cycle — more details can be found in Table A.5. The

heuristics presented in Section 7.4.3 were applied to each case in order to find
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Figure A.1: Test case: yeast heat-stress network AUC plot

the optimal network selection and consensus threshold. A comparison of the

optimal network selection and consensus threshold prediction using the heuristics,

compared to the actual outcome, is shown in Table 7.4. Figure A.2 shows the

AUC performance of the prediction-based selection networks, each based on a

different number of selected in input networks.

The learnt heuristics are able to correctly predict the number of input networks

as 4 and the consensus threshold as thres2 (between 26-50%). This case fits

the second rule for four-networks, which requires all four network predictive

Dataset Description Number of Observations

Pramila et al. (2006) Cell-cycle 50

Pramila et al. (2002) Cell-cycle 13

Spellman et al. (1998) Cell-cycle 77

Zhu et al. (2000) Cell-cycle 13

Table A.5: Summary of yeast cell-cycle datasets
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Figure A.2: Test case: yeast cell-cycle network AUC plot

accuracies to be above 0.18, and one network predictive accuracy to be above

0.32. It also meets the criteria for thres2, where one network predictive accuracy

must above 0.34, and two must be below 0.39. However, we also note that this

case also meets the criteria for two-networks and three-networks. This is not

unexpected if we recall that some training examples had multiple labels, if two

or more Consensus networks (different number of network inputs) all performed

very well. In this test case, we can see that the Consensus networks generated

from both two and four networks outperform all input networks and their AUCs

are within 0.015. Additionally, the consensus threshold predicted for two network

inputs is low, which is optimal in this case.

A.2.3.3 E. coli : SOS response network

The final real data example is the E. coli SOS-response network, used in chap-

ter 5. This is a subnetwork of 19 target genes and one transcriptional repressor,

LexA (see Figure 5.3 in Chapter 5). Table 5.2 provides a summary of the four
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Figure A.3: Test case: E. coli SOS-response network AUC plot

available microarray expression datasets, which are all focused on experiments re-

lated to SOS response. The heuristics presented in Section 7.4.3 were applied to

the case in order to find the optimal network selection and consensus threshold. A

comparison of the optimal network selection and consensus threshold prediction

using the heuristics, compared to the actual outcome, is shown in Table 7.4. Fig-

ure A.3 shows the AUC performance of the prediction-based selection networks,

each based on a different number of selected in input networks.

The learnt heuristics are not able to predict the number of input datasets at all

— the example does not fit any of the rules for two-networks, three-networks

or four-networks. This is because this case has four networks that all have

reasonably high predictive accuracies — and there are few synthetic cases in the

training examples similar to this. However, the relatively high predictive accura-

cies do imply that a higher consensus threshold is more appropriate. Indeed, the

actual optimal number of input networks is 2, and the heuristics are able to pre-

dict the correct consensus threshold, since the example matches the second rule

for the high threshold with two input networks, which is indicated for higher pre-
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dictive accuracies, as we have in this example. A high consensus threshold is also

optimal for a three-network selection Consensus network, and close to optimal

for four input networks.
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Glossary

Area Under the ROC Curve (AUC)

A global measure of the classifier performance, and is often used in classi-

fication problems. In this thesis, AUC is used as a measure of comparison

from learnt networks models to the true network. AUC is a value between

0 and 1

Associative Concept Space (ACS)

A biological text mining tool, used in this thesis, that extends the simple

co-occurrence technique

Bayesian network (BN)

A method for representing the dependencies among a set of variables. A

BN has two components - a qualitative representation of the network: a di-

rected acyclic graph (DAG) and conditional probability distributions that

are associated with each variable, which quantify the nature of each depen-

dency

Bayesian Network Meta-Analysis

A post-learning aggregation method for combining BNs, based on combining

confidence levels for network edges from the input BNs

Bootstrapping

The process of estimating a quantity by sampling from an approximating

distribution. In this thesis, bootstrapping is used to construct BNs from

resampled microarray datasets
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Glossary

Concept

In the context of the research in this thesis, a biomedical concept may

be single word objects found in the biomedical literature, such as gene or

organism names, or may be common multiple-word combinations

Concept profile

For use with the ACS, a concept profile is vector of biological concepts with

weights, where the weight describes the strength of the association between

the concept and the concept to which the profile belongs

Confidence level

In this thesis, confidence levels are assigned to network edges based on a

bootstrapping procedure, where an estimate of the confidence level for each

edge is computed by the proportion of networks that contain that edge

Consensus Bayesian Networks (CBNs)

A post-learning aggregation method for combining BNs. A CBN contains

consistent network edges across input BNs

Consensus Bootstrapped Bayesian networks (CBBNs)

A post-learning aggregation method, analogous to CBNs, but for combining

BN models produced using a bootstrap approach

GenBank

An annotated collection of all publicly available DNA sequences, hosted by

the National Center for Biotechnology Information (NCBI)

Gene expression

A process by which genes are copied and translated to proteins. Since

proteins are involved in every cellular process, it is gene expression that

allows all cellular processes to occur
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Glossary

Gene Ontology (GO)

An initiative with the aim of standardising the representation of gene and

gene product attributes across species and databases, by providing a con-

trolled vocabulary of terms for describing gene product characteristics

Gene Regulatory Network (GRN)

A network graph that describes how genes interact in terms of regulation

and expression

Intensity log-ratio

A common measure of gene expression

Kyoto Encyclopedia of Genes and Genomes (KEGG)

An online database of biological systems

Literature-based gene concept profiling

A biological text-mining technique, developed by the Biosemantics Asso-

ciation, for calculating the distances between genes and other biological

concepts. It makes use of the ACS

Meta-analysis

A set of statistical methods, originating in medical statistics, for combining

the results of several studies that address a set of related research hypotheses

Microarray

A high-throughput technology for measuring expression levels for thousands

of genes simultaneously

mRNA

The copy (transcript) of a gene produced during the gene expression pro-

cess. Microarray technology measures expression levels by detecting the

abundance of mRNA present in a sample

205



Glossary

Network model reliability

The reliability, or ability to generalise, of a network model can be measured

based on how well its variable values can be predicted over independent

datasets. A network that can predict values with high accuracy on other

independent datasets can be said to be more reliable

Normalisation

In the context of microarray data, normalisation is the transformation of ex-

pression levels to adjust for systematic variations (arising from variation in

the technology rather than true biological variations) so that measurements

from two different microarray samples can be directly compared

Post-learning aggregation

When reverse-engineering from multiple data sources, reverse-engineering

is performed on each data source separately. The resulting models are then

aggregated

Posterior probability distribution

This distribution represents the knowledge or belief about an uncertain

quantity, after observation of the data

Pre-learning aggregation

When reverse-engineering from multiple data sources, the data is aggregated

prior to the learning/reverse-engineering process

Prediction accuracy

In parameter estimation with BNs, this is the proportion of samples where

the predicted discrete states are correct

Prior knowledge

Pre-existing knowledge. In the context of research presented in this the-

sis, it is information known prior to the data collected from a microarray

experiment
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Glossary

Prior probability distribution

This distribution represents the knowledge or belief about an uncertain

quantity, prior to observation of the data

Protein-protein interaction data

is generated from technology for detecting physical interactions between

proteins. Physically interacting proteins and gene expression are closely

linked

PubMed/Medline

A digital archive of biomedical and life sciences journal literature

Reverse-engineering

Discovery of an underlying model or process based on data or observations

Text-mining

A family of techniques for the automatic extraction of information and

knowledge from text-based sources. Relevant to the research presented in

this thesis, many methods have been developed specifically for the mining

of specialist biological literature

Transcription factor

A gene that initiates the regulation of itself or other genes. Strictly speak-

ing, the transcription factor is the protein that is produced when the gene

becomes expressed

Transcription Factor Binding Site (TFBS) location data

is generated from technology for discovering the binding sites of transcrip-

tion factors. Since a gene becomes expressed when a transcription factor

binds to a segment of DNA close to it, then if the location of binding sites

for a particular transcription factor can be identified, then potential target

genes can be found
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Glossary

Weighted Consensus Networks (WCNs)

A post-learning aggregation method, analogous to CBBNs, but which ul-

tilises weights that represent the quality/reliability of each input boot-

strapped BN model
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