471 research outputs found

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Reasoning about the Reliability of Diverse Two-Channel Systems in which One Channel is "Possibly Perfect"

    Get PDF
    This paper considers the problem of reasoning about the reliability of fault-tolerant systems with two "channels" (i.e., components) of which one, A, supports only a claim of reliability, while the other, B, by virtue of extreme simplicity and extensive analysis, supports a plausible claim of "perfection." We begin with the case where either channel can bring the system to a safe state. We show that, conditional upon knowing pA (the probability that A fails on a randomly selected demand) and pB (the probability that channel B is imperfect), a conservative bound on the probability that the system fails on a randomly selected demand is simply pA.pB. That is, there is conditional independence between the events "A fails" and "B is imperfect." The second step of the reasoning involves epistemic uncertainty about (pA, pB) and we show that under quite plausible assumptions, a conservative bound on system pfd can be constructed from point estimates for just three parameters. We discuss the feasibility of establishing credible estimates for these parameters. We extend our analysis from faults of omission to those of commission, and then combine these to yield an analysis for monitored architectures of a kind proposed for aircraft

    Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing

    Get PDF
    There is an urgent societal need to assess whether autonomous vehicles (AVs) are safe enough. From published quantitative safety and reliability assessments of AVs, we know that, given the goal of predicting very low rates of accidents, road testing alone requires infeasible numbers of miles to be driven. However, previous analyses do not consider any knowledge prior to road testing – knowledge which could bring substantial advantages if the AV design allows strong expectations of safety before road testing. We present the advantages of a new variant of Conservative Bayesian Inference (CBI), which uses prior knowledge while avoiding optimistic biases. We then study the trend of disengagements (take-overs by human drivers) by applying Software Reliability Growth Models (SRGMs) to data from Waymo’s public road testing over 51 months, in view of the practice of software updates during this testing. Our approach is to not trust any specific SRGM, but to assess forecast accuracy and then improve forecasts. We show that, coupled with accuracy assessment and recalibration techniques, SRGMs could be a valuable test planning aid

    Conservative Confidence Bounds in Safety, from Generalised Claims of Improvement & Statistical Evidence

    Get PDF
    “Proven-in-use”, “globally-at-least-equivalent”, “stress-tested”, are concepts that come up in diverse contexts in acceptance, certification or licensing of critical systems. Their common feature is that dependability claims for a system in a certain operational environment are supported, in part, by evidence – viz of successful operation – concerning different, though related, system[s] and/or environment[s], together with an auxiliary argument that the target system/environment offers the same, or improved, safety. We propose a formal probabilistic (Bayesian) organisation for these arguments. Through specific examples of evidence for the “improvement” argument above, we demonstrate scenarios in which formalising such arguments substantially increases confidence in the target system, and show why this is not always the case. Example scenarios concern vehicles and nuclear plants. Besides supporting stronger claims, the mathematical formalisation imposes precise statements of the bases for “improvement” claims: seemingly similar forms of prior beliefs are sometimes revealed to imply substantial differences in the claims they can support

    Probabilistic Model Checking of Robots Deployed in Extreme Environments

    Get PDF
    Robots are increasingly used to carry out critical missions in extreme environments that are hazardous for humans. This requires a high degree of operational autonomy under uncertain conditions, and poses new challenges for assuring the robot's safety and reliability. In this paper, we develop a framework for probabilistic model checking on a layered Markov model to verify the safety and reliability requirements of such robots, both at pre-mission stage and during runtime. Two novel estimators based on conservative Bayesian inference and imprecise probability model with sets of priors are introduced to learn the unknown transition parameters from operational data. We demonstrate our approach using data from a real-world deployment of unmanned underwater vehicles in extreme environments.Comment: Version accepted at the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 201
    corecore