298,580 research outputs found

    A Transactional Model and Platform for Designing and Implementing Reactive Systems

    Get PDF
    A reactive program is one that has ongoing interactions with its environment. Reactive programs include those for embedded systems, operating systems, network clients and servers, databases, and smart phone apps. Reactive programs are already a core part of our computational and physical infrastructure and will continue to proliferate within our society as new form factors, e.g. wireless sensors, and inexpensive (wireless) networking are applied to new problems. Asynchronous concurrency is a fundamental characteristic of reactive systems that makes them difficult to develop. Threads are commonly used for implementing reactive systems, but they may magnify problems associated with asynchronous concurrency, as there is a gap between the semantics of thread-based computation and the semantics of reactive systems: reactive software developed with threads often has subtle timing bugs and tends to be brittle and non-reusable as a holistic understanding of the software becomes necessary to avoid concurrency hazards such as data races, deadlock, and livelock. Based on these problems with the state of the art, we believe a new model for developing and implementing reactive systems is necessary. This dissertation makes four contributions to the state of the art in reactive systems. First, we propose a formal yet practical model for (asynchronous) reactive systems called reactive components. A reactive component is a set of state variables and atomic transitions that can be composed with other reactive components to yield another reactive component. The transitions in a system of reactive components are executed by a scheduler. The reactive component model is based on concepts from temporal logic and models like UNITY and I/O Automata. The major contribution of the reactive component model is a formal method for principled composition, which ensures that 1) the result of composition is always another reactive component, for consistency of reasoning; 2) systems may be decomposed to an arbitrary degree and depth, to foster divide-and-conquer approaches when designing and re-use when implementing; 3)~the behavior of a reactive component can be stated in terms of its interface, which is necessary for abstraction; and 4) properties of reactive components that are derived from transitions protected by encapsulation are preserved through composition and can never be violated, which permits assume-guarantee reasoning. Second, we develop a prototypical programming language for reactive components called rcgo that is based on the syntax and semantics of the Go programming language. The semantics of the rcgo language enforce various aspects of the reactive component model, e.g., the isolation of state between components and safety of concurrency properties, while permitting a number of useful programming techniques, e.g., reference and move semantics for efficient communication among reactive components. For tractability, we assume that each system contains a fixed set of components in a fixed configuration. Third, we provide an interpreter for the rcgo language to test the practicality of the assumptions upon which the reactive component model are founded. The interpreter contains an algorithm that checks for composition hazards like recursively defined transitions and non-deterministic transitions. Transitions are executed using a novel calling convention that can be implemented efficiently on existing architectures. The run-time system also contains two schedulers that use the results of composition analysis to execute non-interfering transitions concurrently. Fourth, we compare the performance of each scheduler in the interpreter to the performance of a custom compiled multi-threaded program, for two reactive systems. For one system, the combination of the implementation and hardware biases it toward an event-based solution, which was confirmed when the reactive component implementation outperformed the custom implementation due to reduced context switching. For the other system, the custom implementation is not prone to excessive context switches and outperformed the reactive component implementations. These results demonstrate that reactive components may be a viable alternative to threads in practice, but that additional work is necessary to generalize this claim

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    Deriving Specifications of Dependable Systems: toward a Method

    Get PDF
    This paper proposes a method for deriving formal specifications of systems. To accomplish this task we pass through a non trivial number of steps, concepts and tools where the first one, the most important, is the concept of method itself, since we realized that computer science has a proliferation of languages but very few methods. We also propose the idea of Layered Fault Tolerant Specification (LFTS) to make the method extensible to dependable systems. The principle is layering the specification, for the sake of clarity, in (at least) two different levels, the first one for the normal behavior and the others (if more than one) for the abnormal. The abnormal behavior is described in terms of an Error Injector (EI) which represents a model of the erroneous interference coming from the environment. This structure has been inspired by the notion of idealized fault tolerant component but the combination of LFTS and EI using rely guarantee thinking to describe interference can be considered one of the main contributions of this work. The progress toward this method and the way to layer specifications has been made experimenting on the Transportation and the Automotive Case Studies of the DEPLOY project.Comment: Published in "12th European Workshop on Dependable Computing, EWDC 2009, Toulouse : France (2009)

    Generative sound art as poeitic poetry for an information society

    Get PDF
    This paper considers computer music in relation to broader society and asks what algorithmic composition can learn from the metaphysical shift which is happening in the so-called information societies. This is explored by taking the mapping problem inherent in the use of extra- musical models in generative composition and presenting a simple generative schema which prioritises sound, ex- ploiting the generative potential of digital audio. It is sug- gested that the exploration of such models has more than aesthetic relevance and that the interdisciplinary nature of digital sound art represents a microcosm of an emerging reality, thereby constituting a poietic playground for com- ing to terms with the implications and challenges of the information age

    Toward a Formal Semantics for Autonomic Components

    Full text link
    Autonomic management can improve the QoS provided by parallel/ distributed applications. Within the CoreGRID Component Model, the autonomic management is tailored to the automatic - monitoring-driven - alteration of the component assembly and, therefore, is defined as the effect of (distributed) management code. This work yields a semantics based on hypergraph rewriting suitable to model the dynamic evolution and non-functional aspects of Service Oriented Architectures and component-based autonomic applications. In this regard, our main goal is to provide a formal description of adaptation operations that are typically only informally specified. We contend that our approach makes easier to raise the level of abstraction of management code in autonomic and adaptive applications.Comment: 11 pages + cover pag
    • …
    corecore