1,677 research outputs found

    Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly

    Full text link
    Motivation: Eugene Myers in his string graph paper (Myers, 2005) suggested that in a string graph or equivalently a unitig graph, any path spells a valid assembly. As a string/unitig graph also encodes every valid assembly of reads, such a graph, provided that it can be constructed correctly, is in fact a lossless representation of reads. In principle, every analysis based on whole-genome shotgun sequencing (WGS) data, such as SNP and insertion/deletion (INDEL) calling, can also be achieved with unitigs. Results: To explore the feasibility of using de novo assembly in the context of resequencing, we developed a de novo assembler, fermi, that assembles Illumina short reads into unitigs while preserving most of information of the input reads. SNPs and INDELs can be called by mapping the unitigs against a reference genome. By applying the method on 35-fold human resequencing data, we showed that in comparison to the standard pipeline, our approach yields similar accuracy for SNP calling and better results for INDEL calling. It has higher sensitivity than other de novo assembly based methods for variant calling. Our work suggests that variant calling with de novo assembly be a beneficial complement to the standard variant calling pipeline for whole-genome resequencing. In the methodological aspects, we proposed FMD-index for forward-backward extension of DNA sequences, a fast algorithm for finding all super-maximal exact matches and one-pass construction of unitigs from an FMD-index. Availability: http://github.com/lh3/fermi Contact: [email protected]: Rev2: submitted version with minor improvements; 7 page

    Detecting Superbubbles in Assembly Graphs

    Full text link
    We introduce a new concept of a subgraph class called a superbubble for analyzing assembly graphs, and propose an efficient algorithm for detecting it. Most assembly algorithms utilize assembly graphs like the de Bruijn graph or the overlap graph constructed from reads. From these graphs, many assembly algorithms first detect simple local graph structures (motifs), such as tips and bubbles, mainly to find sequencing errors. These motifs are easy to detect, but they are sometimes too simple to deal with more complex errors. The superbubble is an extension of the bubble, which is also important for analyzing assembly graphs. Though superbubbles are much more complex than ordinary bubbles, we show that they can be efficiently enumerated. We propose an average-case linear time algorithm (i.e., O(n+m) for a graph with n vertices and m edges) for graphs with a reasonable model, though the worst-case time complexity of our algorithm is quadratic (i.e., O(n(n+m))). Moreover, the algorithm is practically very fast: Our experiments show that our algorithm runs in reasonable time with a single CPU core even against a very large graph of a whole human genome.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    A parallel Euler approach for large-scale biological sequence assembly

    Full text link
    Biological sequence assembly is an essential step for sequencing the genomes of organisms. Sequence assembly is very computing intensive especially for the large-scale sequence assembly. Parallel computing is an effective way to reduce the computing time and support the assembly for large amount of biological fragments. Euler sequence assembly algorithm is an innovative algorithm proposed recently. The advantage of this algorithm is that its computing complexity is polynomial and it provides a better solution to the notorious &ldquo;repeat&rdquo; problem. This paper introduces the parallelization of the Euler sequence assembly algorithm. All the Genome fragments generated by whole genome shotgun (WGS) will be assembled as a whole rather than dividing them into groups which may incurs errors due to the inaccurate group partition. The implemented system can be run on supercomputers, network of workstations or even network of PC computers. The experimental results have demonstrated the performance of our system.<br /

    Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)

    Get PDF
    Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow

    A Predictive Model for Secondary RNA Structure Using Graph Theory and a Neural Network

    Get PDF
    Background: Determining the secondary structure of RNA from the primary structure is a challenging computational problem. A number of algorithms have been developed to predict the secondary structure from the primary structure. It is agreed that there is still room for improvement in each of these approaches. In this work we build a predictive model for secondary RNA structure using a graph-theoretic tree representation of secondary RNA structure. We model the bonding of two RNA secondary structures to form a larger secondary structure with a graph operation we call merge. We consider all combinatorial possibilities using all possible tree inputs, both those that are RNA-like in structure and those that are not. The resulting data from each tree merge operation is represented by a vector. We use these vectors as input values for a neural network and train the network to recognize a tree as RNA-like or not, based on the merge data vector. The network estimates the probability of a tree being RNA-like.Results: The network correctly assigned a high probability of RNA-likeness to trees previously identified as RNA-like and a low probability of RNA-likeness to those classified as not RNA-like. We then used the neural network to predict the RNA-likeness of the unclassified trees.Conclusions: There are a number of secondary RNA structure prediction algorithms available online. These programs are based on finding the secondary structure with the lowest total free energy. In this work, we create a predictive tool for secondary RNA structures using graph-theoretic values as input for a neural network. The use of a graph operation to theoretically describe the bonding of secondary RNA is novel and is an entirely different approach to the prediction of secondary RNA structures. Our method correctly predicted trees to be RNA-like or not RNA-like for all known cases. In addition, our results convey a measure of likelihood that a tree is RNA-like or not RNA-like. Given that the majority of secondary RNA folding algorithms return more than one possible outcome, our method provides a means of determining the best or most likely structures among all of the possible outcomes

    Assembly complexity of prokaryotic genomes using short reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.</p> <p>Results</p> <p>We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for <it>de novo </it>reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).</p> <p>Conclusions</p> <p>Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.</p

    Optimal Assembly for High Throughput Shotgun Sequencing

    Get PDF
    We present a framework for the design of optimal assembly algorithms for shotgun sequencing under the criterion of complete reconstruction. We derive a lower bound on the read length and the coverage depth required for reconstruction in terms of the repeat statistics of the genome. Building on earlier works, we design a de Brujin graph based assembly algorithm which can achieve very close to the lower bound for repeat statistics of a wide range of sequenced genomes, including the GAGE datasets. The results are based on a set of necessary and sufficient conditions on the DNA sequence and the reads for reconstruction. The conditions can be viewed as the shotgun sequencing analogue of Ukkonen-Pevzner's necessary and sufficient conditions for Sequencing by Hybridization.Comment: 26 pages, 18 figure
    corecore