5,381 research outputs found

    Distributed workload control for federated service discovery

    Get PDF
    The diffusion of the internet paradigm in each aspect of human life continuously fosters the widespread of new technologies and related services. In the Future Internet scenario, where 5G telecommunication facilities will interact with the internet of things world, analyzing in real time big amounts of data to feed a potential infinite set of services belonging to different administrative domains, the role of a federated service discovery will become crucial. In this paper the authors propose a distributed workload control algorithm to handle efficiently the service discovery requests, with the aim of minimizing the overall latencies experienced by the requesting user agents. The authors propose an algorithm based on the Wardrop equilibrium, which is a gametheoretical concept, applied to the federated service discovery domain. The proposed solution has been implemented and its performance has been assessed adopting different network topologies and metrics. An open source simulation environment has been created allowing other researchers to test the proposed solution

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    EasyFL: A Low-code Federated Learning Platform For Dummies

    Full text link
    Academia and industry have developed several platforms to support the popular privacy-preserving distributed learning method -- Federated Learning (FL). However, these platforms are complex to use and require a deep understanding of FL, which imposes high barriers to entry for beginners, limits the productivity of researchers, and compromises deployment efficiency. In this paper, we propose the first low-code FL platform, EasyFL, to enable users with various levels of expertise to experiment and prototype FL applications with little coding. We achieve this goal while ensuring great flexibility and extensibility for customization by unifying simple API design, modular design, and granular training flow abstraction. With only a few lines of code, EasyFL empowers them with many out-of-the-box functionalities to accelerate experimentation and deployment. These practical functionalities are heterogeneity simulation, comprehensive tracking, distributed training optimization, and seamless deployment. They are proposed based on challenges identified in the proposed FL life cycle. Compared with other platforms, EasyFL not only requires just three lines of code (at least 10x lesser) to build a vanilla FL application but also incurs lower training overhead. Besides, our evaluations demonstrate that EasyFL expedites distributed training by 1.5x. It also improves the efficiency of deployment. We believe that EasyFL will increase the productivity of researchers and democratize FL to wider audiences

    A Survey of Graph-based Deep Learning for Anomaly Detection in Distributed Systems

    Full text link
    Anomaly detection is a crucial task in complex distributed systems. A thorough understanding of the requirements and challenges of anomaly detection is pivotal to the security of such systems, especially for real-world deployment. While there are many works and application domains that deal with this problem, few have attempted to provide an in-depth look at such systems. In this survey, we explore the potentials of graph-based algorithms to identify anomalies in distributed systems. These systems can be heterogeneous or homogeneous, which can result in distinct requirements. One of our objectives is to provide an in-depth look at graph-based approaches to conceptually analyze their capability to handle real-world challenges such as heterogeneity and dynamic structure. This study gives an overview of the State-of-the-Art (SotA) research articles in the field and compare and contrast their characteristics. To facilitate a more comprehensive understanding, we present three systems with varying abstractions as use cases. We examine the specific challenges involved in anomaly detection within such systems. Subsequently, we elucidate the efficacy of graphs in such systems and explicate their advantages. We then delve into the SotA methods and highlight their strength and weaknesses, pointing out the areas for possible improvements and future works.Comment: The first two authors (A. Danesh Pazho and G. Alinezhad Noghre) have equal contribution. The article is accepted by IEEE Transactions on Knowledge and Data Engineerin
    • …
    corecore