4,062 research outputs found

    Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending

    Get PDF
    A numerical procedure is proposed in this paper for achieving the minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending by using biologically-inspired meta-heuristic optimization algorithms. The problem formulation includes the costs of concrete, reinforcement and formwork, obtaining the detailed optimum design in which the section dimensions and the reinforcement correspond to values used in practice. The formulation has been simplified in order to reduce the computational cost while ensuring the rigor necessary to achieve safe designs. The numerical procedure includes the possibility of using high-strength concrete and several design constraints, such as mĂ­nimum reinforcement and limiting the neutral axis depth. Two numerical examples are presented, drawing comparisons between the results obtained by ACI318 and EC2 standards

    On Bioelectric Algorithms

    Get PDF
    Cellular bioelectricity describes the biological phenomenon in which cells in living tissue generate and maintain patterns of voltage gradients across their membranes induced by differing concentrations of charged ions. A growing body of research suggests that bioelectric patterns represent an ancient system that plays a key role in guiding many important developmental processes including tissue regeneration, tumor suppression, and embryogenesis. This paper applies techniques from distributed algorithm theory to help better understand how cells work together to form these patterns. To do so, we present the cellular bioelectric model (CBM), a new computational model that captures the primary capabilities and constraints of bioelectric interactions between cells and their environment. We use this model to investigate several important topics from the relevant biology research literature. We begin with symmetry breaking, analyzing a simple cell definition that when combined in single hop or multihop topologies, efficiently solves leader election and the maximal independent set problem, respectively - indicating that these classical symmetry breaking tasks are well-matched to bioelectric mechanisms. We then turn our attention to the information processing ability of bioelectric cells, exploring upper and lower bounds for approximate solutions to threshold and majority detection, and then proving that these systems are in fact Turing complete - resolving an open question about the computational power of bioelectric interactions

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Artificial Neurogenesis: An Introduction and Selective Review

    Get PDF
    International audienceIn this introduction and review—like in the book which follows—we explore the hypothesis that adaptive growth is a means of producing brain-like machines. The emulation of neural development can incorporate desirable characteristics of natural neural systems into engineered designs. The introduction begins with a review of neural development and neural models. Next, artificial development— the use of a developmentally-inspired stage in engineering design—is introduced. Several strategies for performing this " meta-design " for artificial neural systems are reviewed. This work is divided into three main categories: bio-inspired representations ; developmental systems; and epigenetic simulations. Several specific network biases and their benefits to neural network design are identified in these contexts. In particular, several recent studies show a strong synergy, sometimes interchange-ability, between developmental and epigenetic processes—a topic that has remained largely under-explored in the literature

    Natural Computational Architectures for Cognitive Info-Communication

    Get PDF
    Recent comprehensive overview of 40 years of research in cognitive architectures, (Kotseruba and Tsotsos 2020), evaluates modelling of the core cognitive abilities in humans, but only marginally addresses biologically plausible approaches based on natural computation. This mini review presentsa set of perspectives and approaches which have shaped the development of biologically inspired computational models in the recent past that can lead to the development of biologically more realistic cognitive architectures. For describing continuum of natural cognitive architectures, from basal cellular to human-level cognition, we use evolutionary info-computational framework, where natural/ physical/ morphological computation leads to evolution of increasingly complex cognitive systems. Forty years ago, when the first cognitive architectures have been proposed, understanding of cognition, embodiment and evolution was different. So was the state of the art of information physics, bioinformatics, information chemistry, computational neuroscience, complexity theory, selforganization, theory of evolution, information and computation. Novel developments support a constructive interdisciplinary framework for cognitive architectures in the context of computing nature, where interactions between constituents at different levels of organization lead to complexification of agency and increased cognitive capacities. We identify several important research questions for further investigation that can increase understanding of cognition in nature and inspire new developments of cognitive technologies. Recently, basal cell cognition attracted a lot of interest for its possible applications in medicine, new computing technologies, as well as micro- and nanorobotics. Bio-cognition of cells connected into tissues/organs, and organisms with the group (social) levels of information processing provides insights into cognition mechanisms that can support the development of new AI platforms and cognitive robotics

    Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems

    Get PDF
    Many decision and optimization problems arising in bioinformatics field are time demanding, and several algorithms are designed to solve these problems or to improve their current best solution approach. Modeling and implementing a new heuristic algorithm may be time‐consuming but has strong motivations: on the one hand, even a small improvement of the new solution may be worth the long time spent on the construction of a new method; on the other hand, there are problems for which good‐enough solutions are acceptable which could be achieved at a much lower computational cost. In the first case, specially designed heuristics or metaheuristics are needed, while the latter hyper‐heuristics can be proposed. The paper will describe both approaches in different domain problems
    • 

    corecore