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Abstract
Cellular bioelectricity describes the biological phenomenon in which cells in living tissue generate and
maintain patterns of voltage gradients across their membranes induced by differing concentrations
of charged ions. A growing body of research suggests that bioelectric patterns represent an ancient
system that plays a key role in guiding many important developmental processes including tissue
regeneration, tumor suppression, and embryogenesis. This paper applies techniques from distributed
algorithm theory to help better understand how cells work together to form these patterns. To do
so, we present the cellular bioelectric model (CBM), a new computational model that captures the
primary capabilities and constraints of bioelectric interactions between cells and their environment.
We use this model to investigate several important topics from the relevant biology research literature.
We begin with symmetry breaking, analyzing a simple cell definition that when combined in single
hop or multihop topologies, efficiently solves leader election and the maximal independent set
problem, respectively – indicating that these classical symmetry breaking tasks are well-matched
to bioelectric mechanisms. We then turn our attention to the information processing ability of
bioelectric cells, exploring upper and lower bounds for approximate solutions to threshold and
majority detection, and then proving that these systems are in fact Turing complete – resolving an
open question about the computational power of bioelectric interactions.
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1 Introduction & Related Work

An exciting emerging field in cellular biology is the study of bioelectricity [17, 25, 22]. This
paper applies techniques from distributed algorithm theory to help advance these efforts.

Bioelectricity describes the patterns of voltage differentials caused by differing concen-
trations of charged ions inside and outside of a cell’s plasma membrane. Compelling new
lab research, influenced by computer science’s use of abstractions, is revealing that these
bioelectric patterns can in some cases play the role of high-level programming languages,
providing a “biocode” that can specify goal states for cellular development that are then
implemented by complex lower-level processes (see [25] for a recent survey).
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19:2 On Bioelectric Algorithms

In this paradigm, altering a bioelectric pattern – e.g., using interventions such as chemical
blockers that modify ion flux, or inserting membrane channels – is like altering the source code
of a computer program, providing a mechanism for controlling how an organism develops. The
ability to manipulate these processes at a high level of abstraction enables potentially massive
breakthroughs in many different important areas, including organ and limb regeneration,
tumor suppression, and powerful new forms of synthetic biology.

1.1 Opportunity
The key to unlocking the power of bioelectricity is understanding how the underlying bioelectric
networks (BENs) interact to form patterns and process environmental input. To date,
biologists have primarily studied these questions by describing specific BEN configurations as
a system of differential equations, and then studying their behavior using analytical simulation.
This provides only observational – not expository – insight into bioelectricity dynamics.

In this paper, we explore another investigatory approach that can yield powerful new
understanding: the biological algorithms approach [30, 29]. By treating a given BEN
configuration as a distributed algorithm running in a well-defined distributed system model,
we can apply the tools of distributed algorithms to prove results about a network’s behavior,
identify network designs that solve specified problems, produce lower bounds and impossibility
results, and even assess the general computational power of the setting in question.

To do so, we begin in Section 2 by describing and motivating the cellular bioloelectric
model (CBM), a new computational model, designed in consultation with biologists who
directly study these phenomena, that abstracts important capabilities and constraints of real
world cellular bioelectrical networks. This model assumes a collection of cells, which are
connected in a network topology that describes which cell pairs can directly interact (e.g.,
through ligand signaling). To simplify the model, time proceeds in synchronous rounds. The
state of each cell at the beginning of a round is captured by a single value that describes the
voltage potential across its plasma membrane. A gradient parameter captures the rate at
which this potential increases or decreases toward an equilibrium due to ion flux through ion
channels in its membrane.

Cells can communicate and compute through bioelectric events, in which a cell can
induce a sudden increase or decrease to its potential (e.g., by pumping ions in/out, or
opening/closing ion gates), and release aionic ligand molecules that can induce a sudden
potential changes in its neighboring cells in the network topology. For each cell, and each
bioelectrical event, a probability function specific to that event maps the cell’s current
potential to the probability of the event firing. To maintain biological plausibility, our model
requires that these probability function are monotonic, and allows each cell definition to
include only a constant number of distinct bioelectric events.

Though the core computational process in the CBM – the cell – is quite simple and
restricted, we are able to show that they are well-suited to exactly the types of distributed
computational tasks that researchers now attribute to bioelectric behavior. Below we
summarize our results and emphasize the concrete connections they form to active areas of
biological inquiry.

1.2 Our Results: Symmetry Breaking
One of the key open problems in cellular bioelectrics is understanding the stochastic processes
that allow otherwise identical cells to distinguish themselves into set patterns. We study
these symmetry breaking tasks in Section 3, focusing in particular on the KnockBack cell
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definition (see Section 3.1). This definition captures one of the simplest possible symmetry
breaking strategies. Cells start with a low potential that gradually increases toward a higher
equilibrium. As a cell’s potential increases, it passes through a competition range in which,
with constant probability, it fires a bioelectric event that bumps up its potential and emits a
ligand that will reduce the potential of nearby cells. If it makes it through the competition
range, its potential is high enough that the cell begins firing with probability 1 until its
reaches a threshold after which it can begin a morphological transformation into a leader.

Though simple, KnockBack turns out to be an effective symmetry breaker. In Section 3.2,
we study this strategy in a single hop (i.e., fully connected) network topology. We prove
that not only does it safely elect a single cell to be leader, it does so in only O(log (n/ε))
rounds, with probability at least 1 − ε, where n is the network size. For high probability
(i.e., ε < 1/n), this bound is faster than the O(log2 n)-round algorithm from a recent study
of symmetry breaking with constant-size state machines [21]. It also matches the optimal
Θ(logn) bound on leader election with unrestricted state machines under the comparable
network assumptions of a shared communication channel and collision detection [31].

In Section 3.3, we turn our attention to the behavior of KnockBack in connected multihop
networks that satisfy the natural unit ball graph constraints [23] (which requires the topology
to be compatible with the embedding of the cells in a reasonable metric space). In this
setting, we consider the maximal independent set (MIS) problem, in which: (1) every cell
must either become a leader or neighbor a leader; (2) no two neighbors are leaders. Our
consideration of the MIS problem is not arbitrary. A 2011 paper appearing in the journal
Science [4] conjectures that nervous system development in flies solves the MIS problem on a
layer of epithelial cells to evenly spread out sensory bristles, motivating the investigation of
biologically plausible strategies for solving this classical problem (c.f., [2, 33]).

We show, perhaps surprisingly, that the simple KnockBack strategy turns out to provide
an effective solution to the MIS problem as well. In more detail, we prove that with high
probability in the network size n, it establishes a valid MIS in at most O(polylog(∆) logn)
rounds, where ∆ is the maximum degree in the network (which in many biological settings,
such as in [4], is likely a small constant).

Equally important for the study of bioelectrics, we show this strategy to be self-stabilizing.
Even if you start each cell at an arbitrary initial potential, the system will efficiently stabilize
to a valid MIS. The strategy is unique in that it requires only a single constant probability
value in its definition, as opposed to the logn distinct probabilities used in most existing
efficient solutions, including those proposed in existing biological distributed algorithm
papers [4, 2, 33].

Given these powerful properties of the KnockBack strategy, plus a simplicity in design
that makes it an easy target for natural selection to identify, we argue that it represents a
reasonable (testable) hypothesis that bioelectric mechanisms might be drive these symmetry
breaking tasks in real cellular systems.

1.3 Our Results: Information Processing
Another previously mentioned key open problem in cellular bioelectrics is understanding
the capacity of cells to process information using bioelectric interactions. One conjecture
is that simple interactions of the type captured in the CBM are not capable of much more
than simple pattern generation (e.g., generating an MIS with KnockBack cells). A competing
conjecture is that these interactions are actually capable of performing a wide variety of
non-trivial computation.

DISC 2019
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In this paper, we use the CBM to provide support for the latter view of biological reality.
We begin in Section 4 by studying input type computation, a simple form of information
processing also studied in the biologically-plausible population protocol and chemical reaction
network models (see model comparison below). In input type computation, the goal is to
compute an output based on the number of cells in the system of one or more designated types.
Two classical problems of this type are threshold detection [5], which computes whether the
number of sick cells in the system is beyond a fixed threshold k, and majority detection [7],
which computes whether there are more A cells than B cells in the system.

We study threshold detection in Section 4.1. For small thresholds, we present a simple
cell that solves the problem exactly with no error.1 For larger thresholds, we present a
cell definition that for any error ε, correctly detects that the threshold is exceeded if the
count n is greater than kτ , and correctly detects that it is not exceeded if n < k/τ , for
τ = O(log (1/ε)). We conclude by proving that any solution that works for general k values
must have a non-zero error probability, regardless of how large we allow τ to grow.

In Section 4.2, we turn our attention to majority detection. We provide symmetric cell
definitions for type A and B cells. For any constant error bound ε > 0, these cells will
correctly detect the majority type with probability 1− ε so long as there is a sufficiently large
constant factor more of the majority type (for a constant factor defined relative to ln (1/ε)).

The general threshold detection solution is straightforward: cells send a ligand with
probability 1/k, and associate any received ligands with an exceeded threshold. The majority
detection solution has cells increase the firing probability of a bioelectric event from a small
lower bound to a constant as their potential increases towards equilibrium: whichever cell
type fires first is assumed to be the majority type. In both cases, more refined probabilistic
analysis would likely lead to tighter bounds, but the solutions and lower bound in Section 4
are sufficient to support the conjecture that bioelectric interactions can approximate standard
input type computations (albeit it only probabilistically).

Finally, in Section 5 we consider a more general form of information processing, in which
the input value to be processed in a given execution is encoded in the initial value of one
or more designated input cells (for some encoding scheme specified by the designer of the
cellular system). Understanding the set of functions that can be computed by such systems
provides insights into the computational power of bioelectrics. With this motivation in mind,
we prove, perhaps surprisingly, that bioelectric cells are Turing Complete. In slightly more
detail, we prove that for any deterministic Turing machine (TM) M , there exists a finite
collection of cells including a designated input cell, connected in a single hop network, such
that for any TM input w, if you set the initial potential value of the input cell to a proper
encoding of w, the system will correctly simulate M on w. Of course, one of the TMs that
can be simulated is a universal TM, indicating the existence of a computationally universal
collection of bioelectric cells.

1.4 Comparison to Existing Models
Generally speaking, in studying the intersection of biology and algorithms there are two main
types of computational models used: those with bio-plausible computation and those with
bio-plausible constraints. The first category describes models in which the actual method
of computation is motivated by a specific biological context. Algorithms in these models

1 In this context, “small” means that k is smaller than the maximum number of different ligand counts a
cell can can distinguish, allowing the cell to directly count the sick cells (see the definition of binding
bound from Section 2).
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cannot simply be described in standard pseudocode or state machine descriptions. They must
instead be specified in terms of the particular bio-plausible computation method captured
by the model. Well-known models of this type include neural networks [32, 36, 27, 26],
chemical reaction networks [37, 12, 11], and population protocols [5, 8, 7, 9, 6, 10] (which
are computationally equivalent to certain types of chemical reaction networks).

The other type of model used to study biological algorithms are those with bio-plausible
constraints. These models describe computation with the same standard discrete state
machine formalisms assumed in digital computers. They constrain algorithms, however,
by adding biologically-motivated limits on parameters such as memory size, the message
alphabets used for communication, and the behavior of the communication channels. Well-
known models of this type includes the ANTS model [19, 24, 13, 20, 35], the stone age
computing model [18], and the beeping model [16, 15, 28, 14, 1, 34, 3, 21].

Both models are useful for applying algorithmic tools to understanding biological systems.
The bio-plausible computation models focus more on understanding the low level processes
behind particular behaviors, while the bio-plausible constraints models focus more on identi-
fying general distributed strategies, and understanding the minimum resources/assumptions
required for useful distributed coordination.

The CBM is most accurately categorized as a bio-plausible computation model. Existing
studies of the stone age and beeps computing models already shed light on what can be
computed by collections of simple state machines with basic signaling capabilities. The
goal here is to understand what can be computed with the specific bioelectric mechanisms
implemented in living tissue. This goal is important as our work is designed to be relevant
to system biologists that are studying and manipulating these specific mechanisms.

1.5 Cells vs. Neurons
There are interesting connections between the CBM and artificial neural network models.
The action potential that drives neural computation is itself a bioelectric mechanism. Indeed,
many of the basic artificial neural network models can be implemented as special case of
our general CBM. The recent work in bioelectricity that motivates the CBM, however, deals
with bioelectric activity outside of the neural context, which changes the relevant challenges.
In neural networks, for example, the “algorithm designer” gets to carefully construct the
network topology and precisely calibrate each cell (i.e., determine their exact connection
weights). In the non-neural contexts that motivate this work, by contrast, the network
topologies are either simple (single hop) or a priori unknown to the computing cells (an
arbitrary multihop graph), and because pattern formation is a key behavior in this context,
the focus is often on initially identical cells that break symmetry stochastically. In other
words, though the CBM networks we study use similar underlying chemical mechanisms as
neural networks, their behaviors are strongly distinguished.

1.6 Cells 6= State Machines
A key factor differentiating the CBM from existing bio-plausible constraint models is that
the cell formalism is computationally incomparable to a traditional state machine. Consider
a basic task such as outputting a repeated pattern: ABCABCABC.... This is trivial for a
discrete state machine: cycle through three states, one for each output symbol. It is not hard
to show, however, that this behavior cannot be implemented by a cell in the CBM. The key
difficulty is the required monotonicity for firing functions driving bioelectric events (which
is an important property of the real biological cells being modelled). A simple argument

DISC 2019
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establishes that for any cell, there must be at least two symbols S1, S2 ∈ {A,B,C}, such
that whenever S1 has a non-zero probability of being output, so does S2 – eliminating the
possibility of perfectly repeating pattern. At the same time, we cannot necessarily simulate
an arbitrary cell with a finite state automaton either, since each cell stores an analog and
unbounded potential value. It is therefore unclear how to use an existing bio-plausible
constraint model to directly explore bioelectric dynamics – directly modeling the bioelectric
dynamics seems necessary for understanding these systems.

1.7 Why Study This Model?
A shortcoming of the biological algorithms approach is that it can spawn an unlimited number
of new models. The difficult question for advancing this field is identifying which models are
actually worth ongoing examination In defense of the CBM, we note that it was created in
response to interactions with biologists who were excited about the potential of bioelectricity
and increasingly comfortable borrowing ideas from computer science. The details of the
CBM presented here were identified in consultation with these biologists, and the initial
problems we study were directly motivated by questions in the existing literature. Even so,
we made several modelling decisions that can be questioned (e.g., regarding both fidelity and
tractability), and only future attempts to use the CBM to better understand biology will
help to resolve those questions. Successful synthesis of algorithm theory and biology is an
exceedingly hard endeavor, but we contend that this direction is well-motivated.

2 The Cellular Bioelectric Model

Here we define the cellular bioelectric model (CBM), a synchronous computation model that
abstracts the key capabilities and constraints of bioelectric networks.

2.1 Biology Background
A bioelectric network describes the bioelectric properties of a collection of cells in some
well-defined space. The key property describing the network is the net difference in charged
ion concentration between the inside of each cell and the extracellular environment. There
are two main mechanisms by which the voltage across a given cell’s plasma membrane can
change. The first is charged ions moving in or out of membrane channels driving the cells
interior ion concentration toward equilibrium with the outside extracellular environment.
The second mechanism is ligand signalling. A given cell’s voltage can induce the release of
special signalling molecules called ligands into the extracellular environment. These ligands
can then bind to receptors on nearby cells, either opening channels in the receiver’s membrane
or activating ion pumps, rapidly changing the ion concentration of the receiver. The release
of ligands by the cell can also cause a sharp change to its own ion concentration through
similar mechanisms. These bioelectric events are stochastic in nature with a probability that
seems to depend monotonically on a cell’s current voltage; e.g., the probability of an event
either becomes increasingly more or less likely as the voltage grows.

The below model captures the core properties of these dynamics. The voltage of each
cell is captured by a single analog potential value, while we capture the passive drive toward
equilibrium with both an equilibrium value and a rate at which each cell’s potential drives
toward that equilbrium. Bioelectric events are described by probability functions that map
cellular potential values to the probability of the event firing. Finally, we use a graph to
describe the cellular topology, where an edge (u, v) means that the cells corresponding to u
and v are within ligand signalling range.
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By necessity, this model simplifies the real biology in several important ways. For example,
our discrete bioelectric events actually approximate analog non-linear responses to signaling,
and likely limit the full range of signalling interactions possible in real systems. In addition,
we consider only anionic ligands (no charge), whereas some well-known bioelectric interactions
seem to rely on cationic ligands that change the charge of the extracellular environment.
Also notable, for the sake of simplicity, we omit the inclusion of gap junctions, which are
direct channels between cell pairs that can open and close in response to the voltage gradient
induced by their endpoints.

2.2 Cells

Fix a non-empty and finite set L containing the ligands cells use to drive bioelectrical
interactions. We define a bioelectric event to be a pair (f, (δ, s)), where f : R→ [0, 1] is a
firing function from real numbers to probabilities, and (δ, s) consists of a potential offset
value δ ∈ R, and a ligand s ∈ L. We also define a membrane function to be a function g
from multisets defined over L to real numbers.

Pulling together these pieces, a cell in our model is described by a 6-tuple (q0, σ, λ, ω, g,B),
where q0 ∈ R is the initial potential value of the cell, σ ∈ R is the equilibrium potential
that the cell will drive its internal potential toward (i.e., through ion flux), λ ∈ R+ is a
non-negative real number describing the gradient rate at which the cell’s potential moves
toward σ, ω ∈ R is the smallest possible potential for the cell, g is a membrane function, and
B is a set of bioelectric events. For a given cell c, we use the notation c.q0, c.σ, c.λ, c.ω, c.g, c.B
to refer to these six elements of the cell’s tuple.

2.3 Systems and Executions

A system in our model consists of a non-empty set C of n = |C| cells, an undirected graph
G = (V,E) with |V | = n, and a bijection i : C → V assigning cells to graph vertices. For
simplicity, in the following we sometimes use the terms cell u or node u, for some u ∈ V , to
refer to the unique cell c ∈ C such that i(c) = u.

An execution proceeds in synchronous rounds that we label 1, 2, 3, .... At the beginning
of each round r, we define the configuration Cr : C → R as the bijection from cells to their
potential values at the beginning of round r. For each c ∈ C, C1(c) = c.q0. That is, each cell
starts with the initial potential value provided as part of its definition. The configuration
for each round r > 1 will depend on the configuration at the start of round r − 1, and the
(potentially probabilistic) behavior of the cells during round r − 1.

In more detail, each round r ≥ 1 proceeds as follows:

1. For each cell c ∈ C, initialize pc ← Cr(c) to c’s potential at the start of round r. We will
use pc to track how c’s potential value changes during this round. Also initialize multiset
Mc = ∅. We will use Mc to collect ligands sent toward c during this round.

2. For each cell c ∈ C, and each bioelectric event (f, (δ, s)) ∈ c.B, this event fires with
probability f(Cr(c)). If the event fires, update pc ← pc+δ and add a copy of s to multiset
Mc′ , for each cell c′ ∈ C such that {i(c), i(c′)} ∈ E (that is, for each cell c′ that neighbors
c in G).

3. After processing all rules at all cells, the round proceeds by having cells process their
incoming ligands. For each cell c ∈ C, update pc ← pc + c.g(Mc). That is, update the
potential change according to c’s membrane function applied to its incoming ligands.

DISC 2019
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4. Finally, we calculate the impact of the gradient driving each cell c’s potential toward its
equilibrium value. In more detail, let z = Cr(c) − c.σ. We define the gradient-driven
potential change for c in round r, denoted λr(c), as follows:

λr(c)←



−c.λ if z ≥ c.λ
−z if 0 < z < c.λ

0 if z = 0
z if −c.λ < z < 0
c.λ if z ≤ −c.λ

We add this gradient-induced offset to c’s potential: ,pc ← pc + λr(c).
5. The final step is to the initial potential for r + 1 for each c ∈ C, by performing a

final check that the potential did not fall below the cell’s lower bound in the round:
Cr+1(c)← max{pc, c.ω}.

2.4 Natural Constraints on Cell Definitions
To maintain biological plausibility, our model includes the following natural constraints on
allowable cell definitions:

Constraint #1: Each cell definition includes at most a constant number of bioelectric
events.
Constraint #2: Firing functions are monotonic.
Constraint #3: For each membrane function g, there must exist some constant b > 0,
such that for every possible ligand multiset M , g(M) = g(M̂), where M̂ is the same as M
except every value that appears more than b times in M is replaced by exactly b copies
of the value in M̂ . We call the value b the binding bound for that cell definition.

2.5 Expression Events & Thresholds
In real biological systems, bioelectric patterns induce morphological changes driven by lower-
level processes. To capture this transformation we introduce the notion of expression events
into our model (named for the idea that bioelectics regulates gene expression).

In more detail, some of our problem definitions specify a potential threshold such that
if a cell’s potential exceeds this threshold, an irreversible morphological transformations
begins. This occurs at the beginning of each round, i.e., if a cell begins round r with a
potential that exceeds the event threshold, we apply the event. For example, in studying
leader election (see Section 3), we assume once a cell passes a given threshold value with its
potential it transforms into a leader, at which point it stops executing its original definition
and transforms neighbors that have potential values below the threshold into non-leaders.
The specification and motivation for specific expression thresholds are included as part of
the problem definitions.

3 Symmetry Breaking

A fundamental task in bioelectric networks is generating non-trivial bioelectric patterns that
can then direct cellular development. This requires symmetry breaking. With this in mind,
we study the symmetry breaking capabilities of a natural, but surprisingly effective, cell
called KnockBack. We summarize its ability to elect a leader in single hop networks, and to
efficiently generate maximal independent sets in multihop networks.
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3.1 The KnockBack Cell
We define a KnockBack cell as follows:

KnockBack cell definition

q0 = 0 B = {(f, (1/2,m))}, where:
λ = 1/2, σ = 2, ω = −2 f(x < 1/2) = 0
g(|M | > 0) = −(3/2) f(1/2 ≤ x < 1) = 1/2
g(|M | = 0) = 0 f(x ≥ 1) = 1

leader expression rule threshold: ≥ 2

The KnockBack cell implements a natural symmetry breaking strategy. It is initialized with a
low initial value of q0 = 0 that is driven toward the equilibrium of σ = 2 at a gradient rate of
λ = 1/2. As a cell’s potential value passes through the range of [1/2, 1), its single bioelectric
event (f, (1/2,m)) fires with constant probability. If this event fires, the cell increases its
potential by 1/2 (e.g., by pumping in more ions), and emits the ligand m, which will bind
with its neighbors in the topology. If at least one of the cell’s neighbor emits the ligand m,
then that cell will decrease its potential by −(3/2) (e.g., by pumping out ions).

If a cell makes it to a potential value of 1 or greater, this event starts firing with probability
1. If a cell makes it to potential value of 2 or greater, it executes the leader expression event,
which makes it a leader, and makes each neighbor below the threshold into non-leaders.

Two neighbors cannot both become leaders because any cell that becomes a leader in
some round r + 1, must have spent round r at a potential value where it fires its bioelectric
event with probability 1. If two neighbors fire this event in r, however, they both have a
net decrease in their potential, preventing them from becoming leaders in r + 1. The time
required for a leader to emerge is more complicated to derive, especially in the multihop
context. The intuition behind these analyses, however, is that when multiple nearby cells
simultaneously have potential values in the competition range of [1/2, 1), it is likely that
some will fire their event and some will not, aggregating inequality in their competition
status until only a single leader remains.

3.2 Single Hop Leader Election
Consider a single hop (i.e., fully-connected) network consisting of n > 0 copies of the
KnockBack cell defined in Section 3.1. We study the ability of this system to solve the leader
election problem, which requires the system to converge to a state in which one cell is a
leader and all other cells are non-leaders. We prove that the system never elects more than
one leader, and that for any error probability ε > 0, with probability at least 1− ε it elects a
leader in O(log (n/ε)) rounds. As we detail in Section 1, this round complexity is comparable
to the best-known solutions in more powerful computational models. Formally:

I Theorem 1. Fix some error bound ε > 0 and network of n ≥ 1 KnockBack cells. With
probability at least 1− ε, a leader is elected within O(log (n/ε)) rounds. There is never more
than 1 leader elected.

The full proof, deferred to the full version of this paper (found on arXiv), tackles
the liveness and safety properties separately. The safety property follows directly from the
argument summarized above about the impossibiity of two cells making it through the gateway
potential where both would fire events and knock each other back out of immediate contention
for leadership. The liveness argument proves that the set of contenders probabilistically
bifurcates over time into two set A and B, where once in B a cell is no longer ever again in
contention. We now provide a brief summary of the analysis.
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Preliminaries

To understand the leader election process, we must first understand how the potential of a
cell evolves. In each round, a cell c changes potential for three reasons: it sends a ligand, it
receives a ligand, and the positive gradient, as summarized in this table:

send no send
receive −1/2 −1

no receive 1 1/2

Safety

We now prove that at most one cell becomes leader.

I Lemma 2. A single hop network comprised of KnockBack cells never elects more than one
leader.

Proof. Assume for contradiction that two different cells c and c′ both become a leader during
the same round r > 1.

Since c and c′ first reached potential ≥ 2 in round r, the largest possible increase in
potential is 1, and the smallest possible increase in potential is 1/2, it follows that both must
have started round r − 1 with a potential in {1, 3/2}.

Therefore, both c and c′ sent ligands in round r − 1, and hence both c and c′ decreased
their potential by 1/2 during round r − 1, starting round r with a potential in {1/2, 1},
contradicting the assumption that both cells are elected leader in r. J

Time Complexity

We now show that it does not take too long to elect a leader with reasonable probability. We
first identify a set of contenders. Let p(r) be the maximum potential of any cell in round r,
and let A(r) be the cells with potential p(r); these are the contenders. Let B(r) be all the
other cells with potential < p(r), i.e., the non-contenders. We can show, by a case analysis,
that once a cell is no longer contending, it will never contend again:

I Lemma 3. If cell c is in B(r) in some round r, then cell c is in B(r′) for all r′ ≥ r.

We say that a round is a competition round if there is at least one cell with potential at
least 1/2, and no cell with potential at least 1. In a contention round, there are at least some
cells that send ligands with probability 1/2, and no cell that sends ligands with probability
1. We can show, again by a case analysis, that competition rounds occur frequently:

I Lemma 4. Fix some round r ≥ 1. If r is a competition round then either: r + 2 is a
competition round or a leader is elected by r + 2.

Since (by definition) round 2 is a competition round, in fact, every even round will be
a competition round. An important property of competition rounds is that with constant
probability they reduce the number of cells in A by a constant fraction due to the case in
which some cells send a ligand and some do not.

I Lemma 5. If r is a competition round and A(r) contains at least 2 cells, then with
probability at least 1/12, the set A(r + 1) ≤ (3/4)A(r).
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We can now conclude the proof that there is eventually one leader. We know that all
the even rounds are competition rounds, and in each even round we reduce the competitor
set A(r) by a constant fraction with constant probability, as long as their are at least
two competitors. The set A(r) never becomes empty (as there is always some cell with
the maximum potential), and never increases in size. Hence by a Chernoff Bound, with
probability 1− ε, within O(log(n/ε)) rounds there have been at least logn rounds in which
A(r) has been successfully reduced by a constant fraction, implying that at this point, the
set A(r) contains only one cell. The last remaining competitor becomes leader soon after
that occurs.

3.3 Maximal Independent Sets

We now study the behavior of the KnockBack cell when executed in a multihop network
topology that satisfies the natural unit ball graph property (see [23]). We show, perhaps
surprisingly, that this simple cell efficiently solves the maximal independent set (MIS) problem
in this context – providing what is arguably one of the simplest and most biologically-plausible
explanations for how interacting cells might generate these useful patterns. Details and
proofs can be found in the full version of this paper (posted on arXiv).

Solving the MIS problem requires that the system satisfy the following two properties:
(1) maximality, every cell is a leader or neighbors a leader; and (2) independence, no two
neighbors are leaders. We prove that the leaders elected by KnockBack in a multihop network
always satisfy property 2, and that with high probability in the network size n, property 1
is satisfied in O(polylog(∆) logn) rounds, where ∆ is the maximum degree in the network
topology (and in many biological contexts, likely a small constant). We then show that the
algorithm still efficiently stabilizes to an MIS even if we start cells at arbitrary potential
values, an important property for noisy biological contexts.

As we elaborate in Section 1, the simplicity, efficiency, and stabilizing nature of generating
MIS’s with KnockBack leads us to hypothesize that bioelectrics might play a role in the
observed generation of MIS patterns in the epithelial cells of flies [4]. The round complexity
of our solutions, though not theoretically optimal, is comparable to existing solutions in more
powerful computation models. Formally:

I Theorem 6. Consider a network of n ≥ 1 KnockBack cells connected in a unit ball graph
G with constant doubling dimension and maximum degree ∆. With probability at least
1 − 1/n, all cells terminate within O(polylog(∆) log(n)) rounds, with the set of resulting
leaders defining an MIS on G.

Safety

First, we observe that if a cell reaches potential 1.5, then forever thereafter it continues
to have high potential, while all of its neighbors remain with negative potential. This
immediately implies that two neighbors cannot both be in the MIS. The argument here is
nearly identical to Lemma 2.

I Lemma 7. Let c and c′ be two neighboring cells. It is never the case c and c′ both have
potential > 1.5.

DISC 2019



19:12 On Bioelectric Algorithms

Time Complexity

The more interesting task is proving that eventually, every cell or one of its neighbors will
enter the MIS, and that this will happen quickly.

A cell is said to be in the MIS if it has potential at least 2. We analyze the behavior of
active cells, i.e., those that are not in the MIS and that do not have any neighbors in the MIS.

We focus on cells whose potential is a local maximum, i.e., where every neighbor of c has
potential no greater than that of c. If a cell is a local maximum, it may still have neighbors
of equal potential – these are its competitors for entering the MIS. In fact,if a cell c is a local
maximum and, and if cell c has approximately d competitors with equal potential, then it
has (approximately) probability 1/d of entering the MIS within O(log ∆) rounds.

We will want to identify cells that are likely going to enter the MIS quickly, or have a
neighbor that is likely to enter the MIS quickly. We define a quick-entry cell as follows:

Cell c is active.
Cell c is a local maximum.
Every neighboring competitor of c (with equal potential to c) is also a local maximum.
If cell c has d neighboring competitors, then each of the neighboring competitors has at
most 2d neighboring competitors of its own.

We will show that if c is a quick-entry cell, then either it or one of its neighbors will enter
the MIS quickly, since each of these d+ 1 cells has (approximately) probability ≥ 1/2d of
entering the MIS (sidestepping issues of independence, which is the key challenge in proving
this lemma).

I Lemma 8. Consider the subgraph consisting only of active cells. Let c be a quick-entry
cell. Then with probability at least 1/16, either c or a neighbor of c enters the MIS within
O(log ∆) rounds.

Proof (Sketch). Let S be the set consisting of c and its neighbors with the same potential.
Let s = |S|. Notice every cell in S has at most 2s neighboring competitors, and recall that
every cell in S is a local maximum.

In every round, we update S as follows: if c′ ∈ S is a cell in S, and if the current round
is a competition round for c′ in which c′ does not send a ligand, then we remove c′ from S.

S is the set of cells that remain candidates for entering the MIS, and every cell in S remains
a local maximum. All the cells in S will maintain the same potential. Competition rounds
are those in which cells in S have potential 1/2. Cell in S continue entering competition
rounds every other round until either S is empty or some cell in S enters the MIS.

A cell in S is a winner if, over log(4s) competition rounds: (i) it sends in all the competition
rounds, and (ii) every one of its neighbors with the same potential, but not in S, has at
least one competition round in which it does not send. Since each cell has at most 2s such
neighbors, we can show that the probability that a cell in S wins is at least 1/(8s).

We can then analyze the event W (c′) that: (i) cell c′ is a winner, and (ii) no other cell in
S sends in all the competition rounds. These events are disjoint, and the probability of a
cell in S sending in all the competition rounds is independent of the behavior of other cells
in S. So we can show that for each cell c′ in S, this event W (c′) occurs with probability at
least 1/(16s).

This implies that with probability ≥ 1/16, by the end of the competition rounds, there is
exactly one cell c′ in S that is a winner, and goes on to enter the MIS in O(1) rounds. J
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Next, we show that there is always a quick-entry cell no more than O(log ∆) hops away:

I Lemma 9. Consider the subgraph consisting only of active cells. For every cell c′ active
in round r, there exists a quick-entry cell c within distance O(log ∆).

Proof (Sketch). The proof of this is constructive, beginning at cell c and moving through
the graph until we find a suitable cell not too far from c.

Beginning at c, we repeatedly move to any active cell within distance (log(∆) + 2) that
has larger potential. Since potential ranges from −3 to 2 by multiples of 1/2, within 10 steps
this process stops at some c′. All the cells with the same potential as c′ within distance
log(∆) + 2 of c′ are local maxima.

Next, we repeat the following: If c′ has d neighbors that are competitors (i.e., have the
some potential), and if any neighbor of c′ that is a competitor has more than 2d neighbors
that are competitors, then we move to that neighbor. Since the number of neighboring
competitors doubles at each step, this terminates within log ∆ rounds.

The resulting cell is a quick-entry cell, and within distance O(log(∆)) of the initial
cell c. J

Putting together the previous two lemmas, we conclude:

I Lemma 10. Given any cell c active in round r, with probability at least 1/16 there is a
cell within distance O(log ∆) that enters the MIS within O(log ∆) rounds.

Finally, we leverage the assumption that the underlying graph topology G = (V,E) is a
UBG with constant doubling dimension. A graph G = (V,E) is UBG [23] if it satisfies the
following two constraints: (1) there exists an embedding of the nodes in V in a metric space
such that there is an edge {u, v} in E if and only if dist(u, v) ≤ 1; and (2) the doubling
dimension of the metric space, defined as the smallest ρ such that every ball can be covered
by at most 2ρ balls of half its radius, is constant. (In the real-world, where physical cells are
embedded in a two or three-dimensional Euclidean space and neighboring cells can interact,
the resulting topology is UBG.) UBG graphs provide the following standard property:

I Lemma 11. For every independent set I and cell c, there are O(kρ) cells in I within
distance k of c.

We can now prove Theorem 6 by arguing that for a cell c, it either enters the MIS or it has
a quick-entry cell within distance O(log(∆)) that enters the MIS with constant probability.
Since there are a bounded number of cells within distance O(log(∆)) that can legally enter
the MIS (due to the UBG property), we can bound how long until cell c is no longer active.

Stabilization

Throughout the analysis above, we assumed for simplicity that all the cells began with
potential precisely zero. However, it turns out that is not in fact necessary. Notably, if the
potentials begin too low, e.g., < −3, then eventually the potential climbs into the normal
range (due to the gradient effect), unless a neighbor joins the MIS first and preempts it.
Alternatively, if potentials begin too high and two neighboring nodes have potential > 1,
then they will continue to send in every round and hence eventually one or both will exit the
MIS, with their potential dropping below 2. Once safety has been restored, i.e., no neighbors
are in the MIS, then the system will stabilize as already described. Nowhere in the analysis
did we depend on any special initial conditions or relations between the potentials. Thus
we conclude:
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I Theorem 12. Consider a network of n ≥ 1 KnockBack cells connected in a unit ball
graph G with constant doubling dimension and maximum degree ∆. Assume that the cells
begin with arbitrary potentials. Then eventually, with probability 1: no two neighboring cells
are in the MIS, and every cell is either in the MIS or has a neighbor in the MIS.

4 Input Type Computation

We now turn our attention to processing information, beginning with a problem studied in
bio-inspired chemical reaction networks and population protocols: computation on input
type counts. For these problems the input is the a priori unknown counts of the different cell
types in the system. We look at two commonly studied problems: threshold and majority
detection, establishing that these problems are tractable in the CBM, but require randomized
solutions with non-zero error probabilities. Full details appear in the full version of the paper
(posted on arXiv).

4.1 Threshold Detection
The threshold detection problem, which is parameterized with a threshold k, approximation
factor τ , and error bound ε, and requires a correct answer if the number of sick cells is larger
than τ · k, or less than k/τ (see the full version of the paper for the formal definition).

For the sake of completeness, in the full version of this paper we start by describing and
analyzing a simple cell definition called SmallThreshold(k), that works when the binding
bound (see Section 2) is large enough for cells to directly count up to k, trivializing the
problem, even for ε = 0 and τ = 1. For larger k values, we consider the following more
general probabilistic solution:

GeneralThreshold(k) cell definition

q0 = 1 B = {(f, (2,m))}, where:
λ = 1, σ = 0 f(x ≥ 1) = 1/k
g(|M | ≥ 1) = 2 f(x < 1) = 0
g(|M | < 1) = 0

event threshold: 2

The GeneralThreshold(k) cell has cells fire a bioelectric event with probability 1/k. If
any cell fires, it moves itself past the event threshold, otherwise, the system falls back to a
quiescent equilibrium. In the full version of the paper, we show a strict trade-off between the
error bound and τ approximation:

I Theorem 13. Fix any error bound ε, 0 < ε < 1 and threshold k ≥ 1. Then the
GeneralThreshold(k) cell definition solves the (k, 8 ln (1/ε), ε)-threshold detection problem
in one round.

Another possible improvement would be removing the non-zero error bound (i.e., achieving
ε = 0), or finding a deterministic solution. We prove such improvements are impossible (see
the full version for more details):

I Theorem 14. Fix a binding bound b ≥ 1, threshold range τ ≥ 1, and round length T ≥ 1.
There does not exist a cell definition with binding bound b that solves the (k, τ, 0)-threshold
detection problem in T rounds for every threshold k ≥ 1. Fix ε, 0 ≤ ε < 1/2. There does not
exist a deterministic cell definition with binding bound b that solves the (k, τ, ε)-threshold
detection problem in T rounds for every threshold k ≥ 1.



S. Gilbert, J. Maguire, and C. Newport 19:15

4.2 Majority Detection
Majority detection assumes two cell types: A and B. The goal is to determine which type is
more numerous. As with threshold detection, and most existing studies of majority detection
in other models (e.g., [7]), we look at approximate solutions that ensure a correct answer
only if one count is sufficiently larger than the other. We tackle this challenge with the below
cell definition which is parameterized with an upper bound N on the maximum network size
and a constant error bound ε > 0:

MajorityA(N,α = d2 ln (2/ε)e) cell definition (for type A)

q0 = 0 B = {(f, (α logN,mA))}, where:
λ = 1, σ = 3α logN f(0 ≤ x ≤ α logN) = 2−(log N−b x

α
c)

g(|MB | ≥ 1) = −2α logN f(x < 0) = 0
g(|MB | = 0) = 0 f(x > α logN) = 1

event threshold: 3α logN
(MB equals the sub-multiset including only ligands of type mB sent from type B cells.)

This cell implements a common backoff style strategy, perhaps inspired from radio networks,
where nodes fire with increasing probabilities. The first cell type to fire is assumed to be the
majority type in the system. In the full version of this paper, we show a trade-off between ε
and the required size gap between the cell type counts:

I Theorem 15. Fix some constant error bound ε > 0 and upper bound N > 1. Let
α = d2 ln (2/ε)e. The MajorityA(N,α) and MajorityB(N,α) cell definitions, when executed
in a system with nA and nB type A and type B cells, respectively, where nA > nB · (α4)/ε
and N ≥ nA + nB, guarantees with probability at least 1− ε: in the first O(logn) rounds, a
type A expression event will occur before any type B event. (The symmetric claim also holds
for nB > nA · (α4)/ε.)

5 Turing Completeness

Finally, we consider another natural definition of information processing in which cells
compute functions on an input encoded in the potential of a designated input cell. This
isolates a core question: What types of computations on cell states can be computed through
simple bioelectric interactions? In the full version of the paper (posted on arXiv), we prove a
perhaps surprising answer: Essentially all feasible computations.2 Formally:

I Theorem 16. Fix an arbitrary deterministic TM M . There exists a finite collection of
cells defined with respect to M , including a designated input cell, such that for every TM
input w, if you set the input cell’s initial potential value to a specified unary encoding of w,
the cells will correctly simulate M on w.
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