3,403 research outputs found

    Total domination in partitioned graphs

    Get PDF

    Total domination in partitioned graphs

    Get PDF

    Total domination in partitioned graphs

    Get PDF

    Total domination in partitioned trees and partitioned graphs with minimum degree two

    Get PDF

    Maker-Breaker total domination game

    Full text link
    Maker-Breaker total domination game in graphs is introduced as a natural counterpart to the Maker-Breaker domination game recently studied by Duch\^ene, Gledel, Parreau, and Renault. Both games are instances of the combinatorial Maker-Breaker games. The Maker-Breaker total domination game is played on a graph GG by two players who alternately take turns choosing vertices of GG. The first player, Dominator, selects a vertex in order to totally dominate GG while the other player, Staller, forbids a vertex to Dominator in order to prevent him to reach his goal. It is shown that there are infinitely many connected cubic graphs in which Staller wins and that no minimum degree condition is sufficient to guarantee that Dominator wins when Staller starts the game. An amalgamation lemma is established and used to determine the outcome of the game played on grids. Cacti are also classified with respect to the outcome of the game. A connection between the game and hypergraphs is established. It is proved that the game is PSPACE-complete on split and bipartite graphs. Several problems and questions are also posed.Comment: 21 pages, 5 figure

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur
    corecore