Aalborg Universitet

AALBORG UNIVERSITY

Total domination in partitioned graphs

Frendrup, Allan; Vestergaard, Preben D.; Yeo, Anders

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Frendrup, A., Vestergaard, P. D., \& Yeo, A. (2009). Total domination in partitioned graphs. Department of Mathematical Sciences, Aalborg University. Research Report Series No. R-2009-06

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

Total domination in partitioned graphs

by

Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo

Total domination in partitioned graphs

Allan Frendrup ${ }^{1}$, Preben Dahl Vestergaard ${ }^{1}$, Anders Yeo ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Aalborg University, Denmark
${ }^{2}$ Department of Computer Science, Royal Holloway, University of London

To appear in Graph Theory and Combinatorics

Abstract

We present results on total domination in a partitioned graph $G=(V, E)$. Let $\gamma_{t}(G)$ denote the total dominating number of G. For a partition $V_{1}, V_{2}, \ldots, V_{k}, k \geq 2$, of V, let $\gamma_{t}\left(G ; V_{i}\right)$ be the cardinality of a smallest subset of V such that every vertex of V_{i} has a neighbour in it and define the following

$f_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right)=\gamma_{t}(G)+\gamma_{t}\left(G ; V_{1}\right)+\gamma_{t}\left(G ; V_{2}\right)+\ldots+\gamma_{t}\left(G ; V_{k}\right)$
$f_{t}(G ; k)=\max \left\{f_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right) \mid V_{1}, V_{2}, \ldots, V_{k}\right.$ is a partition of $\left.V\right\}$
$g_{t}(G ; k)=\max \left\{\Sigma_{i=1}^{k} \gamma_{t}\left(G ; V_{i}\right) \mid V_{1}, V_{2}, \ldots, V_{k}\right.$ is a partition of $\left.V\right\}$
We summarize known bounds on $\gamma_{t}(G)$ and for graphs with all degrees at least δ we derive the following bounds for $f_{t}(G ; k)$ and $g_{t}(G ; k)$.
(i) For $\delta \geq 2$ and $k \geq 3$ we prove $f_{t}(G ; k) \leq 11|V| / 7$ and this inequality is best possible.
(ii) for $\delta \geq 3$ we prove that $f_{t}(G ; 2) \leq(5 / 4-1 / 372)|V|$. That inequality may not be best possible, but we conjecture that $f_{t}(G ; 2) \leq 7|V| / 6$ is.
(iii) for $\delta \geq 3$ we prove $f_{t}(G ; k) \leq 3|V| / 2$ and this inequality is best possible.
(iv) for $\delta \geq 3$ the inequality $g_{t}(G ; k) \leq 3|V| / 4$ holds and is best possible.

Key words. Total domination, Partitions and Hypergraphs.

1. Notation

By $G=(V, E)$ we denote a graph G with vertex set $V=V(G)$ and edge set $E=E(G)$. The order of G is $|V(G)|=n$. For $x \in V(G)$ we denote by $N_{G}(x)$ the set of neighbours to x and $N_{G}[x]=\{x\} \cup N_{G}(x)$. Indices may be omitted if clear from context. The degree of x is $d_{G}(x)=\left|N_{G}(x)\right|$, the number of neighbours to x. We let $\delta(G)=\delta$ denote the minimum degree in G and $\Delta(G)=\Delta$ the maximum degree. A hypergraph $H=(V, E)$ has vertex set $V=V(H)$ and its set of hyperedges, or edges for short, is $E=E(H)$. Each hyperedge e is a subset of $V, e \subseteq V(H)$. A vertex v is incident with an edge e if $v \in e$, the degree of

[^0]v is the number of hyperedges in H containing v. We let $\delta(H)=\delta$ denote the minimum degree in H and $\Delta(H)=\Delta$ the maximum degree. H is r-regular if each vertex has degree r, i.e. $d_{H}(x)=r$, or equivalently, x is contained in precisely r edges. H is k-uniform if each hyperedge contains exactly k vertices. Two edges e_{1} and e_{2} are said to be overlapping if $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right| \geq 2$. Let $Y \subseteq V(H)$ then $E(Y)$ denotes all hyperedges, e, contained in Y (i.e. $V(e) \subseteq Y$).

For a hypergraph H a hitting set or a transversal \mathcal{T} is a set of vertices $\mathcal{T} \subseteq V(H)$ such that $e \cap \mathcal{T} \neq \emptyset$ for each hyperedge e in $E(H)$, i.e. each edge e contains at least one vertex from $\mathcal{T} . \mathcal{T}(H)$ denotes the minimum cardinality of a transversal for the hypergraph H. For sets $S, T \subseteq V$, in a graph G the set S totally dominates T if every vertex in T is adjacent to some vertex of S. The minimum number of vertices needed to totally dominate V is the total domination number $\gamma_{t}(G)$. For a subset S of V we let $\gamma_{t}(G ; S)$ denote the smallest number of vertices in G which totally dominates S. A partition $V=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of $V(G)$ into k disjoint sets, $k \geq 2$, has $V=\bigcup_{i=1}^{k} V_{i}, V_{i} \cap V_{j}=\emptyset, 1 \leq i<j \leq k$. For a partition ($V_{1}, V_{2}, \ldots, V_{k}$) of V, we define the following.

$$
\begin{aligned}
& f_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right)=\gamma_{t}(G)+\gamma_{t}\left(G ; V_{1}\right)+\gamma_{t}\left(G ; V_{2}\right)+\ldots+\gamma_{t}\left(G ; V_{k}\right) \\
& g_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right)=\gamma_{t}\left(G ; V_{1}\right)+\gamma_{t}\left(G ; V_{2}\right)+\ldots+\gamma_{t}\left(G ; V_{k}\right)
\end{aligned}
$$

We furthermore define $f_{t}(G ; k)$ and $g_{t}(G ; k)$ as follows.

$$
\begin{aligned}
& f_{t}(G ; k)=\max \left\{f_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right) \mid V_{1}, V_{2}, \ldots, V_{k} \text { is a partition of } V\right\} \\
& g_{t}(G ; k)=\max \left\{g_{t}\left(G ; V_{1}, V_{2}, \ldots, V_{k}\right) \mid V_{1}, V_{2}, \ldots, V_{k} \text { is a partition of } V\right\}
\end{aligned}
$$

For further notation we refer to Chartrand and Lesniak [1].

2. Introduction

The theory of domination is outlined in two books by Haynes, Hedetniemi and Slater [5, 6]. A combination of domination and partitions is treated by Hartnell and Vestergaard [7], Seager [14], Tuza and Vestergaard [17], Henning and Vestergaard [11]. There has been an upsurge in the study of total domination. New results on total domination are given by Henning, Kang, Shan, Thomassé and Yeo in [10, 12, 15, 18]. In [9] Henning surveys recent results on total domination. Here we shall study total domination in partitioned graphs.

3. Bounds on γ_{t}

We summarize in Theorem 1 results found by Henning, Thomassé and Yeo. If C_{10} : $v_{1}, v_{2}, \ldots, v_{10}, v_{1}$ is the circuit with 10 vertices then let G_{10} denote the graph obtained from C_{10} by addition of the edge $v_{1} v_{6}$ and let H_{10} denote the graph obtained from C_{10} by addition of the edges $v_{1} v_{6}$ and $v_{2} v_{7}$.

Theorem 1. Let G be a connected graph with n vertices and minimum degree $\delta(G)=\delta$. Then
$\delta \geq 2$ implies $\gamma_{t}(G) \leq 4 n / 7$ for $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}, G_{10}, H_{10}\right\}$ ([8, Corollary 6], [9, Theorem 27]).
$\delta \geq 3$ implies $\gamma_{t}(G) \leq n / 2$. ([15]).
$\delta \geq 4$ implies $\gamma_{t}(G) \leq 3 n / 7$ ([15]) and there exists some $\epsilon>0$ such that $\gamma_{t}(G) \leq(3 / 7-\epsilon) n$ for $G \neq G_{14}$, where G_{14} is an incidence bipartite graph of order 14 derived from the Fano plane ([19]).

It is a conjecture that $\delta \geq 5$ implies $\gamma_{t}(G) \leq 4 n / 11$.
Theorem 2 and Theorem 3 below, give conditions for equality in Theorem 1.
Theorem 2. ([9, Theorem 29]) Let G be a connected graph of order $n>14$ with $\delta \geq 2$. Then $\gamma_{t}(G)=4 n / 7$ if and only if G can be obtained from a connected graph F of order at least three by adding $|V(F)|$ disjoint copies of C_{6}, one corresponding to each $v \in V(F)$, such that either v is joined by a new edge to a vertex in its corresponding C_{6} or by two new edges to two vertices at distance two apart in its corresponding C_{6}.

The family $\mathcal{G} \cup \mathcal{H}$ is constructed in [3] as follows. Take two copies $a_{1} b_{1} a_{2} b_{2} \ldots a_{k} b_{k}$ and $c_{1} d_{1} c_{2} d_{2} \ldots c_{k} d_{k}$, of the path $P_{2 k}, k \geq 2$, and add edges $a_{i} d_{i}, b_{i} c_{i}$ for $i=1,2, \ldots, k$. ¿From this the graph of order $4 k$ belonging to the infinite family \mathcal{G} is obtained by adding $a_{1} c_{1}$ and $b_{k} d_{k}$, while the graph of order $4 k$ in \mathcal{H} is obtained by adding $a_{1} b_{k}$ and $c_{1} d_{k}$, The generalized Petersen graph $G P_{16}$ is obtained from two circuits $u_{1} u_{2} u_{3} \ldots u_{7} u_{8}$ and $v_{1} v_{2} v_{3} \ldots v_{7} v_{8}$ by addition of edges $u_{1} v_{1}, u_{2} v_{4}, u_{3} v_{7}, u_{4} v_{2}, u_{5} v_{5}, u_{6} v_{8}, u_{7} v_{3}, u_{8} v_{6}$.

Theorem 3. ([12, Theorem 5]) Let G be a connected graph with $\delta(G) \geq 3$. Then $\gamma_{t}(G)=$ $n / 2$ if and only if $G \in \mathcal{G} \cup \mathcal{H}$ or $G=G P_{16}$.

4. f_{t} for k-partitioned graphs with $\delta \geq 2$

We have that f_{t} increases with the number of partition classes, i.e., $f_{t}(G ; k) \leq f_{t}(G ; k+1)$. Therefore we get a weaker inequality if we partition V into more than two classes. That is demonstrated in Theorem 4 below.

Theorem 4. Let G be a connected graph of order n with $\delta(G) \geq 2$ and $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$. If $k \geq 2$ then $f_{t}(G ; k) \leq 11 n / 7$.
If $k=2$ then $f_{t}(G ; k) \leq 3 n / 2$. Equality holds if and only if G is a circuit of length zero modulo four, $G=C_{4 t}, t \geq 1$.
If $k=3$ then $f_{t}(G ; k) \leq 11 n / 7$. For $n>14$ equality holds if and only if G can be obtained from a circuit or a path of order at least three by joining each of its vertices by one edge to disjoint copies of C_{6}.
If $k \geq 4$ then $f_{t}(G ; k) \leq 11 n / 7$ and for $n>14$ equality holds if and only if $\Delta(G) \leq k$ and G can be obtained from a connected graph F having order at least three and $g_{t}(F ; k)=$ $|V(F)|$ by adding disjoint copies of C_{6}, one corresponding to each $v \in V(F)$, such that either v is joined by a new edge to one vertex in its corresponding C_{6} or by two new edges to two vertices at distance two apart in its corresponding C_{6}.

Proof. By Theorem 1 we have $\gamma_{t}(G) \leq 4 n / 7$ and assigning to each vertex its own class dominator we have $g_{t}(G ; k) \leq n$. Therefore $f_{t}(G ; k)=\gamma_{t}(G)+g_{t}(G ; k) \leq 11 n / 7$. The result for $k=2$ is proven by Frendrup, Henning and Vestergaard in [4, Theorem 2]. For $k \geq 3$ the equality $f_{t}(G ; k)=11 n / 7$ implies $\gamma_{t}(G)=4 n / 7$ and $g_{t}(G ; k)=n$ and therefore G has the structure described in Theorem 2. Since $g_{t}(G ; k)=n$ each subgraph H of G must satisfy $g_{t}(H ; k)=|V(H)|$ and further $\Delta(G) \leq k$. Let H_{1} be the graph obtained from
a circuit $C_{6}: v_{1} v_{2} \ldots v_{6}$ by adding a new vertex x and the edge $x v_{1}$ and let $H_{2}:=H_{1}+x v_{3}$. Observe for $k=3$ that $g_{t}\left(H_{1} ; k\right)=\left|V\left(H_{1}\right)\right|$ (obtainable from partitioning $x, v_{1}, v_{2} \ldots, v_{6}$ into classes indexed 1122133 or 1221133) while $g_{t}\left(H_{2} ; k\right)<\left|V\left(H_{2}\right)\right|$. For $k \geq 4$ we can easily show that $g_{t}\left(H_{i} ; k\right)=\left|V\left(H_{i}\right)\right|, i=1,2$. This proves for $k \geq 3$ that $f_{t}(G ; k)=11 n / 7$ implies G has the structure described in this theorem. Conversely, assume first that $k=3$ and that G is obtainable as a disjoint union of H_{1} 's with edges added between the vertices named x, so they span F, where F is a path or circuit. We must exhibit a partition of $V(G)$ proving that $f_{t}(G ; k)=11 n / 7$, i.e. that $g_{t}(G ; k)=|V(G)|$. It is easy to find a partition $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ of $V(F)$ such that $g_{t}(F ; k)=|V(F)|$. If $k=3$ we can extend this partition to all the H_{1} 's such that the following holds, which proves that $g_{t}\left(G ; V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right)=n$.

- $N(x)=N_{F}(x) \cup\left\{v_{1}\right\}$ contains at most one vertex from each $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ (just put v_{1} in the partition set which doesn't contain any of the two vertices in $\left.N_{F}(x)\right)$.
- $N\left(v_{1}\right)=\left\{x, v_{2}, v_{6}\right\}$ contains one vertex from each $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ (just put v_{2} and v_{6} in the partition sets such that this holds).
- $N\left(v_{3}\right), N\left(v_{5}\right) \subset\left\{v_{2}, v_{4}, v_{6}\right\}$, which contains one vertex from each $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ (just put v_{4} in the same set as x).
- $N\left(v_{2}\right), N\left(v_{4}\right), N\left(v_{6}\right) \subset\left\{v_{1}, v_{3}, v_{5}\right\}$, which contains one vertex from each $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ (just put v_{3} and v_{5} in the partition sets such that this holds).

Assume next that $k \geq 4$. Then a vertex $x \in F$ may belong to a unit H_{1} or H_{2}. Again there is a partition $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}$ of $V(F)$ such that $g_{t}(F ; k)=|V(F)|$ and similarly to above we can extend this partition to all of G, such that the neighbourhood of every vertex in G contains at most one vertex from any partition set. The details are left to the reader. This proves that $g_{t}(G ; k)=n$.

5. g_{t} for two-partitioned graphs with $\delta \geq 3$

Chvátal and McDiarmid [2] and Tuza [16] independently established the following result about transversals in hypergraphs (see also Thomassé and Yeo [15] for a short proof of this result).

Theorem 5. ([2,16,15]) If H is a hypergraph with all edges of size at least three, then $\mathcal{T}(H) \leq(|V(H)|+|E(H)|) / 4$.

Theorem 6. Let G be a graph of order n with $\delta \geq 3$. Then $g_{t}(G ; 2) \leq 3 n / 4$.
Proof. ¿From the two-partitioned graph G, we define for $i=1,2, H_{i}$ to be the hypergraph on n vertices and m_{i} edges where $V\left(H_{i}\right)=V(G)$ and the hyperedges of H_{i} are the sets of neighbourhoods of class i vertices. In other words, $e \in E\left(H_{i}\right)$ precisely if, for some vertex v in $V_{i}, e=N_{G}(v)$. Each edge in H_{i} has at least three vertices because $\delta(G) \geq 3$. In G we see that a set \mathcal{T}_{i} of vertices totally dominates V_{i} if and only if \mathcal{T}_{i} is a transversal of H_{i}. Applying Theorem 5 to H_{1} and H_{2} separately we obtain transversals \mathcal{T}_{i} of $H_{i}, i=1,2$, satisfying

$$
\left|\mathcal{T}_{1}\right| \leq \frac{m_{1}+n}{4} \quad\left|\mathcal{T}_{2}\right| \leq \frac{m_{2}+n}{4}
$$

Since $m_{1}+m_{2}=n$ we obtain $\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right| \leq \frac{m_{1}+n}{4}+\frac{m_{2}+n}{4}=\frac{3 n}{4}$. This proves Theorem 6 .
An example of graphs with equality $g_{t}(G ; 2)=3 n / 4$ is given in the next section.

6. An infinite family of graphs extremal for Theorem 6

We have the following theorem.
Theorem 7. For each integer $r \geq 1$ there exists a connected bipartite graph G_{r} of order $n=16 r$ with $\delta\left(G_{r}\right)=3$ such that $g_{t}\left(G_{r} ; 2\right)=3\left|V\left(G_{r}\right)\right| / 4$ and $f_{t}\left(G_{r} ; 2\right) \geq 9\left|V\left(G_{r}\right)\right| / 8$.

Proof. We define the graph G_{r} as follows. Define the vertex set of G_{r} to be $V\left(G_{r}\right)=$ $W_{r} \cup A_{r} \cup B_{r}$, where

$$
\begin{aligned}
W_{r} & =\left\{w_{0}, w_{1}, w_{2}, \ldots, w_{8 r-1}\right\} \\
A_{r} & =\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{4 r-1}\right\} \\
B_{r} & =\left\{b_{0}, b_{1}, b_{2}, \ldots, b_{4 r-1}\right\}
\end{aligned}
$$

We define the edge set of G_{r} such that the following holds, for all $i \in\{0,1,2, \ldots, r-1\}$ (where $b_{-1}=b_{4 r-1}$ by definition):

$$
\begin{aligned}
N\left(w_{8 i}\right) & =\left\{a_{4 i}, a_{4 i+1}, b_{4 i}\right\} & & N\left(w_{8 i+1}\right)=\left\{a_{4 i}, a_{4 i+1}, b_{4 i}\right\} \\
N\left(w_{8 i+2}\right) & =\left\{a_{4 i}, a_{4 i+2}, b_{4 i}\right\} & & N\left(w_{8 i+3}\right)=\left\{a_{4 i+1}, a_{4 i+2}, b_{4 i-1}\right\} \\
N\left(w_{8 i+4}\right) & =\left\{a_{4 i+2}, b_{4 i+1}, b_{4 i+2}\right\} & & N\left(w_{8 i+5}\right)=\left\{a_{4 i+3}, b_{4 i+1}, b_{4 i+2}\right\} \\
N\left(w_{8 i+6}\right) & =\left\{a_{4 i+3}, b_{4 i+1}, b_{4 i+3}\right\} & & N\left(w_{8 i+7}\right)=\left\{a_{4 i+3}, b_{4 i+2}, b_{4 i+3}\right\}
\end{aligned}
$$

We now assume $r \geq 1$ is fixed, and therefore omit the subscripts of the above sets and graph. Define V_{1} and V_{2} as follows.

$$
\begin{aligned}
& V_{1}=A \cup \cup_{i=0}^{r-1}\left\{w_{8 i+1}, w_{8 i+2}, w_{8 i+3}, w_{8 i+5}\right\} \\
& V_{2}=B \cup \cup_{i=0}^{r-1}\left\{w_{8 i}, w_{8 i+4}, w_{8 i+6}, w_{8 i+7}\right\}
\end{aligned}
$$

We will now show that if S_{i} is a set such that every vertex in V_{i} has a neighbour in S_{i}, then $\left|S_{i}\right| \geq 3|V(G)| / 8$, for $i=1,2$. This would imply that $f_{t}(G ; 2) \geq 9|V(G)| / 8$ and $g_{t}(G) \geq 6|V(G)| / 8$ when $k=2$ (as clearly the above would also imply that $\gamma_{t}(G) \geq$ $3|V(G)| / 8)$. From Theorem 6 follows that $g_{t}(G)=3|V(G)| / 4$.

Let S_{1} be a set that totally dominates V_{1} (i.e. every vertex in V_{1} has a neighbour in S_{1}). As $w_{8 i+5}$ has a neighbour in S_{1} we note that $\left|S_{1} \cap\left\{a_{4 i+3}, b_{4 i+1}, b_{4 i+2}\right\}\right| \geq 1$, for all $i=0,1,2, \ldots, r-1$. As $w_{8 i+1}, w_{8 i+2}$ and $w_{8 i+3}$ all have a neighbour in S_{1} we note that $\left|S_{1} \cap\left\{a_{4 i}, a_{4 i+1}, a_{4 i+2}, b_{4 i}, b_{4 i-1}\right\}\right| \geq 2$, for all $i=0,1,2, \ldots, r-1$ (recall that $b_{-1}=b_{4 r-1}$). As the above sets are all disjoint we note that $\left|S_{1} \cap(A \cup B)\right| \geq 3|A \cup B| / 8$.

As $a_{4 i+3}$ has a neighbour in S_{1} we note that $\left|S_{1} \cap\left\{w_{8 i+5}, w_{8 i+6}, w_{8 i+7}\right\}\right| \geq 1$, for all $i=0,1,2, \ldots, r-1$. As $a_{4 i}, a_{4 i+1}$ and $a_{4 i+2}$ all have a neighbour in S_{1} we note that $\left|S_{1} \cap\left\{w_{8 i}, w_{8 i+1}, w_{8 i+2}, w_{8 i+3}, w_{8 i+4}\right\}\right| \geq 2$, for all $i=0,1,2, \ldots, r-1$. As the above sets are all disjoint we note that $\left|S_{1} \cap W\right| \geq 3|W| / 8$. This implies the desired result for S_{1}.

The fact that if S_{2} totally dominates V_{2}, then $\left|S_{2}\right| \geq 3|V(G)| / 8$ is proved analogously to above. We now just need to show that G is connected. Let $P_{i}=\left\{w_{8 i}, w_{8 i+1}, \ldots, w_{8 i+7}\right\}$ and let $Q_{i}=\left\{a_{4 i}, a_{4 i+1}, a_{4 i+2}, a_{4 i+3}, b_{4 i}, b_{4 i+1}, b_{4 i+2}, b_{4 i+3}\right\}$ for all $i=0,1,2, \ldots, r-1$. Note that $G\left[P_{i} \cup Q_{i}\right]$ is connected. As the edges $w_{8 i+3} b_{4 i-1}$, for all $i=0,1,2, \ldots, r-1$ connects P_{i} with $Q_{i-1}\left(Q_{-1}=Q_{r-1}\right)$ we are done.

7. $f_{t}(G)$ for two-partitioned graphs with $\delta \geq 3$

Let G be a graph of order n with $\delta(G) \geq 3$.

From Theorems 1 and 6 it follows immediately that $f_{t}(G ; 2)=\gamma_{t}(G)+g_{t}(G ; k) \leq$ $n / 2+3 n / 4=5 n / 4$ when $\delta(G) \geq 3$. We shall in Theorem 8 below prove a slightly stronger result and later pose an even stronger conjecture.

The following result is known (see for example [13]).
Lemma 1. ([13]) If G is a 3-regular graph, then there exists a matching M in G, such that $|M| \geq \frac{7}{16}|V(G)|$.
Lemma 2. Let H be a 2-regular 3-uniform hypergraph with no two edges overlapping. Then $\mathcal{T}(H) \leq \frac{|V(H)+|E(H)|}{4}-\frac{|V(H)|}{24}$.
Proof. Let H be a 2-regular 3-uniform hypergraph with no overlapping edges. Define the graph G_{H} as follows $V\left(G_{H}\right)=E(H)$ and $E\left(G_{H}\right)=\left\{e_{1} e_{2}:\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=1\right\}$. As there are no overlapping edges and H is 2-regular and 3-uniform, we note that G_{H} is a 3-regular graph. By Lemma 1 , there exists a matching M in G_{H}, such that $|M| \geq \frac{7}{16}\left|V\left(G_{H}\right)\right|$.

If $e_{1} e_{2} \in M$, then by the definition of G_{H} we note that $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\left\{x_{e_{1} e_{2}}\right\}$ for some $x_{e_{1} e_{2}} \in V(H)$. Let $X=\left\{x_{f} \mid f \in M\right\}$ and note that $2|M|$ edges in H contain a vertex from X (as M was a matching). Let X^{\prime} be a set of vertices of order $|E(H)|-2|M|$ containing a vertex from every edge in H, which does not contain a vertex from X. Note that $X \cup X^{\prime}$ is a transversal of H of order $|M|+(|E(H)|-2|M|)$. By the above bound on $|M|$ we get the following, as $3|E(H)|=\sum_{x \in V(H)} d(x)=2|V(H)|$.

$$
\begin{aligned}
\mathcal{T}(H) & \leq|E(H)|-|M| \leq|E(H)|-\frac{7}{16}|E(H)| \\
& =\frac{|E(H)|}{4}+\frac{5|E(H)|}{16}=\frac{|E(H)|}{16}+\frac{5}{16} \times \frac{2|V(H)|}{3} \\
& =\frac{|V(H)|+|E(H)|}{4}-\frac{|V(H)|}{24}
\end{aligned}
$$

Lemma 3. Let H be a 3-uniform hypergraph, where multiple edges are allowed. For each edge and vertex in H we assign a non-empty subset of $\{0,1,2\}$. Let this subset be denoted by $L(q)$ for all $q \in V(H) \cup E(H)$. Let H_{i} be the 3 -uniform hypergraph containing vertex-set $V_{i}=\{v: i \in L(v)$ and $v \in V(H)\}$ and edge-set $E_{i}=\{e: i \in L(v)$ and $e \in E(H)\}$, for $i=0,1,2$. Let $Y \subseteq V(H)$ be arbitrary and assume that the following holds.
(a): $\Delta\left(H_{1}\right), \Delta\left(H_{2}\right) \leq 2$
(b): $\Delta(H-E(Y)) \leq 4$.
(c): There are no overlapping edges in $H_{i}, i \in\{1,2\}$.
(d): If $e \in E(H)-E(Y)$, then $0 \in L(e)$ and $|L(e)| \geq 2$.

This implies that the following holds.

$$
\sum_{i=0}^{2} \mathcal{T}\left(H_{i}\right) \leq\left(\sum_{i=0}^{2} \frac{\left|V_{i}\right|+\left|E_{i}\right|}{4}\right)-\frac{\left|V\left(H_{0}\right) \cap V\left(H_{1}\right) \cap V\left(H_{2}\right) \backslash N_{H}[Y]\right|}{372}
$$

Remark. We assume here in Lemma 3 that the assignment of a set $L(q)$ to each q is done such that H_{0}, H_{1}, H_{2} really are hypergraphs, i.e., such that each hyperedge in E_{i} consists of vertices from $V_{i}, i=0,1,2$. This requirement will be satisfied in the proof of Theorem 8 where the lemma is applied.
Proof. Assume that the lemma is false, and that H is a counterexample with minimum $\left|E_{0}\right|+\left|E_{1}\right|+\left|E_{2}\right|$. Clearly $\left|E_{0}\right|+\left|E_{1}\right|+\left|E_{2}\right|>0$, as otherwise $\sum_{i=0}^{2} \mathcal{T}\left(H_{i}\right)=0$. For simplicity we will use the following notation:

$$
\begin{aligned}
T^{*} & =\sum_{i=0}^{2} \mathcal{T}\left(H_{i}\right) \\
S^{*} & =\sum_{i=0}^{2} \frac{\left|V_{i}\right|+\left|E_{i}\right|}{4} \\
V^{*} & =V\left(H_{0}\right) \cap V\left(H_{1}\right) \cap V\left(H_{2}\right)
\end{aligned}
$$

We recall that H was assumed to be a "minimal" counterexample to $T^{*} \leq S^{*}-\left(\mid V^{*} \backslash\right.$ $\left.N_{H}[Y] \mid\right) / 372$. We will now prove a few claims, which end in a contradiction, thereby proving the lemma. For H the left hand side of the inequality, ℓ, and the right hand side of the inequality, r, in Lemma 3 satisfies $\ell>r$. We shall construct smaller H^{\prime} which also satisfies (a)-(d) and which therefore has $\ell^{\prime} \leq r^{\prime}$ by the minimality of $H . H^{\prime}$ is to be constructed such that there exist $\alpha \leq \beta$ for which $\ell-\alpha \leq \ell^{\prime}$ and $r^{\prime} \leq r-\beta$. Those inequalities combine to give the desired contradiction $\ell \leq r$.

Claim A: If we add a vertex to Y, then $N[Y]$ does not increase by more than 9 vertices.
Proof of Claim A: This follows from the fact that H is 3-uniform and $\Delta(H-E(Y)) \leq 4$, by (b) in the statement of the lemma.

Claim B: There is no $e=\left\{v_{1}, v_{2}, x\right\} \in E_{i}$, such that $d_{H_{i}}\left(v_{1}\right)=d_{H_{i}}\left(v_{2}\right)=1$ and $d_{H_{i}}(x)=2$, for $i=0,1,2$.

Proof of Claim B: Assume that there is such an edge $e=\left\{v_{1}, v_{2}, x\right\} \in E_{i}$. Let $e^{\prime}=$ $\left\{w_{1}, w_{2}, x\right\}$ be the other edge in H_{i} containing x. Now delete v_{1}, v_{2}, x, e and e^{\prime} from H_{i} and add $\left\{v_{1}, v_{2}, x, w_{1}, w_{2}\right\}$ to Y. Note that (a)-(d) still hold and that T^{*} decreases by 1 as we simply add x to any transversal in the new H_{i} in order to get a transversal in the old H_{i}. By Claim A the set $N[Y]$ does not increase by more than 45 vertices. As V^{*} does not decrease by more than 3 vertices and S^{*} decreases by $5 / 4$, we are done by the "minimality" of H (as $\alpha=1 \leq 5 / 4-48 / 372=\beta$ in the argument above Claim A).

Claim C: There is no $e=\left\{x, v_{1}, v_{2}\right\} \in E_{i}$, such that $d_{H_{i}}\left(v_{1}\right)=d_{H_{i}}\left(v_{2}\right)=2$ and $d_{H_{i}}(x)=1$, for $i=1,2$.

Proof of Claim C: Assume that there is such an edge $e=\left\{x, v_{1}, v_{2}\right\} \in E_{i}$. Let $e_{1}=$ $\left\{w_{1}, w_{2}, v_{1}\right\}$ be the other edge in H_{i} containing v_{1} and let $e_{2}=\left\{u_{1}, u_{2}, v_{2}\right\}$ be the other edge in H_{i} containing v_{2}. As there are no overlapping edges in H_{i} (by (c) in the statement of the lemma) we note that $e_{1} \neq e_{2}$ and $\left|\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}\right| \geq 3$. Let S be any subset of $\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}$ such that $|S|=3$. We now separately consider the cases when addition of S as a new hyperedge to H_{i} causes overlapping edges in H_{i}, and when it doesn't.

Assume that adding S to E_{i} does not cause overlapping edges in $H_{i}-e_{1}-e_{2}$. Now delete $x, v_{1}, v_{2}, e, e_{1}$ and e_{2} from H_{i} and add the edge S to H_{i} (and H). Furthermore add $\left\{x, v_{1}, v_{2}, w_{1}, w_{2}, u_{1}, u_{2}\right\}$ to Y. Note that (a)-(d) still hold. If T^{\prime} is a transversal in the new H_{i} then due to the edge S we either have $\left\{u_{1}, u_{2}\right\} \cap T^{\prime} \neq \emptyset$, in which case $T^{\prime} \cup\left\{v_{1}\right\}$ is a transversal in the old H_{i} or $\left\{w_{1}, w_{2}\right\} \cap T^{\prime} \neq \emptyset$, in which case $T^{\prime} \cup\left\{v_{2}\right\}$ is a transversal in the old H_{i}. Therefore T^{*} decreases by at most one. By Claim A we have that $N[Y]$ does not increase by more than 63 vertices. As V^{*} does not decrease by more than 3 and S^{*} decreases by $5 / 4$, we are done by the "minimality" of H (as $1 \leq 5 / 4-66 / 372$).

So now assume that the above addition of S would cause overlapping edges in $H_{i}-e_{1}-$ e_{2}. This can only happen if there is an edge $e^{\prime} \in E_{i}$ such that $\left|S \cap V\left(e^{\prime}\right)\right| \geq 2$. Note that by (a) the degree in H_{i} is two for all vertices in $S \cap V\left(e^{\prime}\right)$ (they only lie in S and e^{\prime}). Now delete the vertices $\left\{x, v_{1}, v_{2}\right\} \cup\left(S \cap V\left(e^{\prime}\right)\right)$ from H_{i} and delete the edges e, e_{1}, e_{2} and e^{\prime} from H_{i} (do not add the edge S to H_{i}). Furthermore add $\left\{x, v_{1}, v_{2}, w_{1}, w_{2}, u_{1}, u_{2}\right\} \cup\left(V\left(e^{\prime}\right)-S\right)$ to Y. Note that (a)-(d) still hold. By a similar argument to above we note that T^{*} decreases
by at most two. By Claim A we see that $N[Y]$ does not increase by more than 72 vertices. As V^{*} does not decrease by more than 6 and S^{*} decreases by at least $9 / 4$, we are done by the "minimality" of H (as $2 \leq 9 / 4-78 / 372$).

Claim D: There is no $e=\left\{x, v_{1}, v_{2}\right\} \in E_{0}$, such that $d_{H_{0}}\left(v_{1}\right)=d_{H_{0}}\left(v_{2}\right)=2$ and $d_{H_{0}}(x)=1$ and $\left|N_{H_{0}}[V(e)]\right| \geq 6$.

Proof of Claim D: Assume that there is such an edge $e=\left\{x, v_{1}, v_{2}\right\} \in E_{0}$. Let $e_{1}=$ $\left\{w_{1}, w_{2}, v_{1}\right\}$ be the other edge in H_{0} containing v_{1} and let $e_{2}=\left\{u_{1}, u_{2}, v_{2}\right\}$ be the other edge in H_{0} containing v_{2}. If $e_{1}=e_{2}$, then $\left|N_{H_{0}}[V(e)]\right| \leq 4$, a contradiction. So assume that $e_{1} \neq e_{2}$. As $\left|N_{H_{0}}[V(e)]\right| \geq 6$ we note that $\left|\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}\right| \geq 3$. We are now done analogously to Claim C.

Claim E: $\Delta\left(H_{1}\right), \Delta\left(H_{2}\right) \leq 1$.
Proof of Claim E: Assume that $\Delta\left(H_{1}\right) \geq 2$. By (a) we have $\Delta\left(H_{1}\right)=2$. By Claim B and Claim C we note that there is a 2 -regular component, R, in H_{1}. There are no overlapping edges in R by (c). By Lemma 2 there is a transversal T_{R} in R of order at most $(|V(R)|+|E(R)|) / 4-|V(R)| / 24$. So delete all edges and vertices in R and add all vertices in R to Y. By Claim A we have that $N[Y]$ increases by at most $9|V(R)|$ vertices. We now have a contradiction to the "minimality" of H, as $|V(R)| / 24 \geq 9|V(R)| / 372$. Analogously we can show that $\Delta\left(H_{2}\right) \leq 1$.

Claim F: Assume $e_{1}, e_{2} \in E\left(H_{0}\right)$ overlap and $e_{i}=\left(x_{1}, x_{2}, u_{i}\right)$ for $i=1,2$, where $u_{1} \neq$ u_{2}. If $d_{H_{0}}\left(x_{1}\right)=d_{H_{0}}\left(x_{2}\right)=2$, then there is an edge $e^{\prime} \in E\left(H_{0}\right)$ such that $\left\{u_{1}, u_{2}\right\} \subseteq V\left(e^{\prime}\right)$.

Proof of Claim F: Let e_{1} and e_{2} be defined as in the Claim, and assume that there is no edge $e^{\prime} \in E\left(H_{0}\right)$ such that $\left\{u_{1}, u_{2}\right\} \subseteq V\left(e^{\prime}\right)$. Delete $e_{1}, e_{2}, x_{1}, x_{2}$ and u_{1} from H_{0}. For every edge, $e^{\prime \prime}$, in H_{0} that contains u_{1}, delete $e^{\prime \prime}$ and add the edge $\left(e^{\prime \prime}-\left\{u_{1}\right\}\right) \cup\left\{u_{2}\right\}$ instead. Furthermore add $\left\{x_{1}, x_{2}, u_{1}, u_{2}\right\}$ and $V\left(e^{\prime \prime}\right)$ from all transformed edges, to Y. As there is at most 4 edges containing u_{1} in $H_{0}-E(Y)$ we note that Y increases by at most 10 (the neighbours of u_{1} in $H_{0}-E(Y)$ and $\left\{u_{1}, u_{2}\right\}$). Therefore $V^{*}-N[Y]$ decreases by at most $3+90$, by Claim A. We also note that S^{*} decreases by $5 / 4$.

We now show that T^{*} decreases by at most one. If $u_{2} \in T^{\prime}$ then $T^{\prime} \cup\left\{u_{1}\right\}$ is a transversal in the old H_{0}. If $u_{2} \notin T^{\prime}$ then $T^{\prime} \cup\left\{x_{1}\right\}$ is a transversal in the old H_{0}. As (a)-(d) still holds after the above operations, we have a contradiction to the "minimality" of H, as $1 \leq 5 / 4-93 / 372$.

Definition G : Let $x \in V^{*}-N[Y]$ be arbitrary. The vertex x exists since otherwise we would be done by Theorem 5.

Claim H: $d_{H_{1}}(u)=d_{H_{2}}(u)=1$ for all $u \in N_{H_{0}}[x]$, where x is defined in Definition G.
Proof of Claim H: Assume that $u \in N_{H_{0}}[x]$ has $d_{H_{2}}(u)=0$ or $u \notin V\left(H_{2}\right)$, which are the only possibilities for u, if $d_{H_{2}}(u) \neq 1$ (by Claim E). If $u \in V\left(H_{2}\right)$ and $d_{H_{2}}(u)=0$, then delete u from $V\left(H_{2}\right)$. We are now done as T^{*} is unchanged, S^{*} decreases by $1 / 4$ and $V^{*}-N[Y]$ does not decrease by more than one. So we may assume that $u \notin V\left(H_{2}\right)$. Since $x \in V^{*}$ we note that $x \in V\left(H_{1}\right)$ and $x \in V\left(H_{2}\right)$, which by the above argument implies that $d_{H_{1}}(x)=d_{H_{2}}(x)=1$ and $u \neq x$. Let $e_{1}=\{x, u, q\}$ be the edge in H_{1} (and H_{0}) containing u and x. Let e_{2} be the edge in H_{2} (and H_{0}) that contains x. Note that $d_{H_{0}}(x)=2$ and $d_{H_{0}}(u)=1$. If $d_{H_{0}}(q)=1$ then we are done by Claim B. So $d_{H_{0}}(q) \geq 2$. However as any edge containing q must also lie in H_{1} or H_{2}, as $q \notin Y$, we note that
$d_{H_{0}}(q)=2$. Let e_{q} be the edge in H_{2} that contains q. Note that $e_{q} \neq e_{2}$, by Claim F. As e_{q} and e_{2} do not intersect we note that $\left|N_{H_{0}}[V(e)]\right|=7 \geq 6$, so we are done by Claim D.

Claim I: Let $e_{1} \in E_{1}$ and $e_{2} \in E_{2}$ be the edges containing x (defined in Definition G). They exist by Claim H. Then $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\{x\}$.

Proof of Claim I: Assume for the sake of contradiction that $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right| \geq 2$. If $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=3$, then we delete e_{1} from H_{0} and add $V\left(e_{1}\right)$ to Y. This contradicts the "minimality" of H, as T^{*} remains unchanged, S^{*} decreases by $1 / 4$ and $N[Y]$ increases from Claim A by at most 27. Therefore assume that $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=2$. Let $e_{1}=\{x, v, w\}$ and let $e_{2}=\{x, v, y\}$ where $w \neq y$. As $d_{H_{0}}(x)=d_{H_{0}}(v)=2$, there is an edge, e^{\prime}, in H_{0} such that $\{w, y\} \subseteq V\left(e^{\prime}\right)$, by Claim F. However $e^{\prime} \notin E\left(H_{1}\right)$ and $e^{\prime} \notin E\left(H_{2}\right)$ by Claim E. This is however a contradiction to (d), as $w, y \notin Y$.

Claim J: We now obtain a contradiction.
Proof of Claim J: : Let $e_{1} \in E_{1}$ and $e_{2} \in E_{2}$ be the edges containing x (defined in Definition G). They exist by Claim H and $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\{x\}$, by Claim I. Let $e_{1}=\left\{x, v_{1}, v_{2}\right\}$ and let $e_{2}=\left\{x, w_{1}, w_{2}\right\}$. Let e_{1}^{\prime} be the edge in H_{1} containing w_{1} and let $e_{1}^{\prime \prime}$ be the edge in H_{1} containing w_{2} (they exist by Claim H). Let e_{2}^{\prime} be the edge in H_{2} containing v_{1} and let $e_{2}^{\prime \prime}$ be the edge in H_{2} containing v_{2} (they exist by Claim H).

If $e_{1}^{\prime}=e_{1}^{\prime \prime}$, then $V\left(e_{1}^{\prime}\right) \cap V\left(e_{2}\right)=\left\{w_{1}, w_{2}\right\}$ and $e_{1}^{\prime}=\left\{w_{1}, w_{2}, r\right\}$ for some $r \in V\left(H_{0}\right)$. By Claim F, there is an edge in H_{0} that contains x and r. But this is a contradiction, as neither e_{1} or e_{2} contain r, by Claim H. Therefore $e_{1}^{\prime} \neq e_{1}^{\prime \prime}$. Analogously we can show that $e_{2}^{\prime} \neq e_{2}^{\prime \prime}$.

We now delete $e_{1}, e_{1}^{\prime}, e_{1}^{\prime \prime}$ from H, H_{0} and H_{1}. Delete $e_{2}, e_{2}^{\prime}, e_{2}^{\prime \prime}$ from H, H_{0} and H_{2}. Delete $V\left(e_{1}\right) \cup V\left(e_{1}^{\prime}\right) \cup V\left(e_{1}^{\prime \prime}\right)$ from $V\left(H_{1}\right)$ and delete $V\left(e_{2}\right) \cup V\left(e_{2}^{\prime}\right) \cup V\left(e_{2}^{\prime \prime}\right)$ from $V\left(H_{2}\right)$. Delete $V\left(e_{1}\right) \cup V\left(e_{2}\right)$ from H and H_{0}. Let S_{1} be any subset of size three in $V\left(e_{1}^{\prime}\right) \cup V\left(e_{1}^{\prime \prime}\right)-\left\{w_{1}, w_{2}\right\}$ and let S_{2} be any subset of size three in $V\left(e_{2}^{\prime}\right) \cup V\left(e_{2}^{\prime \prime}\right)-\left\{v_{1}, v_{2}\right\}$. Add the edges S_{1} and S_{2} to H and H_{0}. Finally add all vertices in $V\left(e_{1}^{\prime}\right) \cup V\left(e_{1}^{\prime \prime}\right) \cup V\left(e_{2}^{\prime}\right) \cup V\left(e_{2}^{\prime \prime}\right)-\left\{w_{1}, w_{2}, v_{1}, v_{2}, x\right\}$ to Y.

We first show that T^{*} decreases by at most 8 . It is clear that the transversal size drops by three in both H_{1} and H_{2}. So assume that T^{\prime} is a transversal of the new H_{0}. As in the proof of Claim C we note that one of the three edges $e_{1}, e_{2}^{\prime}, e_{2}^{\prime \prime}$ are already covered by a vertex in T^{\prime} (due to S_{2}) and the other two edges can be covered by one additional vertex. Similarly by adding one more vertex to T^{\prime} we can make sure that $e_{2}, e_{1}^{\prime}, e_{1}^{\prime \prime}$ are all covered. Therefore the transversal size drops by at most two in H_{0}.

Note that S^{*} drops by $33 / 4$ as we delete 9 vertices in each of H_{1} and H_{2} and we delete 5 vertices in H_{0}. We also delete three edges in each of H_{1} and H_{2} and six edges in H_{0}. But we also add two edges in H_{0}.
$N[Y]$ increases by at most 72 vertices by Claim A, as $\mid V\left(e_{1}^{\prime}\right) \cup V\left(e_{1}^{\prime \prime}\right) \cup V\left(e_{2}^{\prime}\right) \cup V\left(e_{2}^{\prime \prime}\right)-$ $\left\{w_{1}, w_{2}, v_{1}, v_{2}, x\right\} \mid \leq 8$. As V^{*} decreases by at most 13 , we note that $V^{*}-N[Y]$ decreases by at most 85 . We note that (a)-(d) still holds after the above operations. We therefore have a contradiction to the "minimality" of H, as $8 \leq 33 / 4-85 / 372$.

Theorem 8. If G is a graph with $\delta(G) \geq 3$ then $f_{t}(G ; 2) \leq\left(\frac{5}{4}-\frac{1}{372}\right)|V(G)|$.
Proof. Let G be any graph with $\delta(G) \geq 3$ and let $\left(W_{1}, W_{2}\right)$ be a partition of $V(G)$. Define the hypergraph H_{G}, such that $V\left(H_{G}\right)=V(G)$ and $E\left(H_{G}\right)$ is obtained by selecting for each $v \in V(G)$ one set of three vertices from $N_{G}(v)$ to form a hyperedge. $E\left(H_{G}\right)=$
$\left\{e_{v}: v \in V(G)\right\}, e_{v}=\left\{x_{v}, y_{v}, z_{v}\right\} \subseteq N_{G}(v)$. Furthermore for every hyperedge, $e \in E\left(H_{G}\right)$ let $L(e)$ be the set $\{0, i\}$ if $v \in W_{i}$. For reasons which will be clear later we let $L(v)=$ $\{0,1,2\}$ for every $v \in V\left(H_{G}\right)$. Let H_{i} be the 3-uniform hypergraph containing vertex-set $V_{i}=\{v: i \in L(v)$ and $v \in V(H)\}$ and edge-set $E_{i}=\{e: i \in L(e)$ and $e \in E(H)\}$, for $i=0,1,2$. Note that a transversal of H_{0} corresponds to a total dominating set in G and a transversal of $H_{i}(i \in\{1,2\})$ corresponds to a total dominating set in G of the set W_{i}. Therefore we would be done if we could show that $\mathcal{T}\left(H_{0}\right)+\mathcal{T}\left(H_{1}\right)+\mathcal{T}\left(H_{2}\right) \leq$ $\left(\frac{5}{4}-\frac{1}{372}\right)|V(G)|$. Let Y be an empty set. We note that $\left|E_{1}\right|+\left|E_{2}\right|=\left|E_{0}\right|=\left|V_{0}\right|=\left|V_{1}\right|=$ $\left|V_{2}\right|=\left|V\left(H_{0}\right) \cap V\left(H_{1}\right) \cap V\left(H_{2}\right) \backslash N_{H}[Y]\right|=|V(G)|$ and therefore the inequality above is equivalent to

$$
\begin{equation*}
\sum_{i=0}^{2} \mathcal{T}\left(H_{i}\right) \leq\left(\sum_{i=0}^{2} \frac{\left|V_{i}\right|+\left|E_{i}\right|}{4}\right)-\frac{\left|V\left(H_{0}\right) \cap V\left(H_{1}\right) \cap V\left(H_{2}\right) \backslash N_{H}[Y]\right|}{372} \tag{*}
\end{equation*}
$$

For simplicity we will use the following notation:
$T^{*}=\sum_{i=0}^{2} \mathcal{T}\left(H_{i}\right)$
$S^{*}=\sum_{i=0}^{2} \frac{\left|V_{i}\right|+\left|E_{i}\right|}{4}$
$V^{*}=V\left(H_{0}\right) \cap V\left(H_{1}\right) \cap V\left(H_{2}\right)$
We will now do a few transformations on H, H_{0}, H_{1}, H_{2}.
Transformation 1: While there is some vertex $x \in V(H)$ with $d_{H_{0}}(x) \geq 5$ (or equivalently $d_{H}(x) \geq 5$), delete x and all edges incident with x from H (and therefore also from H_{0}, H_{1} and H_{2}).

Claim A: If (${ }^{*}$) holds for the resulting hypergraphs, then it also holds for our original hypergraphs.

Proof of Claim A: We note that T^{*} drops by at most three, as we may place x in the transversal of the new H_{i} 's in order to get transversals in the old H_{i} 's. We note that S^{*} decreases by at least $13 / 4$, as we delete x from H_{0}, H_{1}, H_{2} and 5 edges from H_{0} plus a total of 5 edges from H_{1} and H_{2}. As V^{*} decreases by one and $N_{H}[Y]=\emptyset$ remains unchanged, we are done.

Transformation 2: While there is a vertex $x \in V(H)$ with $d_{H_{1}}(x) \geq 3$, delete x and all edges incident to x from H_{0} and H_{1}. Also delete these edges from H (but do not delete x or any edges incident to x in H_{2}). If $d_{H_{2}}(x)=0$ then delete x from H_{2} (i.e. delete 2 from $L(x)$). If $d_{H_{2}}(x)>0$ then note that $d_{H_{2}}(x)=1$ (as we have performed transformation 1 as long as we could) and put $N_{H_{2}}[x]$ in Y.

Claim B: If (${ }^{*}$) holds for the resulting hypergraphs, then it also holds for our original hypergraphs.

Proof of Claim B: We note that T^{*} drops by at most two, as we may place x in the transversal of the new H_{0} and H_{1} in order to get transversals in the old H_{0} and H_{1}. We note that S^{*} decreases by at least $9 / 4$, as we delete 3 edges and 1 vertex from H_{0} and H_{1} and we either delete a vertex in H_{2} or 4 edges from H_{0}. As V^{*} decreases by one and $N_{H}[Y]$ increases by at most 21 (as $\Delta(H) \leq 4$, after Transformation 1), we are done.

Transformation 3: While there is a vertex $x \in V(H)$ with $d_{H_{2}}(x) \geq 3$, then do the following. Delete x and all edges incident to x from H_{0} and H_{2}. Also delete these edges from H (but do not delete x or any edges incident to x in H_{1}). Furthermore delete any
vertices in H_{2}, which get degree zero by the above transformation. If $d_{H_{1}}(x)=0$ then delete x from H_{1}. If $d_{H_{1}}(x)>0$, then we put $N_{H_{1}}[x]$ in Y.

Claim C: If (${ }^{*}$) holds for the resulting hypergraphs, then it also holds for our original hypergraphs.

Proof of Claim C: We note that T^{*} drops by at most two, as we may place x in the transversal of the new H_{0} and H_{2} in order to get transversals in the old H_{0} and H_{2}. Lets count any edge, e, in H_{1}, which does not lie in H_{0} as contributing $1+\left|V(e) \cap V\left(H_{0}\right)\right| / 3$ to the sum S^{*}. We note that there are no such edges when we start the transformation 3's.

We note that S^{*} now decreases by at least $25 / 12$, because of the following. For every edge containing x in H_{2}, which does not lie in H_{0} there is a vertex of degree one in the edge, due to the above transformations. Therefore we either delete an edge in H_{0} or a vertex in H_{2} for each of the edges containing x in H_{2}. As we also delete the edges in H_{2} and the vertex x in H_{0} and H_{2} we note that S^{*} drops by at least $8 / 4$. So if $d_{H_{1}}(x)=0$ then S^{*} decreases by at least $9 / 4$ as claimed. If $d_{H_{1}}(x)>0$ and the edge, e, containing x in H_{1} also lies in H_{0}, then we are done as we delete an extra edge in H_{0} and the edge left in H_{1} is counted as at most $1+2 / 3$. If $d_{H_{1}}(x)>0$ and the edge, e, containing x in H_{1} does not lie in H_{0}, then we decrease the value of e by $1 / 3$ as $1+\left|V(e) \cap V\left(H_{0}\right)\right| / 3$ decreases. This shows that S^{*} decreases by at least $25 / 12$.

As V^{*} decreases by one and $N[Y]$ increases by at most 21 (as $\Delta(H) \leq 4$, after Transformation 1), we are done.

Transformation 4: If $e_{1}, e_{2} \in E\left(H_{i}\right)$ and $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right| \geq 2$ for some $i \in\{1,2\}$, then we do the following.

If $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=3$, then if $e_{1}, e_{2} \in E_{0}$ we delete e_{2} from both H_{0} and H_{i}. If $e_{j} \notin E_{0}$ $(j \in\{1,2\})$ then we delete e_{j} from H_{i} (in this case $\left.V\left(e_{j}\right) \subseteq Y\right)$. So now assume that $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=2$ and $e_{1}=\left(u_{1}, x, y\right)$ and $e_{2}=\left(u_{2}, x, y\right)$, where $u_{1} \neq u_{2}$,

If $d_{H_{i}}\left(u_{1}\right)=d_{H_{i}}\left(u_{2}\right)=2$, then by the above transformations we note that $e_{1}, e_{2} \in E_{0}$. We now add a new vertex q to H, H_{0} and H_{i}. We delete e_{1} and e_{2} from H, H_{i} and H_{0} and add the edges $\{q, x, y\}$ to H, H_{i} and H_{0}.

If $d_{H_{i}}\left(u_{j}\right)=1$, for some $j \in\{1,2\}$, then do the following. Delete e_{1}, e_{2} and the vertices $\left\{u_{j}, x, y\right\}$ from H_{i}. Add the vertices $\left\{u_{1}, u_{2}, x, y\right\}$ to Y.

Claim D: If (*) holds for the resulting hypergraphs, then it also holds for our original hypergraphs.

Proof of Claim D: In the case when $\left|V\left(e_{1}\right) \cap V\left(e_{2}\right)\right|=3$ we note that T^{*} remains unchanged, S^{*} decreases by $1 / 4$ and $V^{*}-N[Y]$ remains unchanged. We are now done with this case.

In the case when $d_{H_{i}}\left(u_{1}\right)=d_{H_{i}}\left(u_{2}\right)=2$, we note that T^{*}, S^{*} and V^{*} remain unchanged and $N[Y]$ can only grow by adding q to it, but $q \notin V^{*}$. We also note that the above transformation decreases the number of edges in H_{i}, so it cannot continue indefinitely. We are now done with this case.

In the case when $d_{H_{i}}\left(u_{j}\right)=1$, we note that T^{*} decreases by at most one, S^{*} decreases by $5 / 4, V^{*}$ decreases by at most three and $N[Y]$ increases by at most 24 (In $H-e_{1}-e-2$ we note that u_{1} and u_{2} have degree at most 3 while x and y have degree at most 2). As $1 / 4 \geq 27 / 372$ we are done with this case.

Claim $E: \Delta\left(H_{1}\right), \Delta\left(H_{2}\right) \leq 2$ and $\Delta(H-E(Y)) \leq 4$ and there are no overlapping edges in $H_{i}, i \in\{1,2\}$.

Proof of Claim E: The fact that $\Delta\left(H_{1}\right), \Delta\left(H_{2}\right) \leq 2$ follow from Transformations 2 and 3. As $\Delta(H) \leq 4$ after Transformation 1 and no other transformation increases $\Delta(H)$, we note that $\Delta(H-E(Y)) \leq \Delta(H) \leq 4$. There are no overlapping edges in $H_{i}, i \in\{1,2\}$ due to Transformation 4.

Claim F: If $e \in E(H)-E(Y)$, then $0 \in L(e)$ and $|L(e)| \geq 2$.
Proof of Claim F: This was true before Transformation 1 as it was true for all edges. Transformation 1 clearly does not change this property. In Transformation 2, we only keep an edge, e, in H_{i}, where $i \in\{1,2\}$ but delete it in H_{0} if we put $V(e)$ in Y. So the above still holds after Transformation 2. Analogously it also holds after Transformation 3. It is not difficult to check that it also holds after Transformation 4 (note that the above property holds for the edge we might add to H in Transformation 4).

We now see that $\left(^{*}\right)$ holds due to Lemma 3. That implies the theorem.

8. Possible strengthening of Theorem 8

No graph extremal for Theorem 8 is known and probably an inequality $f_{t}(G ; 2) \leq \alpha|V(G)|$ can be obtained for some α smaller than $\frac{5}{4}-\frac{1}{372}$. Certainly α must be at least $9 / 8$, that is demonstrated by the graphs of section 6 .

There is a graph of order 12 having $f_{t}\left(H_{12} ; 2\right)=7 n / 6$, namely H_{12} from the family \mathcal{H} defined after Theorem 2, with the two P_{6} 's as its partition classes. Unless we, e.g., demand that the order of the graphs be large, H_{12} shows that we cannot get a better inequality than the following conjecture.

Conjecture 1. Let G be a graph of order n with $\delta \geq 3$ then $f_{t}(G ; k) \leq 7 n / 6$.

9. Three partition classes

Theorem 9. Let G be a graph of order n with $\delta \geq 3$ then $f_{t}(G ; 3) \leq 3 n / 2$.
For arbitrarily large $n, n \equiv 0(\bmod 6)$, there exist graphs G_{n} with $g_{t}\left(G_{n} ; 3\right)=n$, $\gamma_{t}\left(G_{n}\right)=n / 3, f_{t}(G ; 3)=4 n / 3$.
Proof. By Theorem 1 we have that $\gamma_{t}(G) \leq n / 2$, and $g_{t}(G ; 3) \leq n$ holds trivially, so by addition we get $f_{t}(G ; 3) \leq 3 n / 2$ as desired.

Assume a graph G has $g_{t}(G ; 3)=n$. Then $\Delta(G) \leq 3$ and as $\delta(G) \geq 3, G$ is cubic. Since each vertex has three neighbours, one in each partition class, we see for each $i=1,2,3$, that vertices in class V_{i} span a matching in G.

Listing the 3 neighbours to each V_{i}-vertex we count each vertex of G once, so $3\left|V_{i}\right|=n$ giving $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=n / 3$.

Each V_{1}-vertex is adjacent to precisely one V_{2}-vertex and that has no other V_{1}-neighbour, so there is a perfect matching of $V_{1} V_{2}$-edges and analogously G contains perfect matchings of $V_{1} V_{3}$ - and $V_{2} V_{3}$-edges.

One partition class V_{i} totally dominates G so $\gamma_{t}(G) \leq n / 3$. In fact, $\gamma_{t}(G)=n / 3$ because each vertex in G can totally dominate at most its three neighbours.

Following the steps above, it is now easy for $n \equiv 0(\bmod 3)$ to construct a graph G_{n} with $g_{t}\left(G_{n} ; 3\right)=n$. This graph has $f_{t}\left(G_{n} ; 3\right)=\gamma_{t}\left(G_{n}\right)+g_{t}\left(G_{n} ; 3\right)=4 n / 3$.

We do not know if there, for $\delta \geq 3$, are graphs G with $4 n / 3<f_{t}(G ; 3) \leq 3 n / 2$, but we pose the following conjecture.

Conjecture 2. There exists some positive ϵ such that the following holds. If G is a graph with $\delta(G) \geq 3$, then $f_{t}(G ; 3) \leq(3 / 2-\epsilon)|V(G)|$.

Theorem 10. Let G be a graph of order n with $\delta \geq 3$ and let $k \geq 4 . f_{t}(G ; k) \leq 3 n / 2$ and there exists an infinite family of graphs with $f_{t}(G ; k)=3 n / 2$.

Proof. The inequality is proven as in Theorem 9. For a graph with $f_{t}(H ; k)=3 n / 2$ take $H \in \mathcal{H}\left(\mathcal{H}\right.$ is defined after Theorem 2). Let $v_{1}, v_{2}, \ldots, v_{n / 2}$ and $u_{1}, u_{2}, \ldots, u_{n / 2}$ be two disjoint paths in H such that $\left\{v_{1} u_{2}, v_{2} u_{1}, v_{1} v_{n / 2}, u_{1} u_{n / 2}\right\} \subseteq E(H)$. Let $V_{1}, V_{2}, V_{3}, V_{4}$ be a partition of H such that $l\left(v_{1}\right), l\left(v_{2}\right), \ldots, l\left(v_{n / 2}\right) \ldots=1,2,3,4,1,2,3,4, \ldots$. and
$l\left(u_{1}\right), l\left(u_{2}\right), \ldots, l\left(u_{n / 2}\right) \ldots=4,3,2,1,4,3,2,1, \ldots$. where $l(x)=i$ if $x \in V_{i}$, then $f_{t}\left(H ; V_{1}, V_{2}, V_{3}, V_{4}\right)=3 n / 2$.

References

1. G. Chartrand and L. Lesniak, Graphs and Digraphs: Third Edition, Chapman \& Hall, London, 1996.
2. V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. Combinatorica 12 (1992), 19-26.
3. O. Favaron, M.A. Henning, C.M. Mynhardt and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000), 9-19.
4. A. Frendrup, M. A. Henning and P.D. Vestergaard, Total domination in partitioned trees and partitioned graphs with minimum degree two, Journal of Global Optimization 41 (2008), 385-399. 41 (2008), 385-399.
5. T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
6. T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
7. B.L. Hartnell and P.D. Vestergaard, Partitions and dominations in a graph. J. Combin. Math. Combin. Comput. 46 (2003), 113-128.
8. M.A. Henning, Graphs with large total domination number. J. Graph Theory 35(1) (2000), 21-45.
9. M.A. Henning, A survey of selected recent results on total domination in graphs. Discrete Math. 309 (2009), 32-63.
10. Henning, Michael A.; Kang, Liying; Shan, Erfang; Yeo, Anders On matching and total domination in graphs. Discrete Math. 308 (2008), no. 11, 2313-2318.
11. M.A. Henning and P.D. Vestergaard,"Domination in partitioned graphs with minimum degree two"', Discrete Mathematics 307 (2007), 1115-1135.
12. M.A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, Journal of Graph Theory 59 (2008), 326-348".
13. M. A. Henning and A. Yeo, Tight lower bounds on the size of a matching in a regular graph. Graphs Combin. 23 (2007), no. 6, 647-657.
14. S.M. Seager, Partition dominations of graphs of minimum degree 2. Congr. Numer. 132 (1998), 85-91.
15. S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. Combinatorica 27 no. 4, (2007), 473-487.
16. Z. Tuza, Covering all cliques of a graph. Discrete Math. 86 (1990), 117-126.
17. Z. Tuza and P.D. Vestergaard, Domination in partitioned graph. Discuss. Math. Graph Theory 22(1) (2002), 199-210.
18. A. Yeo, Relationships between total domination, order, size and maximum degree of graphs, pp. 1-12. J. Graph Theory 55 no. 4, (2007), 325-337.
19. A. Yeo, Excluding one graph significantly improves bounds on total domination in connected graphs of minimum degree four. In preperation.

Received: December, 2008

[^0]: Send offprint requests to:

