Aalborg Universitet
AALBORG UNIVERSITY

Total domination in partitioned trees and partitioned graphs with minimum degree two

Frendrup, Allan; Henning, Michael A.; Vestergaard, Preben Dahl

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Frendrup, A., Henning, M. A., \& Vestergaard, P. D. (2008). Total domination in partitioned trees and partitioned graphs with minimum degree two. Aalborg: Department of Mathematical Sciences, Aalborg University. (Research Report Series; No. R-2008-14)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

Total domination in partitioned trees and partitioned graphs with minimum degree two

by

Allan Frendrup, Michael A. Henning and Preben Dahl Vestergaard
Published in Journal of Global Optimization, vol. 41 (2008), 385-399

Total domination in partitioned trees and partitioned graphs with minimum degree two

${ }^{1}$ Allan Frendrup, ${ }^{2}$ Michael A. Henning*, and ${ }^{1}$ Preben Dahl Vestergaard
${ }^{1}$ Department of Mathematical Sciences
Aalborg University
DK-9220 Aalborg East, Denmark
Email: frendrup@math.aau.dk
Email: pdv@math.aau.dk
${ }^{2}$ School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
Email: henning@ukzn.ac.za

Published in Journal of Global Optimization vol. 41(2008) 385-399

Abstract

Let $G=(V, E)$ be a graph and let $S \subseteq V$. A set of vertices in G totally dominates S if every vertex in S is adjacent to some vertex of that set. The least number of vertices needed in G to totally dominate S is denoted by $\gamma_{t}(G, S)$. When $S=V$, $\gamma_{t}(G, V)$ is the well studied total domination number $\gamma_{t}(G)$. We wish to maximize the sum $\gamma_{t}(G)+\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right)$ over all possible partitions V_{1}, V_{2} of V. We call this maximum sum $f_{t}(G)$. For a graph H, we denote by $H \circ P_{2}$ the graph obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex-disjoint. We show that if G is a tree of order $n \geq 4$ and $G \notin\left\{P_{5}, P_{6}, P_{7}, P_{10}, P_{14}\right\}$, then $f_{t}(G) \leq 14 n / 9$ with equality if and only if $G \in\left\{P_{9}, P_{18}\right\}$ or $G=\left(T \circ P_{2}\right) \circ P_{2}$ for some tree T. If G is a connected graph of order n with minimum degree at least two, we establish that $f_{t}(G) \leq 3 n / 2$ with equality if and only if G is a cycle of order congruent to zero modulo 4 .

Keywords: partitioned graphs; total domination
AMS subject classification: 05C69

[^0]
1 Introduction

In this paper, we continue the study of the concept of partitions and domination in graphs introduced by Hartnell and Vestergaard [5], and studied, for example, in [7, 8, 9]. Here we study partitions and total domination in graphs. Throughout this article, only undirected simple graphs without loops or multiple edges are considered.

For notation and graph theory terminology we in general follow [1, 3]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order $n=|V|$ and edge set E of size $m=|E|$, and with no isolated vertices. For sets $S, T \subseteq V, S$ totally dominates T if every vertex in T is adjacent to some vertex of S. If S totally dominates V, then S is called a total dominating set, denoted TDS, of G. Every graph without isolated vertices has a TDS, since $S=V$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS. For $U \subseteq V$, we let $\gamma_{t}(G, U)$ denote the minimum cardinality of a set of vertices in G that totally dominates U. Hence, $\gamma_{t}(G, V)=\gamma_{t}(G)$. If $U=\emptyset$, we define $\gamma_{t}(G, U)=0$. A set of cardinality $\gamma_{t}(G, U)$ that totally dominates U in G we call a $\gamma_{t}(G, U)$-set. If $U=V$, we also call a $\gamma_{t}(G, U)$-set a $\gamma_{t}(G)$-set. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well studied in graph theory. The literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [3, 4].

By a partition of the vertices of a graph $G=(V, E)$, we mean two subsets V_{1}, V_{2} of V with $V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\emptyset ;\left\{V_{1}, V_{2}\right\}=\{\emptyset, V\}$ is permitted. Given a partition $\mathcal{P}=\left\{V_{1}, V_{2}\right\}$ of V, we define the label of a vertex v in \mathcal{P}, denoted $\ell_{\mathcal{P}}(v)$, as the number $i \in\{1,2\}$ such that $v \in V_{i}$. For a graph G, and a partition V_{1}, V_{2} of V, we define $g_{t}\left(G ; V_{1}, V_{2}\right)$ and $f_{t}\left(G ; V_{1}, V_{2}\right)$ by

$$
\begin{aligned}
g_{t}\left(G ; V_{1}, V_{2}\right) & =\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right), \\
f_{t}\left(G ; V_{1}, V_{2}\right) & =\gamma_{t}(G)+g_{t}\left(G ; V_{1}, V_{2}\right),
\end{aligned}
$$

and $g_{t}(G)$ and $f_{t}(G)$ by

$$
\begin{aligned}
g_{t}(G) & =\max \left\{g_{t}\left(G ; V_{1}, V_{2}\right) \mid V_{1}, V_{2} \text { is a partition of } V\right\} \\
f_{t}(G) & =\max \left\{f_{t}\left(G ; V_{1}, V_{2}\right) \mid V_{1}, V_{2} \text { is a partition of } V\right\}
\end{aligned}
$$

Our aim in this paper is twofold. We wish to establish a sharp upper bound for the function $f_{t}(G)$ in terms of the order n of a graph G in two cases. Firstly we establish an upper bound for $f_{t}(G)$ in the case when G is a tree of order at least 4 . Secondly we establish an upper bound for $f_{t}(G)$ in the case when G is a connected graph with minimum degree at least two. In both cases we characterize the graphs achieving equality in these bounds.

1.1 Notation

Let $G=(V, E)$ be a graph and let $v \in V$ and $S \subseteq V$. The open neighborhood of v in G is $N(v)=\{u \in V \mid u v \in E\}$, while the open neighborhood of S is the set $N(S)=\cup_{v \in S} N(v)$. Hence for a set $U \subseteq V$, the set S totally dominates U if $U \subseteq N(S)$. For a set $S \subseteq V$, the
subgraph induced by S is denoted by $G[S]$. A vertex of degree k we call a degree- k vertex. A degree-1 vertex we call a leaf (or an end-vertex), and a vertex adjacent to a leaf we call a support vertex. The minimum (resp., maximum) degree among the vertices of G is denoted by $\delta(G)$ (resp., $\Delta(G)$). For disjoint subsets S and T of vertices, we denote by $[S, T]$ the set of edges of G with one end in S and the other in T.

A subset S of vertices in a graph G is an open packing if the open neighborhoods of vertices in S are pairwise disjoint, i.e., no two vertices from S have a common neighbor, but they may be adjacent.

A set M of edges of G is a matching if no two edges in M are incident to the same vertex. A perfect matching in G is a matching with the property that every vertex is incident with an edge of the matching.

A cycle on $n \geq 3$ vertices is denoted by C_{n} and a path on $n \geq 1$ vertices by P_{n}. A path P_{1} is called a trivial path. For $r \geq 3$ and $s \geq 1$, we denote by $L_{r, s}$ the graph obtained by joining with an edge a vertex in C_{r} to an end-vertex of P_{s}. We call the graph $L_{r, s}$ a key.

For a graph H, we denote by $H \circ P_{2}$ the graph of order $3|V(H)|$ obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertexdisjoint. The graph $H \circ P_{2}$ is also called the 2 -corona of H.

2 Known Results

In this section, we mention the previous best known upper bounds for $f_{t}(G)$ when G is a tree of order at least 3 and when G is a connected graph with minimum degree at least two.

Let $G=(V, E)$ be a graph and let $S \subseteq V$. Every minimum TDS in G totally dominates the set S. Hence, $\gamma_{t}(G, S) \leq \gamma_{t}(G)$. This implies that $f_{t}(G) \leq 3 \gamma_{t}(G)$. When G is a tree of order $n \geq 3$, then Cockayne, Dawes, and Hedetniemi [2] showed that $\gamma_{t}(G) \leq 2 n / 3$. When G is a connected graph of order n with $\delta(G) \geq 2$, and $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$, then it is shown in [6] that $\gamma_{t}(G) \leq 4 n / 7$. Hence the following two results are immediate consequences of known upper bounds on the total domination number of a graph.

Fact 1 ([2]) If T is a tree of order $n \geq 3$, then $f_{t}(G) \leq 2 n$.

Fact 2 ([6]) If $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$ is a connected graph of order n with $\delta(G) \geq 2$, then $f_{t}(G) \leq 12 n / 7$.

3 Main Results

We shall prove:

Theorem 1 If T is a tree of order $n \geq 4$ and $T \notin\left\{P_{5}, P_{6}, P_{7}, P_{10}, P_{14}\right\}$, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T \in\left\{P_{9}, P_{18}\right\}$ or $T=\left(T^{\prime} \circ P_{2}\right) \circ P_{2}$ for some tree T^{\prime}.

The tree $\left(K_{1} \circ P_{2}\right) \circ P_{2}$, for example, is shown in Figure 1.

Figure 1: The tree $\left(K_{1} \circ P_{2}\right) \circ P_{2}$.

Theorem 2 If G is a connected graph of order n with $\delta(G) \geq 2$, then $f_{t}(G) \leq 3 n / 2$ with equality if and only if $G \cong C_{n}$ where $n \equiv 0(\bmod 4)$.

4 Proof of Theorem 1

4.1 Preliminary Results

The total domination number of a cycle C_{n} or a path P_{n} on $n \geq 3$ vertices is easy to compute.

Lemma 1 ([6]) For $n \geq 3, \gamma_{t}\left(P_{n}\right)=\gamma_{t}\left(C_{n}\right)=\lfloor n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.

Thus for $G \in\left\{P_{n}, C_{n}\right\}$, if $n \geq 3$ is odd, then $\gamma_{t}(G)=(n+1) / 2$ and if n is congruent to zero modulo 4 , then $\gamma_{t}(G)=n / 2$. Finally if n is congruent to two modulo 4 , then $\gamma_{t}(G)=(n+2) / 2$.

The total domination number of a key $L_{r, s}$ of order (and size) $r+s$ was determined in [6]. As a consequence of this result, we have the following upper bound on $\gamma_{t}\left(L_{r, s}\right)$.

Lemma 2 ([6]) For $r \geq 3$ and $s \geq 1$, if G is a key $L_{r, s}$ of order $n=r+s$, then $\gamma_{t}(G) \leq$ $(n+2) / 2$ with equality if and only if $r \equiv 2(\bmod 4)$ and $s \equiv 0(\bmod 4)$.

The following lemmas follow immediately from the definitions of $f_{t}(G)$ and $g_{t}(G)$.

Lemma 3 If G^{\prime} is a spanning subgraph of a graph G with $\delta\left(G^{\prime}\right) \geq 1$, then $g_{t}(G) \leq g_{t}\left(G^{\prime}\right)$.

Lemma 4 If G is a graph with no isolated vertex, then $f_{t}(G)=\gamma_{t}(G)+g_{t}(G)$.

We shall use the obvious observation that for a graph G with induced subgraphs G_{1}, G_{2} having no isolated vertices and satisfying $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$, we have that

$$
\begin{gathered}
\gamma_{t}(G) \leq \gamma_{t}\left(G_{1}\right)+\gamma_{t}\left(G_{2}\right), \\
g_{t}(G) \leq g_{t}\left(G_{1}\right)+g_{t}\left(G_{2}\right), \\
f_{t}(G) \leq f_{t}\left(G_{1}\right)+f_{t}\left(G_{2}\right) .
\end{gathered}
$$

The following lemma follows readily from the definition of an open packing.

Lemma 5 Let $G=(V, E)$ be a path $v_{1}, v_{2}, \ldots, v_{n}$ of order n, and let V_{1}, V_{2} be a partition of V. If both V_{1} and V_{2} are open packings in G, then the labels of $V\left(P_{n}\right)$ come in alternating pairs but the beginning and the end may be a pair or a single label. More precisely, renaming the sets V_{1} and V_{2} if necessary, we have

$$
V_{1}=\left(\bigcup_{i=0}^{\lfloor(n-1) / 4\rfloor}\left\{v_{4 i+1}\right\}\right) \cup\left(\bigcup_{i=0}^{\lfloor(n-2) / 4\rfloor}\left\{v_{4 i+2}\right\}\right)
$$

or

$$
V_{1}=\left(\bigcup_{i=0}^{\lfloor(n-1) / 4\rfloor}\left\{v_{4 i+1}\right\}\right) \cup\left(\bigcup_{i=0}^{\lfloor(n-4) / 4\rfloor}\left\{v_{4(i+1)}\right\}\right),
$$

with the remaining vertices in V_{2}.

Definition 1 For a graph $G=(V, E)$, we define a partition V_{1}, V_{2} of V to be a good partition if both V_{1} and V_{2} are open packings in G.

The following lemmas will prove to be useful when proving our main results.

Lemma 6 Let $G=(V, E)$ be a graph of order $n \geq 2$ with no isolated vertices, and let V_{1}, V_{2} be a partition of V. Then, V_{1}, V_{2} is a good partition of V if and only if $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right)=$ n.

Proof. Suppose that V_{1}, V_{2} is a good partition of V. Then for $i \in\{1,2\}$, no two vertices from V_{i} can be dominated by a common vertex, and so $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right)=\left|V_{1}\right|+\left|V_{2}\right|=n$. This establishes the necessity. To prove the sufficiency, suppose that V_{1}, V_{2} is not a good partition of V. We may assume that V_{1} is not an open packing in G. Thus there exist two vertices in V_{1} that have a common neighbor, implying that $\gamma_{t}\left(G, V_{1}\right) \leq\left|V_{1}\right|-1$. Hence since $\gamma_{t}\left(G, V_{2}\right) \leq\left|V_{2}\right|$, we have that $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq n-1$.

Lemma 7 For $n \geq 2, g_{t}\left(P_{n}\right)=n$ and $f_{t}\left(P_{n}\right)=\lfloor 3 n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.

Proof. Since every path has a good partition of its vertex set, we have by Lemma 6 that $g_{t}\left(P_{n}\right)=n$. The desired result now follows from Lemmas 1 and 4 .

Thus by Lemma 7 , if $n \geq 3$ is odd, then $f_{t}\left(P_{n}\right)=(3 n+1) / 2$; if $n \equiv 0(\bmod 4)$, then $f_{t}\left(P_{n}\right)=3 n / 2$; if $n \equiv 2(\bmod 4)$, then $f_{t}\left(P_{n}\right)=(3 n+2) / 2$.

Lemma 8 If $G=(V, E)$ is a path of order $n \geq 2$, and V_{1}, V_{2} is not a good partition of V, then $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 3 n / 2$ with strict inequality if $n \not \equiv 2(\bmod 4)$.

Proof. By Lemma 6, $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq n-1$. By Lemma $1, \gamma_{t}(G) \leq(n+2) / 2$ with strict inequality if $n \not \equiv 2(\bmod 4)$. Hence, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 3 n / 2$ with strict inequality if $n \not \equiv 2(\bmod 4)$.

The following lemma is an immediate consequence of Lemma 8.

Lemma 9 If $G=(V, E)$ is a path of order $n \geq 2$, and V_{1}, V_{2} is a partition of V for which $f_{t}\left(G ; V_{1}, V_{2}\right)>3 n / 2$, then V_{1}, V_{2} is a good partition of V.

Lemma 10 If G is a graph of order n without isolated vertices and $S \subseteq V(G)$, then $g_{t}(G) \leq$ $n+2|S|-|N(S)|$.

Proof. Let $G=(V, E)$ and let V_{1}, V_{2} be a partition of V. Let $i \in\{1,2\}$. For each vertex $v \in V_{i} \backslash N(S)$, we choose an adjacent vertex and call the resulting set of such vertices S_{i}^{\prime}. Then, $S \cup S_{i}^{\prime}$ totally dominates V_{i} in G, and so $\gamma_{t}\left(G, V_{i}\right) \leq|S|+\left|S_{i}^{\prime}\right|$. Thus, $g_{t}\left(G ; V_{1}, V_{2}\right) \leq$ $2|S|+\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right| \leq 2|S|+|V \backslash N(S)|=n+2|S|-|N(S)|$. Thus for every partition V_{1}, V_{2} of $V, g_{t}\left(G ; V_{1}, V_{2}\right) \leq n+2|S|-|N(S)|$. Therefore, $g_{t}(G) \leq n+2|S|-|N(S)|$.

As a special case of Lemma 10, we have the following result.

Lemma 11 If G is a graph of order n with no isolated vertex and maximum degree at least 3 , then $g_{t}(G) \leq n-1$.

Proof. Let v be a vertex of maximum degree at least 3 and let $S=\{v\}$. Then, $|S|=1$ and $|N(S)| \geq 3$, and so the desired result follows from Lemma 10.

Lemma 12 If T is a graph of order n that can be obtained from a star on at least four vertices by subdividing some (including the possibility of none) of the edges exactly once, then $f_{t}(T)<3 n / 2$.

Proof. For integers $r \geq k \geq 0$ with $r \geq 3$, let $T=(V, E)$ be obtained from a star $K_{1, r}$ by subdividing k edges exactly once. If $k=0$, then $n=r+1 \geq 4$ and $f_{t}(T) \leq 5<3 n / 2$. Hence we may assume that $k \geq 1$. Then, $\gamma_{t}(T)=k+1$. Let V_{1}, V_{2} be a partition of V.

Then, $\gamma_{t}\left(T, V_{1}\right)+\gamma_{t}\left(T, V_{2}\right) \leq k+3$, and so $f_{t}\left(T ; V_{1}, V_{2}\right) \leq 2 k+4$. Since $r \geq k$ and $r \geq 3$, we have $3 n / 2=3(k+r+1) / 2=(3 k+r) / 2+r+3 / 2 \geq 2 k+9 / 2$. Thus for every partition V_{1}, V_{2} of $V, f_{t}\left(T ; V_{1}, V_{2}\right)<3 n / 2$. Therefore, $f_{t}(T)<3 n / 2$.

Next we define a special set \mathcal{S} of small paths.

Definition 2 Let $\mathcal{S}=\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{6}, P_{7}, P_{10}, P_{14}\right\}$.

As a consequence of the remark after Lemma 7 we have the following result.

Lemma 13 If $T \in \mathcal{S}$ has order $n \geq 2$, then $f_{t}(T)=(3 n+1) / 2$ if n is odd; otherwise, $f_{t}(T)=(3 n+2) / 2$.

A proof of the following lemma is a simple exercise and is omitted.

Lemma 14 Let $T=(V, E)$ be a path in \mathcal{S}. If $|V| \geq 2$ and $v \in V$ is neither a leaf of a P_{5} nor a center of a P_{7}, then there exists a $\gamma_{t}(T)$-set containing v.

Definition 3 Let $\mathcal{T}=\left\{T \mid T=\left(T^{\prime} \circ P_{2}\right) \circ P_{2}\right.$ for some tree $\left.T^{\prime}\right\}$.

4.2 Proof of Theorem 1

Recall Theorem 1.

Theorem 1 If $T \notin \mathcal{S}$ is a tree of order $n \geq 4$, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T \in\left\{P_{9}, P_{18}\right\}$ or $T \in \mathcal{T}$.

Proof. We proceed by induction on n. When $n=4$, either $T=K_{1,3}$, in which case $f_{t}(T)=5$, or $T=P_{4}$, in which case $f_{t}(T)=6$. In both cases, $f_{t}(T)<14 n / 9$. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that for all trees $T^{\prime} \notin \mathcal{S}$ of order n^{\prime}, where $4 \leq n^{\prime}<n, f_{t}\left(T^{\prime}\right) \leq 14 n^{\prime} / 9$ with equality if and only if $T^{\prime} \in\left\{P_{9}, P_{18}\right\}$ or $T^{\prime} \in \mathcal{T}$.

So let $T=(V, E)$ be a tree of order n with $T \notin \mathcal{S}$. The following observation follows from Lemma 1.

Observation 1 If $T=P_{n}$, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T \in\left\{P_{9}, P_{18}\right\}$.

By Observation 1, we may assume that T is not a path, for otherwise the desired result follows. With this assumption, we have the following observation by Lemma 11.

Observation $2 g_{t}(T) \leq n-1$.

Observation 3 If T contains a path on five vertices with one end a leaf in T and with each internal vertex a degree-2 vertex in T, then $f_{t}(T)<14 n / 9$.

Proof. Let $P: v, v_{1}, v_{2}, v_{3}, v_{4}$ be a path in T where $\operatorname{deg}_{T}\left(v_{4}\right)=1$ and $\operatorname{deg}_{T}\left(v_{i}\right)=2$ for $i=1,2,3$. Let T_{1} and T_{2} be the components of $T-v v_{1}$ containing v and v_{1}, respectively. Then, T_{1} is a tree of order $n_{1}=n-4$, while $T_{2}=P_{4}$, and so $g_{t}\left(T_{2}\right)=n_{2}=4$ and $f_{t}\left(T_{2}\right)=6$. Since T is not a path, $n_{1} \geq 3$.

Suppose T_{1} is a path. Then, $g_{t}\left(T_{1}\right)=n_{1}$ and, by Lemma $1, f_{t}\left(T_{1}\right) \leq\left(3 n_{1}+2\right) / 2$. Thus, $g_{t}\left(T_{1}\right)+g_{t}\left(T_{2}\right)=n$. By Observation $2, g_{t}(T) \leq n-1$, and so $g_{t}(T) \leq g_{t}\left(T_{1}\right)+g_{t}\left(T_{2}\right)-1$. Thus, by Lemmas 3 and $4, f_{t}(T)=\gamma_{t}(T)+g_{t}(T) \leq \gamma_{t}\left(T_{1}\right)+\gamma_{t}\left(T_{2}\right)+g_{t}\left(T_{1}\right)+g_{t}\left(T_{2}\right)-1=$ $f_{t}\left(T_{1}\right)+f_{t}\left(T_{2}\right)-1 \leq\left(3 n_{1}+2\right) / 2+6-1=3 n / 2<14 n / 9$. Hence we may assume that T_{1} is not a path. In particular, $T_{1} \notin \mathcal{S}$ and $n_{1} \geq 4$. Thus, by the inductive hypothesis, $f_{t}(T) \leq f_{t}\left(T_{1}\right)+f_{t}\left(T_{2}\right) \leq 14 n_{1} / 9+6<14 n / 9$.

By Observation 3, we may assume that T contains no path on five vertices with one end a leaf in T and with each internal vertex a degree- 2 vertex in T.

Let V_{1}, V_{2} be a partition of V. For each edge $u v \in E$, let T_{u} and T_{v} denote the components of $T-u v$ containing u and v, respectively. If $T_{u} \in \mathcal{S}$, then we orient the edge from u to v, while if $T_{v} \in \mathcal{S}$, then we orient the edge from v to u. (Possibly an edge may be oriented in both directions.)

Observation 4 If an edge of T has no orientation, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T \in \mathcal{T}$.

Proof. Suppose that an edge $u v \in E$ has no orientation. Applying the inductive hypothesis to T_{u} and T_{v}, we have that for $x \in\{u, v\}, f_{t}\left(T_{x}\right) \leq 14\left|V\left(T_{x}\right)\right| / 9$ with equality if and only if $T_{x} \in\left\{P_{9}, P_{18}\right\}$ or $T_{x} \in \mathcal{T}$. Hence, $f_{t}(T) \leq f_{t}\left(T_{u}\right)+f_{t}\left(T_{v}\right) \leq 14\left|V\left(T_{u}\right)\right| / 9+14\left|V\left(T_{v}\right)\right| / 9=$ $14 n / 9$. Thus if $f_{t}\left(T_{x}\right)<14\left|V\left(T_{x}\right)\right| / 9$ for some $x \in\{u, v\}$, then $f_{t}(T)<14 n / 9$. Suppose then that for $x \in\{u, v\}, f_{t}\left(T_{x}\right)=14\left|V\left(T_{x}\right)\right| / 9$, and so $T_{x} \in\left\{P_{9}, P_{18}\right\}$ or $T_{x} \in \mathcal{T}$.

Suppose that one of T_{u} and T_{v}, say T_{u}, is a path. Then, $T_{u} \in\left\{P_{9}, P_{18}\right\}$ and at least one leaf in T_{u} is a leaf in T that is the end of a path on five vertices every internal vertex of which has degree 2 in T, contrary to assumption.

Hence both T_{u} and T_{v} are in the family \mathcal{T}. Let $G \cong\left(P_{1} \circ P_{2}\right) \circ P_{2}$. Then both T_{u} and T_{v} have disjoint copies of G as a spanning subgraph. Thus, T has as a spanning subgraph the graph $H=k G$, consisting of k disjoint copies of G, for some integer $k \geq 2$, where u and v belong to different copies of G in H. Hence, $n=9 k$. Let G_{u} and G_{v} be the copies of G in H that contain u and v, respectively. Let $T_{u v}=G_{u} \cup G_{v} \cup\{u v\}$.

We proceed further with two observations about the graph G. We observe first that $\gamma_{t}(G)=6$, while $g_{t}(G)=|V(G)|-1=8$, and so $f_{t}(G)=14=14|V(G)| / 9$. We observe secondly that for every vertex of G there exists a $\gamma_{t}(G)$-set containing it and if w is a leaf in G or a support vertex in G, then $\gamma_{t}(G, V(G) \backslash\{w\})=\gamma_{t}(G)-1$.

Suppose that u is a leaf or a support vertex in G_{u}. Then it follows from our two earlier observations about the graph G that $\gamma_{t}\left(T_{u v}\right) \leq \gamma_{t}\left(G_{u}\right)+\gamma_{t}\left(G_{v}\right)-1$, implying that $\gamma_{t}(T) \leq$ $k \gamma_{t}(G)-1=6 k-1$. Thus since $g_{t}(T) \leq k g_{t}(G)=8 k$, we have that $f_{t}(T) \leq 14 k-1=$ $14 n / 9-1$. Hence we may assume that u is neither a leaf nor a support vertex in G_{u}. Similarly, v is neither a leaf nor a support vertex in G_{v}.

Suppose that u or v is the vertex of degree-3 in G_{u} or G_{v}, respectively. Then applying Lemma 10 to the tree $T_{u v}$ with $S=\{u, v\}$ we have that $g_{t}\left(T_{u v}\right) \leq\left|V\left(G_{u}\right)\right|+\left|V\left(G_{v}\right)\right|+$ $2|S|-|N(S)| \leq 18+4-7=15$. Thus, $g_{t}(T) \leq g_{t}\left(T_{u v}\right)+(k-2) g_{t}(G) \leq 8 k-1$ while $\gamma_{t}(T) \leq k \gamma_{t}(G)=6 k$, and so $f_{t}(T) \leq 14 k-1=14 n / 9-1$. Hence we may assume that neither u nor v is the vertex of degree 3 in G_{u} or G_{v}, respectively.

If $k=2$, then $T=\left(T^{\prime} \circ P_{2}\right) \circ P_{2}$ where $T^{\prime}=P_{2}$ consists of the vertices u and v, whence $T \in \mathcal{T}$. Hence we may assume that $k \geq 3$.

Assume that $F \cup(k-3) G$ is a spanning subgraph of T where $F=P_{9} \circ P_{2}$. Let $v_{1}, v_{2}, \ldots, v_{9}$ be the vertices from the path P_{9} in F. Then applying Lemma 10 to the graph F with $S=$ $\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$ we obtain $g_{t}(F) \leq 27+8-12=23$. Thus, $g_{t}(T) \leq g_{t}(F)+(k-3) g_{t}(G) \leq 8 k-1$ while $\gamma_{t}(T) \leq k \gamma_{t}(G)=6 k$, and so $f_{t}(T) \leq 14 k-1=14 n / 9-1$. Hence we may assume that $\left(P_{9} \circ P_{2}\right) \cup(k-3) G$ is not a spanning subgraph of T. It follows that the degree of every vertex in $G_{u} \cup G_{v}$, different from u and v, is unchanged in T. Thus for $x \in\{u, v\}$, if $T_{x}=\left(T_{x}^{\prime} \circ P_{2}\right) \circ P_{2}$ for some tree T_{x}^{\prime}, then we have that $u \in V\left(T_{u}^{\prime}\right)$ and $v \in V\left(T_{v}^{\prime}\right)$. This implies that $T=\left(T^{\prime} \circ P_{2}\right) \circ P_{2}$ where T^{\prime} is the tree $T_{u}^{\prime} \cup T_{v}^{\prime} \cup\{u v\}$. Thus, $T \in \mathcal{T}$. Hence we have established that either $f_{t}(T)<14 n / 9$ or $f_{t}(T)=14 n / 9$ and $T \in \mathcal{T}$.

Observation 5 If an edge of T is oriented in both directions, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T=\left(P_{1} \circ P_{2}\right) \circ P_{2}$.

Proof. Suppose that an edge $u v \in E$ is oriented in both directions. Hence both components T_{u} and T_{v} of $T-u v$ are contained in \mathcal{S}. Since both T_{u} and T_{v} are paths, $g_{t}\left(T_{u}\right)+g_{t}\left(T_{v}\right)=n$. By Observation 2, $g_{t}(T) \leq n-1$, and so $g_{t}(T) \leq g_{t}\left(T_{u}\right)+g_{t}\left(T_{v}\right)-1$.

Since T is not a path, $\operatorname{deg}_{T}(u) \geq 3$ or $\operatorname{deg}_{T}(v) \geq 3$. If both $\operatorname{deg}_{T}(u) \geq 3$ and $\operatorname{deg}_{T}(v) \geq$ 3, then applying Lemma 10 to the tree T with $S=\{u, v\}$, we have $g_{t}(T) \leq n-2=$ $g_{t}\left(T_{u}\right)+g_{t}\left(T_{v}\right)-2$. Thus since $\gamma_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+\gamma_{t}\left(T_{v}\right)$, we have by Lemma 13 that $f_{t}(T) \leq f_{t}\left(T_{u}\right)+f_{t}\left(T_{v}\right)-2 \leq\left(3\left|V\left(T_{u}\right)\right|+2\right) / 2+\left(3\left|V\left(T_{u}\right)\right|+2\right) / 2-2=3 n / 2<14 n / 9$.

Hence we may assume that either $\operatorname{deg}_{T}(u) \geq 3$ or $\operatorname{deg}_{T}(v) \geq 3$, but not both. We may assume that $\operatorname{deg}_{T}(u) \geq 3$, and so $\operatorname{deg}_{T}(v) \leq 2$. By our assumption following Observation 3, we have that $T_{v} \in\left\{P_{1}, P_{2}, P_{3}\right\}$.

Suppose $T_{v}=P_{1}$, and so $\left|V\left(T_{u}\right)\right|=n-1$. If there is a $\gamma_{t}\left(T_{u}\right)$-set containing u, then $\gamma_{t}(T) \leq \gamma_{t}\left(T_{u}\right)$, implying that $f_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+g_{t}(T) \leq\left(\left|V\left(T_{u}\right)\right|+2\right) / 2+n-1=(3 n-1) / 2<$ $14 n / 9$. On the other hand, if there is no $\gamma_{t}\left(T_{u}\right)$-set containing u, then, by Lemma $14, T_{u}=$ P_{7} and u is the central vertex of this P_{7}. But then $n=8, \gamma_{t}(T)=5$ and $g_{t}(T) \leq n-1=7$, implying that $f_{t}(T) \leq 12=3 n / 2<14 n / 9$. Hence we may assume that $T_{v} \in\left\{P_{2}, P_{3}\right\}$.

As observed earlier, $g_{t}(T) \leq g_{t}\left(T_{u}\right)+g_{t}\left(T_{v}\right)-1$. Thus, $f_{t}(T) \leq f_{t}\left(T_{u}\right)+f_{t}\left(T_{v}\right)-1$.

Hence, by Lemma $13, f_{t}(T) \leq(3 n+\ell) / 2$ where ℓ denotes the number of even components of $T-u v$. If $\ell=0$, then $f_{t}(T) \leq 3 n / 2<14 n / 9$, as desired. Hence we may assume that $\ell \in\{1,2\}$.

Suppose that $\ell=1$, and so $f_{t}(T) \leq(3 n+1) / 2$. If $n>9$, then $f_{t}(T)<14 n / 9$. Hence we may assume that $n \leq 9$. Suppose firstly that $P_{v}=P_{2}$ and T_{u} is of odd order. If $T_{u} \neq P_{7}$ or if $T_{u}=P_{7}$ but u is not the central vertex of P_{u}, then there is a $\gamma_{t}\left(T_{u}\right)$-set containing u, and so $\gamma_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+1$, implying that $f_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+1+g_{t}(T) \leq\left(\left|V\left(T_{u}\right)\right|+1\right) / 2+1+n-1<$ $3 n / 2<14 n / 9$. Hence we may assume that $T_{u}=P_{7}$ and that u is the central vertex of T_{u}. But then $T=\left(P_{1} \circ P_{2}\right) \circ P_{2} \in \mathcal{T}$. Suppose secondly that $P_{v}=P_{3}$. Then, since $n \leq 9$, $P_{u}=P_{6}$. By our assumption following Observation 3, the vertex u is a not a support vertex of P_{u}. But then again $T=\left(P_{1} \circ P_{2}\right) \circ P_{2} \in \mathcal{T}$.

Suppose finally that $\ell=2$. Then, $T_{v}=P_{2}$ and $T_{u} \in\left\{P_{2}, P_{6}, P_{10}, P_{14}\right\}$. Since there is a $\gamma_{t}\left(T_{u}\right)$-set containing u, we have $\gamma_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+1$, implying that $f_{t}(T) \leq \gamma_{t}\left(T_{u}\right)+1+$ $g_{t}(T) \leq\left(\left|V\left(T_{u}\right)\right|+2\right) / 2+1+n-1=3 n / 2<14 n / 9$. Hence we have established that either $f_{t}(T)<14 n / 9$ or $f_{t}(T)=14 n / 9$ and $T=\left(P_{1} \circ P_{2}\right) \circ P_{2}$. That proves Observation 5 .

By Observations 4 and 5 , we may assume that every edge of T is oriented in exactly one direction. Since T is a tree, it follows that there exist a vertex v with out-degree zero in this oriented tree. Thus for every edge $u v$ in $T, T_{u} \in \mathcal{S}$ and $T_{v} \notin \mathcal{S}$. If v is a leaf and u the support vertex adjacent with v, then $T_{v}=P_{1} \in \mathcal{S}$ in $T-u v$, and so v would have out-degree one in the oriented tree, a contradiction. Hence, $\operatorname{deg}_{T}(v) \geq 2$.

If every neighbor of v in T has degree at most two we define $I=0$; otherwise, we define $I=1$. Applying Lemma 10 to the tree T with $S=\{v\}$, we have $g_{t}(T) \leq n+2-\operatorname{deg}_{T}(v)$. If $I=1$, and u is a neighbor of v with $\operatorname{deg}_{T}(u) \geq 3$, then applying Lemma 10 to the tree T with $S=\{u, v\}$, we have $g_{t}(T) \leq n+4-\operatorname{deg}_{T}(u)-\operatorname{deg}_{T}(v) \leq n+1-\operatorname{deg}_{T}(v)$. Hence we have the following observation.

Observation $6 g_{t}(T) \leq n+2-\operatorname{deg}_{T}(v)-I$.

If v is adjacent only to vertices that are isolated in $T-v$ or leaves of a P_{5} in $T-v$ or the central vertices of a P_{7} in $T-v$, then we define $J=1$; otherwise, we define $J=0$. For a graph G, let $\operatorname{oc}(G)$ denote the number of odd components of G and $\operatorname{ec}(G)$ the number of even components of G, and let $k_{2}(G)$ denotes the number of P_{2}-components in G. Then it follows from Lemmas 1 and 14 that

$$
\gamma_{t}(T) \leq \frac{n-1}{2}+\operatorname{ec}(T-v)+\frac{\mathrm{oc}(T-v)}{2}+J
$$

and if $k_{2}(T-v) \geq 1$, then

$$
\gamma_{t}(T) \leq \frac{n-1}{2}+\operatorname{ec}(T-v)+\frac{\mathrm{oc}(T-v)}{2}+1-k_{2}(T-v)
$$

Hence, by Observation 6 and since $\operatorname{deg}_{T}(v)=\mathrm{ec}(T-v)+\mathrm{oc}(T-v)$, we have the following two upper bounds on $f_{t}(T)$.

Observation $7 f_{t}(T) \leq \frac{3 n}{2}+\frac{3}{2}-\frac{\mathrm{oc}(T-v)}{2}-I+J$.

Observation 8 If $k_{2}(T-v) \geq 1$, then $f_{t}(T) \leq \frac{3 n}{2}+\frac{5}{2}-\frac{\mathrm{oc}(T-v)}{2}-I-k_{2}(T-v)$.

We proceed further with three observations.

Observation 9 If $J=1$, then $f_{t}(T)<14 n / 9$.

Proof. Suppose $J=1$. Then $o c(T-v)=\operatorname{deg}_{T}(v) \geq 2$. By our assumption following Observation 3 there can be no P_{5}-component of $T-v$. Hence, v is adjacent only to vertices that are isolated in $T-v$ or to the central vertices of a P_{7} in $T-v$. If T is a star, then the result follows from Lemma 12. Hence we may assume that v is adjacent to the central vertex of a P_{7} in $T-v$. But then $I=1$. Thus, by Observation 7 , we have that $f_{t}(T) \leq 3 n / 2+\left(3-\operatorname{deg}_{T}(v)\right) / 2$. If $\operatorname{deg}_{T}(v) \geq 3$, then $f_{t}(T) \leq 3 n / 2<14 n / 9$. Hence we may assume that $\operatorname{deg}_{T}(v)=2$, and so $f_{t}(T) \leq(3 n+1) / 2$.If one component of $T-v$ is P_{1} and the other one is P_{7} with central vertex u, we have that $T_{v}=P_{2} \in \mathcal{S}$, contradicting the fact that v has out-degree zero in the oriented tree. Hence both components of $T-v$ are P_{7}-components, and so $n=15$, whence $f_{t}(T) \leq(3 n+1) / 2<14 n / 9$.

Observation 10 If $I=J=0$, then $f_{t}(T) \leq 14 n / 9$ with equality if and only if $T=$ $\left(P_{1} \circ P_{2}\right) \circ P_{2}$.

Proof. Suppose $I=J=0$. Then every neighbor of v in T has degree at most two. By our assumption following Observation 3 every component of $T-v$ is therefore isomorphic to P_{1}, P_{2} and P_{3} (and so, ec $(T-v)=k_{2}(T-v)$). Since T is not a path, $\operatorname{deg}_{T}(v) \geq 3$. If $T-v$ has no P_{3}-component, then by Lemma $12, f_{t}(T)<14 n / 9$. Hence we may assume that $T-v$ has a P_{3}-component. If oc $(T-v) \geq 3$, then by Observation $7, f_{t}(T) \leq 3 n / 2<14 n / 9$. Hence we may assume that oc $(T-v) \leq 2$. If $k_{2}(T-v) \geq 2$, then by Observation 8 , $f_{t}(T) \leq 3 n / 2<14 n / 9$. Hence we may assume that $k_{2}(T-v) \leq 1$. Thus, since $\operatorname{deg}_{T}(v) \geq 3$, we have that oc $(T-v)=2$ and $k_{2}(T-v)=1$. Since v has out-degree zero in the oriented tree, there can be no P_{1}-component in $T-v$. Hence, $T-v$ consists of one P_{2}-component and two P_{3}-components and v is adjacent to a leaf in each of these components. Thus, $T=\left(P_{1} \circ P_{2}\right) \circ P_{2}$.

Observation 11 If $I=1$ and $J=0$, then $f_{t}(T)<14 n / 9$.

Proof. Suppose $I=1$ and $J=0$. Then, by Observation $7, f_{t}(T) \leq 3 n / 2+(1-\mathrm{oc}(T-v)) / 2$. If oc $(T-v) \geq 1$, then $f_{t}(T) \leq 3 n / 2<14 n / 9$. Hence we may assume that oc $(T-v)=0$, and so $f_{t}(T) \leq(3 n+1) / 2$. If $n \leq 9$, then since v by assumption is adjacent to a vertex u of degree at least 3 in T, it follows that $T-v=P_{2} \cup P_{6}$. But then if we consider the edge $u v$
we have that $T_{v}=P_{3} \in \mathcal{S}$, contradicting the fact that v has out-degree zero in the oriented tree. Hence, $n>9$, whence $f_{t}(T) \leq(3 n+1) / 2<14 n / 9$.

The proof of Theorem 1 now follows from Observations 9, 10 and 11.

5 Proof of Theorem 2

5.1 Preliminary Results

Lemma 15 If T is a tree of order n that can be obtained from a path $v_{1}, \ldots, v_{2 k+1}$ on $2 k+1$ vertices, where $k \geq 0$, by attaching paths P_{1} or P_{2} to vertices in $\left\{v_{1}, v_{3}, \ldots, v_{2 k+1}\right\}$ such that $\operatorname{deg}_{T} v_{2 i+1}=3$ for each $i \in\{0, \ldots, k\}$, then $f_{t}(T)<3 n / 2$.

Proof. We proceed by induction on k. If $k=0$, then T is a star or a subdivided star and the result follows from Lemma 12 and if $k=1$, then T is one of six small trees (of orders 7 , $8,9,9,10,11)$ and the result is straightforward to check. This establishes the base cases. Hence we may assume that $k \geq 2$ and that the result of the lemma is true for all trees that can be obtained from a path on $2 k^{\prime}+1$ vertices where $0 \leq k^{\prime}<k$. Let T be a tree of order n that can be obtained from a path $v_{1}, \ldots, v_{2 k+1}$ on $2 k+1$ vertices by the procedure described in the statement of the lemma.

We now consider the forest $F=T-v_{3} v_{4}$. Let F_{1} and F_{2} be the components of F containing v_{3} and v_{4}, respectively. For $i=1,2$, let F_{i} have order n_{i}, and so $n=n_{1}+n_{2}$. Then, $F_{1} \neq\left(P_{1} \circ P_{2}\right) \circ P_{2}$ and F_{1} is a tree with $6 \leq n_{1} \leq 9$, with three leaves, one vertex of degree 3 , and with the remaining vertices of degree 2. Thus, by Theorem 1, $f_{t}\left(F_{1}\right)<14 n_{1} / 9$. Hence, since $6 \leq n_{1} \leq 9, f_{t}\left(F_{1}\right) \leq\left\lfloor\left(14 n_{1}-1\right) / 9\right\rfloor \leq\left\lfloor 3 n_{1} / 2\right\rfloor \leq 3 n_{1} / 2$. Applying the inductive hypothesis to the tree F_{2}, we have $f_{t}\left(F_{2}\right)<3 n_{2} / 2$. Hence, $f_{t}(T) \leq$ $f_{t}\left(F_{1}\right)+f_{t}\left(F_{2}\right)<3 n / 2$.

Lemma 16 For $n \geq 3, f_{t}\left(C_{n}\right) \leq 3 n / 2$ with equality if and only if $n \equiv 0(\bmod 4)$.

Proof. Let $G=C_{n}$, and let V_{1} and V_{2} be a partition of $V(G)$ satisfying $f_{t}(G)=$ $f_{t}\left(G ; V_{1}, V_{2}\right)$. Suppose that both V_{1} and V_{2} are open packings in G. Let $i \in\{1,2\}$. Since no two vertices of V_{i} have a common neighbor, every vertex in $G\left[V_{i}\right]$ has degree one and the set of edges $\left[V_{1}, V_{2}\right]$ therefore induces a matching in G. Thus since G is 2-regular, we must have that $\left|V_{1}\right|=\left|V_{2}\right|,\left[V_{1}, V_{2}\right]$ induces a perfect matching in G, and that $G\left[V_{i}\right]$ is K_{2} or the disjoint union of copies of K_{2}. Hence, $n \equiv 0(\bmod 4)$.

If n is odd, then at least one of the sets V_{1} and V_{2} is not an open packing in G, and so, by Lemma $6, \gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq n-1$. By Lemma 1, $\gamma_{t}\left(C_{n}\right)=(n+1) / 2$ for n odd. Hence, $f_{t}(G) \leq(3 n-1) / 2$. Therefore we may assume that n is even.

Suppose $n \equiv 2(\bmod 4)$. Then, by Lemma $1, \gamma_{t}\left(C_{n}\right)=(n+2) / 2$. If V_{1} or V_{2} is empty, then $f_{t}(G) \leq 2 \gamma_{t}\left(C_{n}\right)=n+2<3 n / 2$ since $n \geq 6$. Suppose $\left|V_{1}\right|=1$. Then, $G\left[V_{2}\right]=P_{n-1}$,
and so $\gamma_{t}\left(G, V_{2}\right) \leq \gamma_{t}\left(G\left[V_{2}\right], V_{2}\right) \leq \gamma_{t}\left(G\left[V_{2}\right]\right)=\gamma_{t}\left(P_{n-1}\right)=n / 2$, implying that $f_{t}(G)=$ $\gamma_{t}(G)+\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq(n+2) / 2+1+n / 2=n+2<3 n / 2$. Hence we may assume that $\left|V_{1}\right| \geq 2$ and $\left|V_{2}\right| \geq 2$.

For $i \in\{1,2\}$, if there are two adjacent vertices with the same label i, then $\gamma_{t}\left(G, V_{3-i}\right) \leq$ $\gamma_{t}\left(P_{n-2}\right)=(n-2) / 2$. Hence if both sets V_{1} and V_{2} contain adjacent vertices, then $f_{t}(G)=$ $\gamma_{t}(G)+\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq(n+2) / 2+n-2=(3 n-2) / 2$. Thus we may assume that at least one of V_{1} and V_{2}, say V_{1}, is an independent set. This implies that V_{2} is not an open packing, and so $\gamma_{t}\left(G, V_{2}\right) \leq\left|V_{2}\right|-1$. If V_{1} is not an open packing, then $\gamma_{t}\left(G, V_{1}\right) \leq\left|V_{1}\right|-1$, implying that $f_{t}(G) \leq(n+2) / 2+\left|V_{1}\right|+\left|V_{2}\right|-2=(3 n-2) / 2$. Hence we may assume that V_{1} is both an independent set and an open packing. Thus since the vertices in the set V_{1} have disjoint neighborhoods in $G, N\left(V_{1}\right) \subseteq V_{2}$ and $\left|N\left(V_{1}\right)\right|=2\left|V_{1}\right|$. For each vertex $v \in V_{2} \backslash N\left(V_{1}\right)$, we choose an adjacent vertex and call the resulting set of such vertices V_{2}^{\prime}. Then, $V_{1} \cup V_{2}^{\prime}$ totally dominates V_{2}, and so $\gamma_{t}\left(G, V_{2}\right) \leq\left|V_{1}\right|+\left|V_{2}^{\prime}\right| \leq\left|V_{1}\right|+\left|V_{2} \backslash N\left(V_{1}\right)\right|=$ $\left|V_{1}\right|+\left|V_{2}\right|-\left|N\left(V_{1}\right)\right|=\left|V_{2}\right|-\left|V_{1}\right|$. Thus since $\gamma_{t}\left(G, V_{1}\right)=\left|V_{1}\right|$ and $\gamma_{t}(G)=(n+2) / 2$, we have that $f_{t}(G) \leq(n+2) / 2+\left|V_{2}\right| \leq(n+2) / 2+n-2=(3 n-2) / 2$. Hence if $n \equiv 2(\bmod 4)$, then $f_{t}(G) \leq(3 n-2) / 2<3 n / 2$.

Suppose, finally, that $n \equiv 0(\bmod 4)$. Then, by Lemma $1, \gamma_{t}\left(C_{n}\right)=n / 2$. Since there is a good partition of $V(G)$ in this case, $g_{t}(G)=n$, implying that $f_{t}(G)=3 n / 2$.

Lemma 17 For $n \geq 3$, let $G=C_{n}$ where $n \equiv 0(\bmod 4)$, and let V_{1}, V_{2} be a partition of $V(G)$. Then, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 3 n / 2$ with equality if and only if V_{1}, V_{2} is a good partition of $V(G)$.

Proof. By Lemma 16, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}(G)=3 n / 2$. If V_{1}, V_{2} is not a good partition of $V(G)$, then V_{1} or V_{2} is not an open packing in G, and so, by Lemma $6, \gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq$ $n-1$. Together with Lemma $1, \gamma_{t}(G)=n / 2$, we obtain $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 3 n / 2-1$. Conversely, if V_{1}, V_{2} is a good partition of $V(G)$, then both V_{1} and V_{2} are open packings in G, implying by Lemma 6 that $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right)=n$, whence $f_{t}\left(G ; V_{1}, V_{2}\right)=3 n / 2$.

Lemma 18 If G is a graph of order n that can be obtained from a cycle $v_{0}, v_{1}, \ldots, v_{2 k-1}, v_{0}$ on $2 k$ vertices, where $k \geq 2$, by attaching for each $i \in\{0,1, \ldots, k-1\}$ a path P_{1} or P_{2} to $v_{2 i}$, then $f_{t}(G)<3 n / 2$.

Proof. Let $G=(V, E)$. If $k=2$, then G is one of three graphs (of orders 6,7 and 8) and the result is straightforward to check. Hence we may assume that $k \geq 3$. Let $i \in\{0,1, \ldots, k-1\}$ and let F_{i} and G_{i} be the components of $G-\left\{v_{2 i-1} v_{2 i}, v_{2 i+2} v_{2 i+3}\right\}$ containing $v_{2 i}$ and $v_{2 i-1}$, respectively (where addition is taken modulo $2 k$). Then, F_{i} is a path of order 5,6 or 7 , while G_{i} is a tree that can be obtained from a path on $2(k-3)+1$ vertices by the procedure described in the statement of the Lemma 15. By Lemma 15, $f_{t}\left(G_{i}\right)<3\left|V\left(G_{i}\right)\right| / 2$.

Let V_{1}, V_{2} be a partition of V such that $f_{t}\left(G ; V_{1}, V_{2}\right)=f_{t}(G)$. For $j=1,2$, let $V_{i, j}=$ $V_{j} \cap V\left(F_{i}\right)$. Suppose that $V_{i, 1}, V_{i, 2}$ is not a good partition of $V\left(F_{i}\right)$. Then, by Lemma 9 , $f_{t}\left(F_{i} ; V_{i, 1}, V_{i, 2}\right) \leq 3\left|V\left(F_{i}\right)\right| / 2$. Thus, $f_{t}(G)=f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}\left(F_{i} ; V_{i, 1}, V_{i, 2}\right)+f_{t}\left(G_{i}\right)<$
$3\left|V\left(F_{i}\right)\right| / 2+3\left|V\left(G_{i}\right)\right| / 2=3 n / 2$. Hence we may assume that $V_{i, 1}, V_{i, 2}$ is a good partition of $V\left(F_{i}\right)$ for each $i \in\{0,1, \ldots, k-1\}$, for otherwise the desired result follows.

Suppose that for some $i \in\{0,1, \ldots, k-1\}$, the small component of $G-v_{2 i}$ and the small component of $G-v_{2 i+2}$ are isomorphic (either to P_{1} or P_{2}). For notational convenience, we may assume that the small component of $G-v_{0}$ and the small component of $G-v_{2}$ are isomorphic. Let T_{1} and T_{2} be the components of $G-\left\{v_{0} v_{2 k-1}, v_{4} v_{5}\right\}$ containing v_{0} and $v_{2 k-1}$, respectively. Then, T_{1} is a tree with three leaves, with one vertex of degree 3, and with the remaining vertices of degree 2. Since T_{1} is one of four small trees, and since $V_{i, 1}$, $V_{i, 2}$ is a good partition of $V\left(F_{i}\right)$ for every $i \in\{0,1, \ldots, k-1\}$, and in particular for $i=0,1$, it is straightforward to check that $f_{t}\left(T_{1}\right) \leq 3\left|V\left(T_{1}\right)\right| / 2$. If $k=3$, then $V\left(T_{2}\right)=\left\{v_{5}\right\}$ and since there exists a $\gamma_{t}\left(T_{1}\right)$-set containing v_{0}, it follows that $f_{t}(G) \leq f_{t}\left(T_{1}\right)+1 \leq$ $3(n-1) / 2+1<3 n / 2$. If $k \geq 4$, then by Lemma $15, f_{t}\left(T_{2}\right)<3\left|V\left(T_{2}\right)\right| / 2$, implying that $f_{t}(G) \leq f_{t}\left(T_{1}\right)+f_{2}\left(T_{2}\right)<3\left|V\left(T_{1}\right)\right| / 2+3\left|V\left(T_{2}\right)\right| / 2=3 n / 2$.

Hence we may assume that for every $i \in\{0,1, \ldots, k-1\}$, the small component of $G-v_{2 i}$ and the small component of $G-v_{2 i+2}$ are not isomorphic. Thus, k must be even. We may assume that for $i \equiv 0(\bmod 4), G-v_{i}$ has a component isomorphic to P_{2} (and therefore for $i \equiv 2(\bmod 4), G-v_{i}$ has a component isomorphic to $\left.P_{1}\right)$. Let C denote the cycle in G (of order $2 k$). Let H be the spanning subgraph of G obtained from G by deleting all edges on C incident with vertices v_{i} where $i \equiv 0(\bmod 4)$. Then, H is isomorphic to $k / 2$ disjoint copies of $P_{3} \cup K_{1,3}$. Hence since $f_{t}\left(P_{3} \cup K_{1,3}\right)=10$, it follows that $f_{t}(G) \leq f_{t}(H) \leq$ $10|V(H)| / 7=10 n / 7<3 n / 2$.

5.2 Notation

Before proceeding with a proof of Theorem 2, we introduce some additional notation. We define a vertex as small if it has degree ≤ 2, and large if it has degree more than 2 . In a graph G, let L denote the set of all its large vertices. Suppose $|L| \geq 1$ and let C be any component of $G-L$; it is a path (possibly, containing only one vertex). If C has only one vertex and that is adjacent to two large vertices, or if C has at least two vertices and the two ends of C are adjacent in G to different large vertices, then we say that C is a 2-path. Otherwise, when the ends of C are adjacent to the same large vertex, we say that C is a 2-handle.

5.3 Proof of Theorem 2

Recall Theorem 2.
Theorem 2 If G is a connected graph of order n with $\delta(G) \geq 2$, then $f_{t}(G) \leq 2 n / 3$ with equality if and only if $G \cong C_{n}$ where $n \equiv 0(\bmod 4)$.

Proof. We proceed by induction on $\ell=n+m$, where m denotes the size of G. Note that $n \geq 3$ and $m \geq 3$, and so $\ell \geq 6$. When $\ell=6$, the graph G is a 3 -cycle and $f_{t}(G)=4<3 n / 2$. This establishes the base case. For the inductive hypothesis, let $\ell \geq 7$ and assume for all
connected graphs G^{\prime} of order n^{\prime} and size m^{\prime} with $n^{\prime}+m^{\prime}<\ell$ and with $\delta\left(G^{\prime}\right) \geq 2$ that $f_{t}\left(G^{\prime}\right) \leq 2 n^{\prime} / 3$ with equality if and only if $G^{\prime} \cong C_{n^{\prime}}$ where $n^{\prime} \equiv 0(\bmod 4)$.

So let $G=(V, E)$ be a connected graph of order n and size m with $m+n=\ell$ and with $\delta(G) \geq 2$. Suppose that G contains at least one large vertex. Let L be set of all large vertices of G.

Observation 12 If L contains two adjacent vertices, then $f_{t}(G)<3 n / 2$.

Proof. Suppose that two large vertices u and v are adjacent. Let $G^{\prime}=G-u v$. Then, G^{\prime} is a graph of order $n^{\prime}=n$ and size $m^{\prime}=m-1$ and with $\delta\left(G^{\prime}\right) \geq 2$. Applying the inductive hypothesis to every component of G^{\prime}, we have that $f_{t}\left(G^{\prime}\right) \leq 3 n^{\prime} / 2=3 n / 2$ with equality if and only if every component of G^{\prime} is a cycle of order congruent to zero modulo 4. By Lemma 3 , $f_{t}(G) \leq f_{t}\left(G^{\prime}\right) \leq 3 n / 2$. Thus if $f_{t}\left(G^{\prime}\right)<3 n / 2$, then $f_{t}(G)<3 n / 2$. If $f_{t}\left(G^{\prime}\right)=$ $3 n / 2$, then every component of G^{\prime} is a cycle of order congruent to zero modulo 4 , and so, by Lemma 1, $\gamma_{t}\left(G^{\prime}\right)=n / 2$, whence $\gamma_{t}(G) \leq n / 2$. By Lemma 11, $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq n-1$ for every partition V_{1}, V_{2} of $V(G)$. Thus, $f_{t}(G) \leq 3 n / 2-1$.

By Observation 12, we may assume that L is an independent set (for otherwise, the desired result follows).

Observation 13 If G contains a path on six vertices each internal vertex of which has degree 2 in G and whose end-vertices are not adjacent, then $f_{t}(G)<3 n / 2$.

Proof. Let u and v be the two end-vertices of a path P on six vertices each internal vertex of which has degree 2 . Let G^{\prime} be the graph obtained from G by removing the four internal vertices of this path and adding the edge $u v$. Then, G^{\prime} is a connected graph of order $n^{\prime}=n-4$ and size $m^{\prime}=m-4$ with $\delta\left(G^{\prime}\right) \geq 2$. Applying the inductive hypothesis to G^{\prime}, we have that $f_{t}\left(G^{\prime}\right) \leq 3 n^{\prime} / 2=3 n / 2-6$ with equality if and only if G^{\prime} is a cycle of order congruent to zero modulo 4 . Since the degree of every large vertex of G remains unchanged in $G^{\prime}, \Delta\left(G^{\prime}\right) \geq 3$, implying that $f_{t}\left(G^{\prime}\right)<3 n / 2-6$.

Let V_{1}, V_{2} be a partition of V, and let P be the path $u, u_{1}, u_{2}, u_{3}, u_{4}, v$. Thus, $G^{\prime}=$ $\left(G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right) \cup\{u v\}$. Let $i \in\{1,2\}$ and let $V_{i}^{\prime}=V\left(G^{\prime}\right) \cap V_{i}$. Let $U \subseteq V\left(G^{\prime}\right)$ and let S^{\prime} be a minimum set of vertices in G^{\prime} that totally dominates U in G^{\prime}, and so $\left|S^{\prime}\right|=\gamma_{t}\left(G^{\prime}, U\right)$. If $\{u, v\} \subseteq S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}, u_{4}\right\}$. If $\{u, v\} \cap S^{\prime}=\emptyset$, let $S=S^{\prime} \cup\left\{u_{2}, u_{3}\right\}$. If $u \in S^{\prime}$ and $v \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{3}, u_{4}\right\}$. If $u \notin S^{\prime}$ and $v \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}, u_{2}\right\}$. In all cases, $|S|=\left|S^{\prime}\right|+2$ and S totally dominates $U \cup V(P)$ in G. In particular, if $U=V\left(G^{\prime}\right)$, then S^{\prime} is a $\gamma_{t}\left(G^{\prime}\right)$-set and S is a TDS of G, whence $\gamma_{t}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{t}\left(G^{\prime}\right)+2$. If $U=V_{i}^{\prime}$, then S totally dominates V_{i} in G, and so $\gamma_{t}\left(G, V_{i}\right) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{t}\left(G^{\prime}, V_{i}^{\prime}\right)+2$. Hence, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right)+6 \leq f_{t}\left(G^{\prime}\right)+6<3 n / 2$. Thus for every partition V_{1}, V_{2} of V, $f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. Therefore, $f_{t}(G)<3 n / 2$.

By Observation 13, we may assume that G contains no path on six vertices each internal vertex of which has degree 2 in G and whose end-vertices are not adjacent. Hence since L is an independent set, we have the observation.

Observation 14 Every 2-path contains at most three vertices, while every 2-handle contains at most five vertices.

Observation 15 If G contains a degree-3 vertex that is adjacent to the ends of a 2-handle, then $f_{t}(G)<3 n / 2$.

Proof. Assume that there is a degree-3 vertex v that is adjacent to the ends of a 2 -handle C. By Observation $14,2 \leq|C| \leq 5$. By connectivity there exists a 2-path P with an end adjacent to v. Let u be the other large vertex adjacent with an end of P. By Observation 14, $1 \leq|P| \leq 3$. Let G^{\prime} be the spanning subgraph of graph obtained from G by removing the edge joining u with an end of P. Let G_{u} and G_{v} be the components of G^{\prime} containing u and v, respectively. Let $\left|V\left(G_{u}\right)\right|=n_{u}$ and $\left|V\left(G_{v}\right)\right|=n_{v}$, and so $n=n_{u}+n_{v}$. Now, $\delta\left(G_{u}\right) \geq 2$ while G_{v} is a key $L_{r, s}$ where $r=|C|+1$ and $s=|P|$. Hence, $3 \leq r \leq 6$ and $1 \leq s \leq 3$. Thus, by Lemma $2, \gamma_{t}\left(G_{v}\right) \leq\left(n_{v}+1\right) / 2$. By Lemma 11, $\gamma_{t}\left(G_{v}, V_{1}\right)+\gamma_{t}\left(G_{v}, V_{2}\right) \leq n_{v}-1$ for every partition V_{1}, V_{2} of $V\left(G_{v}\right)$. Thus, $f_{t}\left(G_{v}\right) \leq\left(3 n_{v}-1\right) / 2$. Applying the inductive hypothesis to the graph $G_{u}, f_{t}\left(G_{u}\right) \leq 3 n_{u} / 2$. Hence, $f_{t}\left(G^{\prime}\right)=f_{t}\left(G_{u}\right)+f_{t}\left(G_{v}\right) \leq(3 n-1) / 2$. Thus, by Lemma $3, f_{t}(G) \leq f_{t}\left(G^{\prime}\right)<3 n / 2$.

By Observation 15, we may assume that every large vertex in G that is adjacent to the ends of a 2-handle has degree at least 4.

Observation 16 If G contains a 2 -handle of order 2 , 4 or 5 , then $f_{t}(G)<3 n / 2$.

Proof. Suppose there is a 2 -handle C where $|C|=k$ and $k \in\{2,4,5\}$. Say its ends have common neighbor $v \in L$. By assumption, $\operatorname{deg}_{G} v \geq 4$. Let $G^{\prime}=G-V(C)$. Then, G^{\prime} is a connected graph of order $n^{\prime}=n-k$ and size $m^{\prime}=m-k-1$ and with $\delta\left(G^{\prime}\right) \geq 2$. Applying the inductive hypothesis to G^{\prime}, we have that $f_{t}\left(G^{\prime}\right) \leq 3 n^{\prime} / 2=3(n-k) / 2$ with equality if and only if G^{\prime} is a cycle of order congruent to zero modulo 4.

Let V_{1}, V_{2} be a partition of V and for $i \in\{1,2\}$, let $V_{i}^{\prime}=V\left(G^{\prime}\right) \cap V_{i}$. Let $U \subseteq V^{\prime}(G)$ and let S^{\prime} be a minimum set of vertices in G^{\prime} that totally dominates U in G^{\prime}, and so $\left|S^{\prime}\right|=\gamma_{t}\left(G^{\prime}, U\right)$.

Suppose $k=2$. Then, $S \cup\{v\}$ totally dominates $U \cup V(C)$ in G. It follows that $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right)+1$, and for $i \in\{1,2\}, \gamma_{t}\left(G, V_{i}\right) \leq \gamma_{t}\left(G^{\prime}, V_{i}^{\prime}\right)+1$. Hence, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq$ $f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right)+3 \leq f_{t}\left(G^{\prime}\right)+3 \leq 3 n / 2$. If $f_{t}\left(G^{\prime}\right)<3(n-2) / 2$, then $f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. If $f_{t}\left(G^{\prime}\right)=3(n-2) / 2$, then G^{\prime} is a cycle (congruent to zero modulo 4). But then we can choose a $\gamma_{t}\left(G^{\prime}\right)$-set to contain v, implying that $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right)$ and $f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right)+$ $2 \leq f_{t}\left(G^{\prime}\right)+2 \leq 3 n / 2-1$. Thus for every partition V_{1}, V_{2} of $V, f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. Therefore, $f_{t}(G)<3 n / 2$.

Suppose $k=4$. Let C be the path $v_{1}, v_{2}, v_{3}, v_{4}$. Then, $S \cup\left\{v_{2}, v_{3}\right\}$ totally dominates $U \cup V(C)$ in G. It follows that $f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right)+6 \leq f_{t}\left(G^{\prime}\right)+6 \leq 3 n / 2$. If $f_{t}\left(G^{\prime}\right)<3(n-4) / 2$, then $f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. If $f_{t}\left(G^{\prime}\right)=3(n-4) / 2$, then G^{\prime} is a cycle of order congruent to zero modulo 4 , and so, by Lemma $1, \gamma_{t}\left(G^{\prime}\right)=n^{\prime} / 2=(n-4) / 2$, whence
$\gamma_{t}(G) \leq n / 2$. By Lemma 11, $\gamma_{t}\left(G, V_{1}\right)+\gamma_{t}\left(G, V_{2}\right) \leq n-1$, and so $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 3 n / 2-1$. Thus for every partition V_{1}, V_{2} of $V, f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. Therefore, $f_{t}(G)<3 n / 2$.

Suppose $k=5$. Let C be the path $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. For $i=1,2$, let $W_{i}=V_{i} \cap V(C)$. If W_{1}, W_{2} is not a good partition of $V(C)$, then by Lemma $8, f_{t}\left(C ; W_{1}, W_{2}\right) \leq 3(k-1) / 2=7$. Thus, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq f_{t}\left(C ; W_{1}, W_{2}\right)+f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right) \leq 7+f_{t}\left(G^{\prime}\right) \leq 7+3(n-5) / 2=(3 n-1) / 2$. On the other hand, suppose that W_{1}, W_{2} is a good partition of $V(C)$. Thus, renaming the sets V_{1} and V_{2} if necessary, we may assume that $W_{1}=\left\{v_{1}, v_{2}, v_{5}\right\}$ (that is, the labels of $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are given by $1,1,2,2,1$, respectively). But then $\left\{v, v_{1}\right\}$ totally dominates W_{1} in $G,\left\{v_{3}, v_{4}\right\}$ totally dominates W_{2} in G, and $\left\{v, v_{3}, v_{4}\right\}$ totally dominates $V(C)$ in G. Hence, $f_{t}\left(G ; V_{1}, V_{2}\right) \leq 7+f_{t}\left(G^{\prime} ; V_{1}^{\prime}, V_{2}^{\prime}\right) \leq 7+3(n-5) / 2=(3 n-1) / 2$. Thus for every partition V_{1}, V_{2} of $V, f_{t}\left(G ; V_{1}, V_{2}\right)<3 n / 2$. Therefore, $f_{t}(G)<3 n / 2$.

By Observations 14 and 16, we have the observation.

Observation 17 Every 2-handle contains three vertices.

We now construct a spanning subgraph H of G as follows. First from every 2-handle (of order 3) and every 2 -path that contains two or three vertices, we delete exactly one edge (both of whose ends necessarily have degree 2). Thus in the resulting graph, there is no 2 handle and every 2 -path, if any, has order 1 . We then successively delete an edge that joins the single vertex of a 2-path with a large vertex of degree at least 4 in the graph obtained at each stage until no such edge remains. (Thus if a large vertex in the graph constructed at this stage is adjacent with the vertex of a 2-path, then this large vertex has degree 3.) Finally in the resulting graph, we successively delete two of the three edges incident with every large vertex all of whose neighbors are vertices of 2-paths (of order 1) in the resulting graph at each stage until no such large vertex remains. Let H denote the resulting spanning subgraph of G.

By construction, H has no 2-handle and every 2-path in H, if any, has order 1. Further, every large vertex of H that is adjacent to the vertex of a 2-path has degree 3 and has at least one neighbor (of degree 1 or 2) that is not on any 2-path. (Thus no large vertex is adjacent to the ends of more than two 2-paths.) Each leaf in H is either adjacent to a large vertex of H or is adjacent to a degree- 2 vertex that is adjacent to a large vertex of H. It follows that every component H^{\prime} of the spanning subgraph H of G is isomorphic to one of the graphs described in Lemmas 12, 15 or 18: If H^{\prime} contains only one large vertex, then H^{\prime} is one of the graphs described in Lemma 12 (stars with possible subdivisions). If the vertices of H^{\prime} that belong to 2-paths (of order 1) and their neighbors (the large vertices in H^{\prime}) induce a path in H^{\prime}, then H^{\prime} is one of the graphs described in Lemma 15 (paths with pendants). If the vertices of H^{\prime} that belong to 2-paths and their neighbors induce a cycle in H^{\prime}, then H^{\prime} is one of the graphs described in Lemma 18 (cycles with pendants). Hence by Lemma 3, and by Lemmas 12, 15 or 18, it follows that $f_{t}(G) \leq f_{t}(H)<3 n / 2$.

Hence we have shown that if G contains at least one large vertex, then $f_{t}(G)<3 n / 2$. If G contains no large vertex, then G is a cycle, and the desired result follows from Lemma 16.

References

[1] G. Chartrand and L. Lesniak, Graphs \& Digraphs: Third Edition, Chapman \& Hall, London, 1996.
[2] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs. Networks 10 (1980), 211-219.
[3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[5] B.L. Hartnell and P.D. Vestergaard, Partitions and dominations in a graph. J. Combin. Math. Combin. Comput. 46 (2003), 113-128.
[6] M. A. Henning, Graphs with large total domination number. J. Graph Theory 35 (2000), 21-45.
[7] M. A. Henning and P. D. Vestergaard, Domination in partitioned graphs with minimum degree two, manuscript (2004).
[8] S.M. Seager, Partition dominations of graphs of minimum degree 2. Congress. Numer. 132 (1998), 85-91.
[9] Z. Tuza and P.D. Vestergaard, Domination in partitioned graph. Discussiones Mathematicae Graph Theory. 22 (2002), 199-210.

[^0]: *Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

