2,013 research outputs found

    Practical service placement approach for microservices architecture

    Get PDF
    Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. To reduce the complexity of service deployment, community micro-clouds have recently emerged as a promising enabler for the delivery of cloud services to community users. By putting services closer to consumers, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of the services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, it requires of aPeer ReviewedPostprint (author's final draft

    A Lightweight Service Placement Approach for Community Network Micro-Clouds

    Get PDF
    Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. While Internet access is the most popular service, the provision of services of local interest within the network is enabled by the emerging technology of CN micro-clouds. By putting services closer to users, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of these services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, a "careful" placement of micro-clouds services over the network is required to optimize service performance. This paper proposes to leverage state information about the network to inform service placement decisions, and to do so through a fast heuristic algorithm, which is critical to quickly react to changing conditions. To evaluate its performance, we compare our heuristic with one based on random placement in Guifi.net, the biggest CN worldwide. Our experimental results show that our heuristic consistently outperforms random placement by 2x in bandwidth gain. We quantify the benefits of our heuristic on a real live video-streaming service, and demonstrate that video chunk losses decrease significantly, attaining a 37% decrease in the packet loss rate. Further, using a popular Web 2.0 service, we demonstrate that the client response times decrease up to an order of magnitude when using our heuristic. Since these improvements translate in the QoE (Quality of Experience) perceived by the user, our results are relevant for contributing to higher QoE, a crucial parameter for using services from volunteer-based systems and adapting CN micro-clouds as an eco-system for service deployment

    Availability-driven NFV orchestration

    Get PDF
    Virtual Network Functions as a Service (VNFaaS) is a promising business whose technical directions consist of providing network functions as a Service instead of delivering standalone network appliances, leveraging a virtualized environment named NFV Infrastructure (NFVI) to provide higher scalability and reduce maintenance costs. Operating the NFVI under stringent availability guarantees is fundamental to ensure the proper functioning of the VNFaaS against software attacks and failures, as well as common physical device failures. Indeed the availability of a VNFaaS relies on the failure rate of its single components, namely the physical servers, the hypervisor, the VNF software, and the communication network. In this paper, we propose a versatile orchestration model able to integrate an elastic VNF protection strategy with the goal to maximize the availability of an NFVI system serving multiple VNF demands. The elasticity derives from (i) the ability to use VNF protection only if needed, or (ii) to pass from dedicated protection scheme to shared VNF protection scheme when needed for a subset of the VNFs, (iii) to integrate traffic split and load-balancing as well as mastership role election in the orchestration decision, (iv) to adjust the placement of VNF masters and slaves based on the availability of the different system and network components involved. We propose a VNF orchestration algorithm based on Variable Neighboring Search, able to integrate both protection schemes in a scalable way and capable to scale, while outperforming standard online policies

    MicroFog: A Framework for Scalable Placement of Microservices-based IoT Applications in Federated Fog Environments

    Full text link
    MicroService Architecture (MSA) is gaining rapid popularity for developing large-scale IoT applications for deployment within distributed and resource-constrained Fog computing environments. As a cloud-native application architecture, the true power of microservices comes from their loosely coupled, independently deployable and scalable nature, enabling distributed placement and dynamic composition across federated Fog and Cloud clusters. Thus, it is necessary to develop novel microservice placement algorithms that utilise these microservice characteristics to improve the performance of the applications. However, existing Fog computing frameworks lack support for integrating such placement policies due to their shortcomings in multiple areas, including MSA application placement and deployment across multi-fog multi-cloud environments, dynamic microservice composition across multiple distributed clusters, scalability of the framework, support for deploying heterogeneous microservice applications, etc. To this end, we design and implement MicroFog, a Fog computing framework providing a scalable, easy-to-configure control engine that executes placement algorithms and deploys applications across federated Fog environments. Furthermore, MicroFog provides a sufficient abstraction over container orchestration and dynamic microservice composition. The framework is evaluated using multiple use cases. The results demonstrate that MicroFog is a scalable, extensible and easy-to-configure framework that can integrate and evaluate novel placement policies for deploying microservice-based applications within multi-fog multi-cloud environments. We integrate multiple microservice placement policies to demonstrate MicroFog's ability to support horizontally scaled placement, thus reducing the application service response time up to 54%
    • …
    corecore