154 research outputs found

    A topological comparison of surface extraction algorithms

    Get PDF
    In many application areas, it is useful to convert the discrete information stored in the nodes of a regular grid into a continuous boundary model. Isosurface extraction algorithms di er on how the discrete information in the grid is generated, on what information does the grid store and on the properties of the output surface.Preprin

    A topological comparison of surface extraction algorithms

    Get PDF
    In many application areas, it is useful to convert the discrete information stored in the nodes of a regular grid into a continuous boundary model. Isosurface extraction algorithms differ on how the discrete information in the grid is generated, on what information does the grid store and on the properties of the output surface. Recent algorithms offer different solutions for the disambiguation problem and for controlling the final topology. Based on a number of properties of the grid’s grey cells and of the reconstruction algorithms, a characterization of several surface extraction strategies is proposed. The classification presented shows the inherent limitations of the different algorithms concerning global topology control and reconstruction of local features like thin portions of the volume and almost non-manifold regions. These limitations can be observed and are illustrated with some practical examples. We review in light of this classification some of the relevant papers in the literature, and see that they cluster in some areas of the proposed hierarchy, making a case for where it might be more interesting to focus in future research.Preprin

    Solid modelling for manufacturing: from Voelcker's boundary evaluation to discrete paradigms

    Get PDF
    Herb Voelcker and his research team laid the foundations of Solid Modelling, on which Computer-Aided Design is based. He founded the ambitious Production Automation Project, that included Constructive Solid Geometry (CSG) as the basic 3D geometric representation. CSG trees were compact and robust, saving a memory space that was scarce in those times. But the main computational problem was Boundary Evaluation: the process of converting CSG trees to Boundary Representations (BReps) with explicit faces, edges and vertices for manufacturing and visualization purposes. This paper presents some glimpses of the history and evolution of some ideas that started with Herb Voelcker. We briefly describe the path from “localization and boundary evaluation” to “localization and printing”, with many intermediate steps driven by hardware, software and new mathematical tools: voxel and volume representations, triangle meshes, and many others, observing also that in some applications, voxel models no longer require Boundary Evaluation. In this last case, we consider the current research challenges and discuss several avenues for further research.Project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/501100011033/FEDER‘‘A way to make Europe’’Peer ReviewedPostprint (published version

    Structure of Topological Lattice Field Theories in Three Dimensions

    Get PDF
    We construct and classify topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, we impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two new local lattice moves. Invariant solutions are in one--to--one correspondence with Hopf algebras satisfying a certain constraint. As an example, we study in detail the topological lattice field theory corresponding to the Hopf algebra based on the group ring \C[G], and show that it is equivalent to lattice gauge theory at zero coupling, and to the Ponzano--Regge theory for G=G=SU(2).Comment: 63 pages, 46 figure

    Watertight and 2-Manifold Surface Meshes Using Dual Contouring With Tetrahedral Decomposition of Grid Cubes

    Get PDF
    The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. The advantage of DC is that it can reproduce sharp features by inserting vertices anywhere inside the grid cube, as opposed to the Marching Cubes (MC) algorithm that can insert vertices only on the grid edges. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. Our method decomposes an ambiguous grid cube into a maximum of twelve tetrahedral cells; we introduce novel polygon generation rules that produce 2-manifold and watertight surface meshes. We have applied our proposed method on realistic data, and a comparison of the results of our proposed method with results from traditional DC shows the effectiveness of our method

    Multi-Material Mesh Representation of Anatomical Structures for Deep Brain Stimulation Planning

    Get PDF
    The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon generation rules that produce 2-manifold and watertight surface meshes with good-quality triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and therefore can be used to initialize tetrahedral meshes. The 2-manifold DC method has been extended into the multi-material domain. Due to its multi-material nature, multi-material surface meshes will contain non-manifold elements along material interfaces or shared boundaries. The proposed multi-material DC algorithm can (1) generate multi-material surface meshes where each material sub-mesh is a 2-manifold and watertight mesh, (2) preserve the non-manifold elements along the material interfaces, and (3) ensure that the material interface or shared boundary between materials is consistent. The proposed method is used to generate multi-material surface meshes of deep brain anatomical structures from a digital atlas of the basal ganglia and thalamus. Although deep brain anatomical structures can be labeled as functionally separate, they are in fact continuous tracts of soft tissue in close proximity to each other. The multi-material meshes generated by the proposed DC algorithm can accurately represent the closely-packed deep brain structures as a single mesh consisting of multiple material sub-meshes. Each sub-mesh represents a distinct functional structure of the brain. Printed and/or digital atlases are important tools for medical research and surgical intervention. While these atlases can provide guidance in identifying anatomical structures, they do not take into account the wide variations in the shape and size of anatomical structures that occur from patient to patient. Accurate, patient-specific representations are especially important for surgical interventions like deep brain stimulation, where even small inaccuracies can result in dangerous complications. The last part of this research effort extends the discrete deformable 2-simplex mesh into the multi-material domain where geometry-based internal forces and image-based external forces are used in the deformation process. This multi-material deformable framework is used to segment anatomical structures of the deep brain region from Magnetic Resonance (MR) data

    Flipping Cubical Meshes

    Full text link
    We define and examine flip operations for quadrilateral and hexahedral meshes, similar to the flipping transformations previously used in triangular and tetrahedral mesh generation.Comment: 20 pages, 24 figures. Expanded journal version of paper from 10th International Meshing Roundtable. This version removes some unwanted paragraph breaks from the previous version; the text is unchange
    corecore