13 research outputs found

    Introduction to free space optical (FSO) communications

    Get PDF
    The demand for high bandwidth and secure communication is increasing. Free space optical (FSO) wireless communications technology could be one possible alternative option to the RF technologies that can be adopted in certain applications to unlock the bandwidth bottleneck issue, specifically in the last mile access networks, between mobile base stations in RF cellular wireless networks, and for radio over fiber; and over the last decade, we have seen growing research and development activities in FSO communications in the field of high data rate wireless technology applications as well as the emergence of commercial systems

    Experimental Characterisation and Modelling of Atmospheric Fog and Turbulence in FSO

    Get PDF
    Free space optical (FSO) communication uses visible or infrared (IR) wavelengths to broadcast high-speed data wirelessly through the atmospheric channel. The performance of FSO communications is mainly dependent on the unpredictable atmospheric channel such as fog, smoke and temperature dependent turbulence. However, as the real outdoor atmosphere (ROA) is time varying and heterogeneous in nature as well as depending on the magnitude and intensity of different weather conditions, carrying out a proper link assessment under specific weather conditions becomes a challenging task. Investigation and modelling the ROA under diverse atmospheric conditions is still a great challenge in FSO communications. Hence a dedicated indoor atmospheric chamber is designed and built to produce controlled atmosphere as necessary to mimic the ROA as closely as possible. The experimental results indicate that the fog attenuation is wavelength dependent for all visibility V ranges, which contradicts the Kim model for V < 0.5 km. The obtained result validates that Kim model needs to be revised for V < 0.5 km in order to correctly predict the wavelength dependent fog attenuation. Also, there are no experimental data and empirical model available for FSO links in diverse smoke conditions, which are common in urban areas. Therefore, a new empirical model is proposed to evaluate the wavelength dependent fog and smoke attenuation by reconsidering the q value as a function of wavelength rather than visibility. The BER performance of an FSO system is theoretically and experimentally evaluated for OOK- NRZ, OOK-RZ and 4-PPM formats for Ethernet line data-rates from light to dense fog conditions. A BER of 10-6 (Q-factor ≈ 4.7) is achieved at dense fog (transmittance, T = 0.33) condition using 4-PPM than OOK-NRZ and OOK-RZ modulation schemes due to its high peak-to-average power ratio albeit at the expense of doubling the bandwidth. The effects of fog on OOK-NRZ, 4-PAM and BPSK are also experimentally investigated. In comparison to 4-PAM and OOK-NRZ signals, the BPSK modulation signalling format is more robust against the effects of fog. Moreover, the effects of using different average transmitted optical communication powers Popton the T and the received Q-factor using the OOK-NRZ modulation scheme are also investigated for light and dense fog conditions. The results show that for an FSO system operating at a Q-factor of 4.7 (for BER = 10-6), the required Q-factor is achieved at T of 48% under the thick fog condition by increasing Popt to 1.07 dBm, whereas the values of T are 55% and ~70% for the transmit power of 0.56 dBm and -0.7 dBm, respectively. The experimental characterisation and investigation of the atmospheric turbulence effect on the Ethernet and Fast-Ethernet FSO link is reported using different modulation schemes. The experiment is carried out in a controlled laboratory environment where turbulence is generated in a dedicated indoor atmospheric chamber. The atmospheric chamber is calibrated to mimic an outdoor turbulence conditions and the measured data are verified against the theoretical predictions. The experiment also demonstrates methods to control the turbulence levels and determine the equivalence between the indoor and outdoor FSO links. The results show that the connectivity of Ethernet and Fast-Ethernet links are highly sensitive to atmospheric turbulence. The results also show that the BPSK and OOK-NRZ modulation signalling formats are more robust against the weak atmospheric turbulence conditions than PAM signal

    The impact of visibility range and atmospheric turbulence on free space optical link performance in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.In the recent years, the development of 5G and Massive Internet of Things (MIoT) technologies are fast increasing regularly. The high demand for a back-up and complimentary link to the existing conventional transmission systems (such as RF technology) especially for the “last-mile” phenomenon has increased significantly. Therefore, this has brought about a persistent requirement for a better and free spectrum availability with a higher data transfer rate and larger bandwidth, such as Free Space Optics (FSO) technology using very high frequency (194 −545 ) transmission system. There is currently unavailable comprehensive information that would enable the design of FSO networks for various regions of South Africa based on the impact of certain weather parameters such as visibility range (mainly in terms of fog and haze) and atmospheric turbulence (in terms of Refractive Index Structure Parameter (RISP)) on FSO link performance. The components of the first part of this work include Visibility Range Distribution (VRD) modeling using suitable probability density function (PDF) models, and prediction of the expected optical attenuation due to scattering and its cumulative distribution and modeling. The VRD modelling performed in this work, proposed various location-based PDF models, and it was suggested that the Generalized Pareto distribution model best suited the distributions of visibility in all the cities. The result of this work showed that the optical attenuation due to scattering within the coastal and near-coastal areas could reach as high as 169 / or more, while in the non-coastal areas it varies between 34 / and 169 /, which suggests significant atmospheric effects on the FSO link, mostly during the winter period. The BER performance analysis was performed and suitable mitigating techniques (such as 4 × 4 MIMO with BPSK and L-PPM schemes) were suggested in this work. The general two-term exponential distribution model provided a good fit to the cumulative distribution of the atmospheric attenuation due to scattering for all the locations. In order to ascertain how atmospheric variables contribute or affect the visibility range, which in turn determines the level of attenuation due to scattering, a time series prediction of visibility using Artificial Neural Network (ANN) technique was investigated, where an average reliability of about 83 % was achieved for all the stations considered. This suggests that climatic parameters highly correlate to visibility when they are all combined together, and this gave significant predictions which will enable FSO officials to develop and maintain a strategic plan for the future years. The modules of the second part of this work encompass the determination of the Atmospheric Turbulence Level (ATL) for each of the locations in terms of RISP (2) and its equivalent scintillation index, and then the estimation of the optical attenuation due to scintillation. The cumulative distributions of the optical attenuation due to scintillation and its modeling were also carried out. This research work has been able to achieve the prediction of the ground turbulence strength (through the US-Army Research Laboratory (US-ARL) Model) in terms of RISP using climatic data. In an attempt to provide a more reliable study into the atmospheric turbulence strength within South Africa, this work explores the characteristic behavior of several meteorological variables and other thermodynamic properties such as inner and outer characteristic scales, Monin-Obhukov length, potential temperature gradient, bulk wind shear and so on. According to the predicted RISP from meteorological variables (such as temperature, relative humidity, pressure, wind speed, water vapour, and altitude), location-based and general attenuation due to scintillation models were developed for South Africa to estimate the optical attenuation. The attenuation due to scintillation results show that the summer and autumn seasons have higher ATL, where January, February and December have the highest mean RISP across all the locations under study. Also, the comparison of the monthly averages of the estimated attenuations revealed that at 850 nm more atmospheric turbulence with specific attenuations between 21.04 / and 24.45 / were observed in the coastal and near-coastal areas than in the non-coastal areas. The study proposes the two-term Sum of Sine distribution model for the cumulative distribution of the optical attenuation based on scintillation, which should be adopted for South Africa. The obtained results in this work for the contributions of scattering and turbulence to the optical link, and the design of the link budget will serve as the major criteria parameters to further compare the outcomes of these results with that of the available terrestrial FSO systems and other conventional transmission systems like RF systems

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs

    Topology Control Schema for Better QoS in Hybrid RF/FSO Mesh Networks

    No full text
    corecore