66 research outputs found

    Topology control for wireless networks with highly-directional antennas

    Get PDF
    In order to steer antenna beams towards one another for communication, wireless nodes with highly-directional antennas must track the channel state of their neighbors. To keep this overhead manageable, each node must limit the number of neighbors that it tracks. The subset of neighbors that each node chooses to track constitutes a network topology over which traffic can be routed. We consider this topology design problem, taking into account channel modeling, transmission scheduling, and traffic demand. We formulate the optimal topology design problem, with the objective of maximizing the scaling of traffic demand, and propose a distributed method, where each node rapidly builds a segment of the topology around itself by forming connections with its nearest neighbors in discretized angular regions. The method has low complexity and message passing overhead. The resulting topologies are shown to have desirable structural properties and approach the optimal solution in high path loss environments.National Science Foundation (U.S.) (Grant CNS-1524317)National Science Foundation (U.S.) (Grant CNS-1116209)National Science Foundation (U.S.) (Grant AST-1547331)United States. Air Force (Contract FA8721-05-C-0002

    AODV enhanced by Smart Antennas

    Get PDF

    Performance improvement of ad hoc networks using directional antennas and power control

    Get PDF
    Au cours de la dernière décennie, un intérêt remarquable a été éprouvé en matière des réseaux ad hoc sans fil capables de s'organiser sans soutien des infrastructures. L'utilisation potentielle d'un tel réseau existe dans de nombreux scénarios, qui vont du génie civil et secours en cas de catastrophes aux réseaux de capteurs et applications militaires. La Fonction de coordination distribuée (DCF) du standard IEEE 802.11 est le protocole dominant des réseaux ad hoc sans fil. Cependant, la méthode DCF n'aide pas à profiter efficacement du canal partagé et éprouve de divers problèmes tels que le problème de terminal exposé et de terminal caché. Par conséquent, au cours des dernières années, de différentes méthodes ont été développées en vue de régler ces problèmes, ce qui a entraîné la croissance de débits d'ensemble des réseaux. Ces méthodes englobent essentiellement la mise au point de seuil de détecteur de porteuse, le remplacement des antennes omnidirectionnelles par des antennes directionnelles et le contrôle de puissance pour émettre des paquets adéquatement. Comparées avec les antennes omnidirectionnelles, les antennes directionnelles ont de nombreux avantages et peuvent améliorer la performance des réseaux ad hoc. Ces antennes ne fixent leurs énergies qu'envers la direction cible et ont une portée d'émission et de réception plus large avec la même somme de puissance. Cette particularité peut être exploitée pour ajuster la puissance d'un transmetteur en cas d'utilisation d'une antenne directionnelle. Certains protocoles de contrôle de puissance directionnel MAC ont été proposés dans les documentations. La majorité de ces suggestions prennent seulement la transmission directionnelle en considération et, dans leurs résultats de simulation, ces études ont l'habitude de supposer que la portée de transmission des antennes omnidirectionnelles et directionnelles est la même. Apparemment, cette supposition n'est pas toujours vraie dans les situations réelles. De surcroît, les recherches prenant l'hétérogénéité en compte dans les réseaux ad hoc ne sont pas suffisantes. Le présent mémoire est dédié à proposer un protocole de contrôle de puissance MAC pour les réseaux ad hoc avec des antennes directionnelles en prenant tous ces problèmes en considération. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Réseaux ad hoc, Antennes directives, Contrôle de puissance

    Efficient broadcasting in ad hoc wireless networks using directional antennas

    Full text link

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Development of an efficient Ad Hoc broadcasting scheme for critical networking environments

    Get PDF
    Mobile ad hoc network has been widely deployed in support of the communications in hostile environment without conventional networking infrastructure, especially in the environments with critical conditions such as emergency rescue activities in burning building or earth quick evacuation. However, most of the existing ad hoc based broadcasting schemes either rely on GPS location or topology information or angle-of-arrival (AoA) calculation or combination of some or all to achieve high reachability. Therefore, these broadcasting schemes cannot be directly used in critical environments such as battlefield, sensor networks and natural disasters due to lack of node location and topology information in such critical environments. This research work first begins by analyzing the broadcast coverage problem and node displacement form ideal locations problem in ad hoc networks using theoretical analysis. Then, this research work proposes an efficient broadcast relaying scheme, called Random Directional Broadcasting Relay (RDBR), which greatly reduces the number of retransmitting nodes and end-to-end delay while achieving high reachability. This is done by selecting a subset of neighboring nodes to relay the packet using directional antennas without relying on node location, network topology and complex angle-of-arrival (AoA) calculations. To further improve the performance of the RDBR scheme in complex environments with high node density, high node mobility and high traffic rate, an improved RDBR scheme is proposed. The improved RDBR scheme utilizes the concept of gaps between neighboring sectors to minimize the overlap between selected relaying nodes in high density environments. The concept of gaps greatly reduces both contention and collision and at the same time achieves high reachability. The performance of the proposed RDBR schemes has been evaluated by comparing them against flooding and Distance-based schemes. Simulation results show that both proposed RDBR schemes achieve high reachability while reducing the number of retransmitting nodes and end-to-end delay especially in high density environments. Furthermore, the improved RDBR scheme achieves better performance than RDBR in high density and high traffic environment in terms of reachability, end-to-end delay and the number of retransmitting nodes

    Enhancements and Challenges in IEEE 802.11ah - A Sub-Gigahertz Wi-Fi for IoT Applications

    Get PDF
    Internet of Things is a concept which brings ubiquitous connectivity to objects that we interact with in the course of our daily activities. With the projected estimates of the number of wireless connected devices reaching massive numbers, it is expected to revolutionize our daily lives significantly. This sort of augmented connectivity will enable new applications in a myriad of domains including smart cities, smart houses, healthcare monitoring, industrial automation and smart metering. These applications entail efficient operation of wireless networks with a large number of energy constrained devices. However, the existing infrastructure for wireless connectivity is not designed to handle such volume of projected growth. Addressing this requirement, the IEEE 802.11ah task group is working on a new amendment of the IEEE 802.11 standard, suitable for high density WLAN networks in the sub 1 GHz band. It is expected to be the prevalent standard in many Internet of Things (IoT) and Machine to Machine (M2M) applications where it will support long-range and energy-efficient communication in dense network environments. Therefore, significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios. In this thesis we evaluate the performance of many of the new features that have been introduced in the new standard including the Restricted Access Window, Sectorization and Subchannel Selective Transmission mechanisms by means of analytical and simulated models. We propose novel Medium Access Control (MAC) layer algorithms which are shown to have improved the throughput and energy efficiency performance in IEEE 802.11ah networks. We consider practical deployment scenarios in our simulations and evaluate the effects of challenges such as dense networks, interference from neighboring cells and duty cycle limitations on the performance metrics. Overall, we find that the advanced new features make 802.11ah standard a true IoT-enabling technology towards seamless integration of massive amount of connected devices in the future. Our research effort supports the notion that IEEE 802.11ah will be a key technology for future IoT and M2M applications especially in long-range and energy efficient deployments

    Channel quality estimation and impairment mitigation in 802.11 networks

    Get PDF
    Wireless communication has been boosted by the adoption of 802.11 as standard de facto for WLAN transmission. Born as a niche technology for providing wireless connectivity in small office/enterprise environments, 802.11 has in fact become a common and cheap access solution to the Internet, thanks to the large availability of wireless gateways (home modems, public hot-spots, community networks, and so on). Nowdays, the trend towards increasingly dense 802.11 wireless deployments is creating a real need for effective approaches for channel allocation/hopping, power control, etc. for interference mitigation while new applications such mesh networks in outdoor contexts and media distribution within the home are creating new quality of service demands that require more sophisticated approaches to radio resource allocation. The new framework of WLAN deployments require a complete understanding of channel quality at PHY and MAC layer. Goal of this thesis is to assess the MAC/PHY channel quality and mitigate the different channel impairments in 802.11 networks, both in dense/controlled indoor scenarios and emerging outdoor contexts. More specifically, chapter 1 deals with the necessary background material and gives insight into the different channel impairments/quality it can be encountered in WLAN networks. Then the thesis pursues a down/top approach: chapter 2, 3 and 4 aim at affording impairments/quality at PHY level, while chapter 5 and 6 analyse channel impairments/quality from a MAC level perspective. An important contribution of this thesis is to undisclose that some PHY layer parameters, such as the transmission power, the antenna selection, and interference mitigation scheme, have a deep impact on network performance. Since the criteria for selecting these parameters is left to the vendor specific implementations, the performance spread of most experimental results about 802.11 WLAN could be affected by vendor proprietary schemes. Particularly, in chapter 2 we find that switching transmit diversity mechanisms implemented in off-the-shelf devices with two antenna connectors can dramatically affect both performance and link quality probing mechanisms in outdoor medium-range WLAN deployments, whenever one antenna deterministically works worse than the other one. A second physical algorithm with side-effects is shown in chapter 3. Particulary the chapter shows that interference mitigation algorithms may play havoc with the link-level testbeds, since they may erroneously lower the sensitivity threshold, and thus not detect the 802.11 transmit sources. Finally, once disabled the interference mitigation algorithm — as well as any switching diversity scheme described in the previous chapter — link-level experimental assessment concludes that, unlike 802.11b, which appears a robust technology in most of the operational conditions, 802.11g may lead to inefficiencies when employed in an outdoor scenario, due to the lower multi-path tolerance of 802.11g. Since multipath is hard to predict, a novel mechanism to improve the link-distance estimation accuracy — based on CPU clock information — is outlined in chapter 4. The proposed methodology can not only be applied in localization context, but also for estimating the multi-path profile. The second part of the thesis moves the perspective to the MAC point of view and its impairments. Particularly, chapter 5 provides the design of a MAC channel quality estimator to distinguish the different types of MAC impairments and gives separate quantitative measures of the severity of each one. Since the estimator takes advantage of the native characteristics of the 802.11 protocol, the approach is suited to implementation on commodity hardware and makes available new measures that can be of direct use for rate adaptation, channel allocation, etc. Then, chapter 6 introduces a previous unknown phenomenon, the Hidden ACK, that may cause frame losses into multiple WLAN networks when a node replies with an ACK frame. Again, a solution is provided without requiring any modification to the 802.11 protocol. Whenever possible, the quantitative analysis has been led through experimental assessments with implementation on commodity hardware. This was the adopted methodology in chapter 2, 3, 4 and 5. Particularly, this has required an accurate investigation of two brands of WLAN cards, particularly the Atheros and Intel cards, and their driver/firmware, respectively MADWiFi and IPW2200, which are currently the most adopted, respectively, by researchers and layman users
    corecore