451 research outputs found

    Network-provider-independent overlays for resilience and quality of service.

    Get PDF
    PhDOverlay networks are viewed as one of the solutions addressing the inefficiency and slow evolution of the Internet and have been the subject of significant research. Most existing overlays providing resilience and/or Quality of Service (QoS) need cooperation among different network providers, but an inter-trust issue arises and cannot be easily solved. In this thesis, we mainly focus on network-provider-independent overlays and investigate their performance in providing two different types of service. Specifically, this thesis addresses the following problems: Provider-independent overlay architecture: A provider-independent overlay framework named Resilient Overlay for Mission-Critical Applications (ROMCA) is proposed. We elaborate its structure including component composition and functions and also provide several operational examples. Overlay topology construction for providing resilience service: We investigate the topology design problem of provider-independent overlays aiming to provide resilience service. To be more specific, based on the ROMCA framework, we formulate this problem mathematically and prove its NP-hardness. Three heuristics are proposed and extensive simulations are carried out to verify their effectiveness. Application mapping with resilience and QoS guarantees: Assuming application mapping is the targeted service for ROMCA, we formulate this problem as an Integer Linear Program (ILP). Moreover, a simple but effective heuristic is proposed to address this issue in a time-efficient manner. Simulations with both synthetic and real networks prove the superiority of both solutions over existing ones. Substrate topology information availability and the impact of its accuracy on overlay performance: Based on our survey that summarizes the methodologies available for inferring the selective substrate topology formed among a group of nodes through active probing, we find that such information is usually inaccurate and additional mechanisms are needed to secure a better inferred topology. Therefore, we examine the impact of inferred substrate topology accuracy on overlay performance given only inferred substrate topology information

    Overlay networks for smart grids

    Get PDF

    Swarming Overlay Construction Strategies

    Get PDF
    Swarming peer-to-peer systems play an increasingly instrumental role in Internet content distribution. It is therefore important to better understand how these systems behave in practice. Recent research efforts have looked at various protocol parameters and have measured how they affect system performance and robustness. However, the importance of the strategy based on which peers establish connections has been largely overlooked. This work utilizes extensive simulations to examine the default overlay construction strategy in BitTorrent systems. Based on the results, we identify a critical parameter, the maximum allowable number of outgoing connections at each peer, and evaluate its impact on the robustness of the generated overlay. We find that there is no single optimal value for this parameter using the default strategy. We then propose an alternative strategy that allows certain new peer connection requests to replace existing connections. Further experiments with the new strategy demonstrate that it outperforms the default one for all considered metrics by creating an overlay more robust to churn. Additionally, our proposed strategy exhibits optimal behavior for a well-defined value of the maximum number of outgoing connections, thereby removing the need to set this parameter in an ad-hoc manner

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    A framework for the dynamic management of Peer-to-Peer overlays

    Get PDF
    Peer-to-Peer (P2P) applications have been associated with inefficient operation, interference with other network services and large operational costs for network providers. This thesis presents a framework which can help ISPs address these issues by means of intelligent management of peer behaviour. The proposed approach involves limited control of P2P overlays without interfering with the fundamental characteristics of peer autonomy and decentralised operation. At the core of the management framework lays the Active Virtual Peer (AVP). Essentially intelligent peers operated by the network providers, the AVPs interact with the overlay from within, minimising redundant or inefficient traffic, enhancing overlay stability and facilitating the efficient and balanced use of available peer and network resources. They offer an “insider‟s” view of the overlay and permit the management of P2P functions in a compatible and non-intrusive manner. AVPs can support multiple P2P protocols and coordinate to perform functions collectively. To account for the multi-faceted nature of P2P applications and allow the incorporation of modern techniques and protocols as they appear, the framework is based on a modular architecture. Core modules for overlay control and transit traffic minimisation are presented. Towards the latter, a number of suitable P2P content caching strategies are proposed. Using a purpose-built P2P network simulator and small-scale experiments, it is demonstrated that the introduction of AVPs inside the network can significantly reduce inter-AS traffic, minimise costly multi-hop flows, increase overlay stability and load-balancing and offer improved peer transfer performance

    Analyzing and Enhancing Routing Protocols for Friend-to-Friend Overlays

    Get PDF
    The threat of surveillance by governmental and industrial parties is more eminent than ever. As communication moves into the digital domain, the advances in automatic assessment and interpretation of enormous amounts of data enable tracking of millions of people, recording and monitoring their private life with an unprecedented accurateness. The knowledge of such an all-encompassing loss of privacy affects the behavior of individuals, inducing various degrees of (self-)censorship and anxiety. Furthermore, the monopoly of a few large-scale organizations on digital communication enables global censorship and manipulation of public opinion. Thus, the current situation undermines the freedom of speech to a detrimental degree and threatens the foundations of modern society. Anonymous and censorship-resistant communication systems are hence of utmost importance to circumvent constant surveillance. However, existing systems are highly vulnerable to infiltration and sabotage. In particular, Sybil attacks, i.e., powerful parties inserting a large number of fake identities into the system, enable malicious parties to observe and possibly manipulate a large fraction of the communication within the system. Friend-to-friend (F2F) overlays, which restrict direct communication to parties sharing a real-world trust relationship, are a promising countermeasure to Sybil attacks, since the requirement of establishing real-world trust increases the cost of infiltration drastically. Yet, existing F2F overlays suffer from a low performance, are vulnerable to denial-of-service attacks, or fail to provide anonymity. Our first contribution in this thesis is concerned with an in-depth analysis of the concepts underlying the design of state-of-the-art F2F overlays. In the course of this analysis, we first extend the existing evaluation methods considerably, hence providing tools for both our and future research in the area of F2F overlays and distributed systems in general. Based on the novel methodology, we prove that existing approaches are inherently unable to offer acceptable delays without either requiring exhaustive maintenance costs or enabling denial-of-service attacks and de-anonymization. Consequentially, our second contribution lies in the design and evaluation of a novel concept for F2F overlays based on insights of the prior in-depth analysis. Our previous analysis has revealed that greedy embeddings allow highly efficient communication in arbitrary connectivity-restricted overlays by addressing participants through coordinates and adapting these coordinates to the overlay structure. However, greedy embeddings in their original form reveal the identity of the communicating parties and fail to provide the necessary resilience in the presence of dynamic and possibly malicious users. Therefore, we present a privacy-preserving communication protocol for greedy embeddings based on anonymous return addresses rather than identifying node coordinates. Furthermore, we enhance the communication’s robustness and attack-resistance by using multiple parallel embeddings and alternative algorithms for message delivery. We show that our approach achieves a low communication complexity. By replacing the coordinates with anonymous addresses, we furthermore provably achieve anonymity in the form of plausible deniability against an internal local adversary. Complementary, our simulation study on real-world data indicates that our approach is highly efficient and effectively mitigates the impact of failures as well as powerful denial-of-service attacks. Our fundamental results open new possibilities for anonymous and censorship-resistant applications.Die Bedrohung der Überwachung durch staatliche oder kommerzielle Stellen ist ein drĂ€ngendes Problem der modernen Gesellschaft. Heutzutage findet Kommunikation vermehrt ĂŒber digitale KanĂ€le statt. Die so verfĂŒgbaren Daten ĂŒber das Kommunikationsverhalten eines Großteils der Bevölkerung in Kombination mit den Möglichkeiten im Bereich der automatisierten Verarbeitung solcher Daten erlauben das großflĂ€chige Tracking von Millionen an Personen, deren Privatleben mit noch nie da gewesener Genauigkeit aufgezeichnet und beobachtet werden kann. Das Wissen ĂŒber diese allumfassende Überwachung verĂ€ndert das individuelle Verhalten und fĂŒhrt so zu (Selbst-)zensur sowie Ängsten. Des weiteren ermöglicht die Monopolstellung einiger weniger Internetkonzernen globale Zensur und Manipulation der öffentlichen Meinung. Deshalb stellt die momentane Situation eine drastische EinschrĂ€nkung der Meinungsfreiheit dar und bedroht die Grundfesten der modernen Gesellschaft. Systeme zur anonymen und zensurresistenten Kommunikation sind daher von ungemeiner Wichtigkeit. Jedoch sind die momentanen System anfĂ€llig gegen Sabotage. Insbesondere ermöglichen es Sybil-Angriffe, bei denen ein Angreifer eine große Anzahl an gefĂ€lschten Teilnehmern in ein System einschleust und so einen großen Teil der Kommunikation kontrolliert, Kommunikation innerhalb eines solchen Systems zu beobachten und zu manipulieren. F2F Overlays dagegen erlauben nur direkte Kommunikation zwischen Teilnehmern, die eine Vertrauensbeziehung in der realen Welt teilen. Dadurch erschweren F2F Overlays das Eindringen von Angreifern in das System entscheidend und verringern so den Einfluss von Sybil-Angriffen. Allerdings leiden die existierenden F2F Overlays an geringer LeistungsfĂ€higkeit, AnfĂ€lligkeit gegen Denial-of-Service Angriffe oder fehlender AnonymitĂ€t. Der erste Beitrag dieser Arbeit liegt daher in der fokussierten Analyse der Konzepte, die in den momentanen F2F Overlays zum Einsatz kommen. Im Zuge dieser Arbeit erweitern wir zunĂ€chst die existierenden Evaluationsmethoden entscheidend und erarbeiten so Methoden, die Grundlagen fĂŒr unsere sowie zukĂŒnftige Forschung in diesem Bereich bilden. Basierend auf diesen neuen Evaluationsmethoden zeigen wir, dass die existierenden AnsĂ€tze grundlegend nicht fĂ€hig sind, akzeptable Antwortzeiten bereitzustellen ohne im Zuge dessen enorme Instandhaltungskosten oder AnfĂ€lligkeiten gegen Angriffe in Kauf zu nehmen. Folglich besteht unser zweiter Beitrag in der Entwicklung und Evaluierung eines neuen Konzeptes fĂŒr F2F Overlays, basierenden auf den Erkenntnissen der vorangehenden Analyse. Insbesondere ergab sich in der vorangehenden Evaluation, dass Greedy Embeddings hoch-effiziente Kommunikation erlauben indem sie Teilnehmer durch Koordinaten adressieren und diese an die Struktur des Overlays anpassen. Jedoch sind Greedy Embeddings in ihrer ursprĂŒnglichen Form nicht auf anonyme Kommunikation mit einer dynamischen Teilnehmermengen und potentiellen Angreifern ausgelegt. Daher prĂ€sentieren wir ein PrivĂ€tssphĂ€re-schĂŒtzenden Kommunikationsprotokoll fĂŒr F2F Overlays, in dem die identifizierenden Koordinaten durch anonyme Adressen ersetzt werden. Des weiteren erhöhen wir die Resistenz der Kommunikation durch den Einsatz mehrerer Embeddings und alternativer Algorithmen zum Finden von Routen. Wir beweisen, dass unser Ansatz eine geringe KommunikationskomplexitĂ€t im Bezug auf die eigentliche Kommunikation sowie die Instandhaltung des Embeddings aufweist. Ferner zeigt unsere Simulationstudie, dass der Ansatz effiziente Kommunikation mit kurzen Antwortszeiten und geringer Instandhaltungskosten erreicht sowie den Einfluss von AusfĂ€lle und Angriffe erfolgreich abschwĂ€cht. Unsere grundlegenden Ergebnisse eröffnen neue Möglichkeiten in der Entwicklung anonymer und zensurresistenter Anwendungen

    Management of Temporally and Spatially Correlated Failures in Federated Message Oriented Middleware for Resilient and QoS-Aware Messaging Services.

    Get PDF
    PhDMessage Oriented Middleware (MOM) is widely recognized as a promising solution for the communications between heterogeneous distributed systems. Because the resilience and quality-of-service of the messaging substrate plays a critical role in the overall system performance, the evolution of these distributed systems has introduced new requirements for MOM, such as inter domain federation, resilience and QoS support. This thesis focuses on a management frame work that enhances the Resilience and QoS-awareness of MOM, called RQMOM, for federated enterprise systems. A common hierarchical MOM architecture for the federated messaging service is assumed. Each bottom level local domain comprises a cluster of neighbouring brokers that carry a local messaging service, and inter domain messaging are routed through the gateway brokers of the different local domains over the top level federated overlay. Some challenges and solutions for the intra and inter domain messaging are researched. In local domain messaging the common cause of performance degradation is often the fluctuation of workloads which might result in surge of total workload on a broker and overload its processing capacity, since a local domain is often within a well connected network. Against performance degradation, a combination of novel proactive risk-aware workload allocation, which exploits the co-variation between workloads, in addition to existing reactive load balancing is designed and evaluated. In federated inter domain messaging an overlay network of federated gateway brokers distributed in separated geographical locations, on top of the heterogeneous physical network is considered. Geographical correlated failures are threats to cause major interruptions and damages to such systems. To mitigate this rarely addressed challenge, a novel geographical location aware route selection algorithm to support uninterrupted messaging is introduced. It is used with existing overlay routing mechanisms, to maintain routes and hence provide more resilient messaging against geographical correlated failures
    • 

    corecore