74,982 research outputs found

    Topological Feature Based Classification

    Full text link
    There has been a lot of interest in developing algorithms to extract clusters or communities from networks. This work proposes a method, based on blockmodelling, for leveraging communities and other topological features for use in a predictive classification task. Motivated by the issues faced by the field of community detection and inspired by recent advances in Bayesian topic modelling, the presented model automatically discovers topological features relevant to a given classification task. In this way, rather than attempting to identify some universal best set of clusters for an undefined goal, the aim is to find the best set of clusters for a particular purpose. Using this method, topological features can be validated and assessed within a given context by their predictive performance. The proposed model differs from other relational and semi-supervised learning models as it identifies topological features to explain the classification decision. In a demonstration on a number of real networks the predictive capability of the topological features are shown to rival the performance of content based relational learners. Additionally, the model is shown to outperform graph-based semi-supervised methods on directed and approximately bipartite networks.Comment: Awarded 3rd Best Student Paper at 14th International Conference on Information Fusion 201

    Topological singularities and the general classification of Floquet-Bloch systems

    Get PDF
    Recent works have demonstrated that the Floquet-Bloch bands of periodically-driven systems feature a richer topological structure than their non-driven counterparts. The additional structure in the driven case arises from the periodicity of quasienergy, the energy-like quantity that defines the spectrum of a periodically-driven system. Here we develop a new paradigm for the topological classification of Floquet-Bloch bands, based on the time-dependent spectrum of the driven system's evolution operator throughout one driving period. Specifically, we show that this spectrum may host topologically-protected degeneracies at intermediate times, which control the topology of the Floquet bands of the full driving cycle. This approach provides a natural framework for incorporating the role of symmetries, enabling a unified and complete classification of Floquet-Bloch bands and yielding new insight into the topological features that distinguish driven and non-driven systems.Comment: 19 pages, 6 figure

    Topological classifier for detecting the emergence of epileptic seizures

    Get PDF
    Objective An innovative method based on topological data analysis is introduced for classifying EEG recordings of patients affected by epilepsy. We construct a topological space from a collection of EEGs signals using Persistent Homology; then, we analyse the space by Persistent entropy, a global topological feature, in order to classify healthy and epileptic signals. Results The performance of the resulting one-feature-based linear topological classifier is tested by analysing the Physionet dataset. The quality of classification is evaluated in terms of the Area Under Curve (AUC) of the receiver operating characteristic curve. It is shown that the linear topological classifier has an AUC equal to 97.2% while the performance of a classifier based on Sample Entropy has an AUC equal to 62.0%

    A topological approach for protein classification

    Full text link
    Protein function and dynamics are closely related to its sequence and structure. However prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity be- tween proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic topology that has found its success in the topological data analysis in a variety of disciplines, including molecular biology. The present work explores the potential of using persistent homology as an indepen- dent tool for protein classification. To this end, we propose a molecular topological fingerprint based support vector machine (MTF-SVM) classifier. Specifically, we construct machine learning feature vectors solely from protein topological fingerprints, which are topological invariants generated during the filtration process. To validate the present MTF-SVM approach, we consider four types of problems. First, we study protein-drug binding by using the M2 channel protein of influenza A virus. We achieve 96% accuracy in discriminating drug bound and unbound M2 channels. Additionally, we examine the use of MTF-SVM for the classification of hemoglobin molecules in their relaxed and taut forms and obtain about 80% accuracy. The identification of all alpha, all beta, and alpha-beta protein domains is carried out in our next study using 900 proteins. We have found a 85% success in this identifica- tion. Finally, we apply the present technique to 55 classification tasks of protein superfamilies over 1357 samples. An average accuracy of 82% is attained. The present study establishes computational topology as an independent and effective alternative for protein classification
    • …
    corecore