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Abstract

Recent works have demonstrated that the Floquet—Bloch bands of periodically-driven systems feature
aricher topological structure than their non-driven counterparts. The additional structure in the
driven case arises from the periodicity of quasienergy, the energy-like quantity that defines the
spectrum of a periodically-driven system. Here we develop a new paradigm for the topological
classification of Floquet—Bloch bands, based on the time-dependent spectrum of the driven system’s
evolution operator throughout one driving period. Specifically, we show that this spectrum may host
topologically-protected degeneracies at intermediate times, which control the topology of the Floquet
bands of the full driving cycle. This approach provides a natural framework for incorporating the role
of symmetries, enabling a unified and complete classification of Floquet—Bloch bands and yielding
new insight into the topological features that distinguish driven and non-driven systems.

After the discovery [1, 2] and explanation [3—7] of the quantized Hall effects, topology gained new importance as
amechanism for generating extremely robust quantum mechanical phenomena. The realization that the Bloch
bands of solid state systems could possess non-trivial topological characteristics led to the prediction [8—10] and
experimental discovery [11, 12] of whole new classes of materials [13, 14]—the topological insulators and
superconductors—which host a variety of remarkable and potentially useful phenomena. On a theoretical level,
a complete topological classification [15, 16] of such systems has been developed, predicting a number of new
phases. However, finding materials that realize these phases remains a very challenging task, with no known
examples for many topological classes.

Motivated by the great successes and open challenges in the arena of topological matter, many authors have
begun to explore the possibilities for realizing topological phenomena in driven quantum systems [17—43].
Time-dependent driving offers the opportunity to control a material’s properties in a variety of new ways,
potentially opening new routes for studying topological phenomena in solid state [44], atomic [22, 45, 46], and
optical systems [47, 48].

Intriguingly, driven systems may host an even richer array of topological phenomena than their non-driven
counterparts. To date several examples of topological phenomena which can only be realized in driven systems
have been found [19, 22, 29, 49, 50], such as the existence of robust chiral edge states in two dimensional (2D)
systems whose Floquet bands have trivial Chern indices [49], and pairs of non-degenerate Majorana end modes
with protected quasienergy splittings in one-dimensional (1D) systems [22]. This indicates that periodically
driven systems feature additional topological structure beyond that found in non-driven systems. However, a
unifying principle for understanding and classifying these new phenomena remains lacking.

In this work we answer the question: under what conditions does the evolution of a driven system become
topologically distinct from that of a non-driven system? In doing so we develop a powerful and general
framework that can be used to understand the topology of periodically driven systems.

In the analysis of periodically driven systems, the Floquet operator, denoted U(T), plays a central role as the
stroboscopic evolution operator that propagates the system forward in time through each complete driving
period, T. The spectrum of the Floquet operator, given by U(T)|¥,) = e~ T |¥,), plays an analogous role to
the spectrum of the Hamiltonian in a non-driven system, with real-valued energies replaced by periodically-

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Phase band representation of the evolution operator U (k, t), equation (1). (a) For a non-driven system, the phase eigenvalues
grow linearly in time. (b) Here we show phase bands of a periodically driven system which are non-degenerate for all k and ¢. The
evolution can be smoothly deformed into one obtainable in a non-driven system without closing any quasienergy gaps. (c) In this case
the evolution operator features non-removable degeneracies which prevent such a deformation. The evolution is therefore
topologically distinct from that of any non-driven system. (d) Illustration of the phase band labeling scheme defined in section 1. The
shaded region indicates the ‘phase Brillouin zone.’

defined quasienergies, €, + 2rN /T = ¢, for any integer N. For a system on a lattice, the single particle spectrum
forms bands, the so-called Floquet bands. Throughout this work we focus on systems defined on a lattice, with a
finite number of bands. While knowledge of the Floquet bands is sufficient to understand many aspects of the
dynamics of a driven system, it was recently shown that the topological properties of the evolution are in
particular not described by U(T) alone [49]. A proper description of the topology of driven systems must take
into account the full evolution U(#) for times t throughout the entire driving period, 0 < ¢t < T.

As ameans of elucidating the nature of the evolution U(t), we focus on the ‘phase bands’ of the system, i.e.,
the time-dependent spectrum of the system’s evolution operator throughout one driving period. As depicted in
figure 1, for each time tin the interval 0 < t < T, the eigenvalues {e*®" } of the Bloch evolution operator
U(k,t) form bands as a function of the crystal momentum k. For illustration we use a ‘repeated zone’
representation for the phase bands, though the complete spectrum is contained within a single phase Brillouin
zone of width 27, as indicated by the shaded region in figure 1(d). As a function of time, these phase bands form
sheets which, along with the corresponding eigenvectors, contain full information about the evolution of the
system.

Below we determine when a given system’s evolution can be smoothly deformed into one obtainablein a
non-driven system by examining smooth deformations of the phase bands that keep the Floquet operator U(T)
fixed. Attimet = 0 the evolution is the identity. Therefore all phase bands must originate with phases ¢ which
are integer multiples of 27. For a non-driven system with Hamiltonian H, the evolution operator is given by
U(t) = e 1%, In this case the phase bands diverge from one another linearly in time due to the linear phase
winding ¢ = Et for each eigenstate of H with energy E (see figure 1(a)). For the case of a driven system as shown
in figure 1(b), the phase bands can be straightened through a continuous deformation, such that the evolution
becomes indistinguishable from one generated by a time-independent Hamiltonian. Crucially, as we show
below, phase bands may be connected via topologically-protected degeneracies, or ‘topological singularities’
(figure 1(c)), which prevent the evolution from being deformed into the canonical form for a non-driven system.
These singularities play a central role in defining the topology of periodically driven systems.

After establishing the existence of topological singularities in the bulk evolution, we study their ramifications
for the edge mode spectrum of U(T) for a 2D system defined in a geometry with edges. If such a system may host
genuine topologically-protected chiral edge modes, then by definition the net number of modes in each bulk gap
may not change under smooth deformations of the evolution that keep the bulk gaps open. Focusing first on the
bulk evolution, we then identify a complete set of independent topological quantities which are (by definition)
invariant under any smooth deformation of the bulk evolution that preserves the Floquet operator U(k, T').
Since we have identified above a complete set of quantities that are invariant under such deformations, we
conclude that the net number of topologically-protected chiral edge modes in a given gap must be given by some
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function of these invariant bulk quantities. Standard spectral flow arguments that relate features of the bulk and
edge spectra [51-53] let us determine the form of this function, thereby demonstrating the existence and form of
the bulk-edge correspondence in terms of the bulk invariants that we found (see equation (10) below).

Next we show how the method can be extended to systems in arbitrary dimensions, also including the role of
symmetries, thus providing means for a complete topological classification of Floquet—Bloch systems. We show
that symmetries considered previously, e.g. in [22, 50], which generalize the Altland—Zirnbauer symmetry
classes to the case of periodically driven systems, can be naturally incorporated into the phase-band picture.
Importantly, we find that these symmetries can protect new types of topological singularities in the bulk.

In general we find that, for each bulk gap, the edge mode spectrum of a driven system in a given symmetry
class has the same set of protected features as that of a non-driven system in the corresponding class. However,
the global edge mode spectrum and the relation between edge modes and bulk bands can be quite different.
Examples of such new or ‘anomalous’ edge phenomena include Floquet—Majorana edge modes [22, 54] with
quasi-energy 7/ T and chiral edge modes [49] in a 2D system with topologically trivial bulk Floquet bands. Here
we also show that periodic driving, for example, allows two-band systems with time-reversal symmetry to have
helical edge modes, while a minimum of four bands is required in the non-driven case.

Interestingly, we find that all the above phenomena are closely connected with the appearance of topological
singularities in the bulk evolution. Due to the additional freedom presented by time-dependence, we further
speculate that there may be other new types of symmetry conditions (beyond those familiar from non-driven
systems) which can protect new types of topological singularities and anomalous edge mode phenomena.

The remainder of the paper is structured as follows. In section 1 we formalize the description of phase bands,
and characterize the singularities which may prevent them from being deformed into a trivial configuration.
Then in section 2 we cast the topological characterization of 2D systems (without symmetries) in terms of the
phase bands and their singularities, giving new insight into the winding number invariants found previously
in [49]. In section 3 we show how additional symmetries (e.g., time reversal or particle-hole symmetry) can be
naturally incorporated into this picture through their abilities to protect new types of singularities. Finally, in
section 4 we summarize our results and discuss the outlook for future work. Technical aspects of derivations are
provided in appendices.

1. Phase bands of the evolution operator

We now study the question of when the evolution of a periodically-driven Floquet—Bloch system can be
considered topologically distinct from that of a non-driven system. In order to do this, we begin by defining the
phase band picture of Floquet—Bloch evolution. In this section we focus on ‘bulk’ systems with discrete
translation symmetry (with infinite extent or periodic boundary conditions). Here, the crystal momentum k is a
good quantum number. For now we leave the number of spatial dimensions arbitrary.

The evolution of a periodically-driven quantum system may equivalently be prescribed in terms of either a
Hamiltonian H(t + T) = H(t), where T'is the driving period, or by the corresponding evolution operator

u) = 7&4‘[) " (t,)dt/, where 7 denotes time ordering. In this paper we primarily work directly with the
evolution operator U(t), which most clearly exposes the topological features of the evolution. Importantly,
although the Hamiltonian satisfies H(t + T) = H(t), the evolution operator U(¥) is generally not periodic
in time.

For bulk systems, crystal momentum k and time ¢ parametrize a family of Bloch evolution operators U (k, t),
which act within the space of periodic Bloch functions. When the time-dependent Hamiltonian is local and
bounded, U(k,t) is continuous in crystal momentum and time.

As an important first step in our analysis, we express U(k, t) in terms of its spectral decomposition

N
U(kat) = ZPf’l(kJ t)e7i¢”(k)t)> (1)

n=1

where P, (k, t) is the projector onto the nth eigenstate of U(k,t) and e~ % ®? is the corresponding eigenvalue.
Here Nis the number of bands in the system.

We refer to the functions { ¢, (k, ) } as the phase bands of the system. In contrast to the quasienergy bands
associated with a driven system’s Floquet operator U(k, T'), the phase bands depend on time, and are
continuously defined throughout an entire driving cycle, 0 < t < T.Attimet = T, the phase bands coincide
with the system’s Floquet bands. An illustration of phase bands for a 1D system with two bands is shown in
figure 1.

To resolve the ambiguity of the labeling of eigenstates of U (k,t) we now define a prescription for assigning
the values of the n indices. We focus on the phase bands { ¢, (k, ¢) }, and work in a repeated zone representation
where the spectrum is copied and shifted through all integer multiples of 27. Recalling that U (k,0) = 1, each
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Figure 2. Graphical depiction of the deformation described in section 1, where the time-evolution operator of a periodically driven
system is deformed into the time-evolution operator of a non-driven system. This deformation is always possible if the time-evolution
operator has no degeneracies. After flattening, the linear ramp region is expanded to the entire interval 0 < ¢ < T, and the bands are
straightened into a form as in figure 1(a).

phase eigenvalue must start from an integer multiple of 27. However, as mentioned above, the full spectrum
{e 0N} of U(k,t) is contained within one ‘phase Brillouin zone’.

While in principle we could choose ¢, (k, 0) to be equal to any integer multiple of 27, we choose to work in a
fundamental phase Brillouin zone in which all phases originate from zero, i.e., ¢, (k, 0) = 0,forn =1 ... N
(see bold curves in figure 1(d)). Next, we demand that each ¢, (k, t) is a real-valued continuous function' of both
k and . Finally, we impose an ordering condition: if ¢, (k,t) > ¢,,(k,t) for one pointin k, ¢-space, then this
relation must hold for all k, t. By ordering the indices such that # > m implies ¢, > ¢,,, this prescription
defines a unique labeling of the phase bands.

The ordering condition above is constructed such that if two phase bands become degenerate at a particular
value of k, ¢, the bands do not ‘cross’ (e.g., the index m stays with the lower branch everywhere, while the index n
stays with the upper branch). This arrangement is in particular maintained when a band in the fundamental
zone meets a band originating from a different zone, see for example band #3 in figure 1(d). Such degeneracies
between phase bands associated with different branches play an essential role in defining the topological
characteristics that distinguish driven and non-driven systems.

We now use the phase band picture to demonstrate when it is possible to continuously deform the evolution
of a Floquet—Bloch system into that of a non-driven system, while keeping U (k, T') fixed. Naively, the continuity
of U(k,t) and of the phase bands might lead one to expect that the projectors P, (k, t) are continuous as well. If
this were true, any continuous deformation of the phase bands ¢, (k,?) would preserve the continuity of the
evolution operator. It would then always be possible to deform the evolution into that of a non-driven system
using a two-step ‘band-flattening’ procedure (see figure 2). First, forevery n = 1, ..., N, deform ¢, (k, t) to
zeroforall 0 < ¢t < T — 6t until a small time-interval 6t before T, after which it grows linearly to its final value.
If the interval 6t is small enough, we can assume that the projectors are constant there, B, (k, t) = B,(k, T).In
the second step, let ¢ — T, while keeping the projectors constant throughout the linear ramp of the phase. The
deformed evolution is now identical to that of a non-driven system with the Hamiltonian

h(k) = %Zqﬁn & T)B(k, T). ®)

The picture above seems to imply that all periodically-driven systems are topologically equivalent to non-
driven systems (i.e., they can be related by smooth deformations that keep the Floquet operator fixed). However,
the existence of phenomena such as anomalous edge modes [19, 49] shows that this cannot be the case.

Where could the argument break down? In the first step, we assumed that the phase bands could be
continuously deformed to zero throughout the entire driving period, up to a short interval 6z in which the
projectors were assumed to be constant. However, in principle one may imagine that the evolution operator
could host degeneracies around which the projectors are discontinuous (the degeneracy of the eigenvalues
ensures that U stays continuous). In the presence of such a discontinuity, the degeneracy could not be lifted
without breaking the continuity of U. In this way a phase band in the fundamental zone may become ‘glued’ to
another band from a neighboring branch of phases (see figure 1(c)).

In the absence of the discontinuities described above, the evolution of any driven system can be smoothly
deformed to that of a non-driven system, as in figure 2, and anomalous edge states would be impossible. Thus we
are led to the unavoidable conclusion that the evolution operators of periodically driven systems must support
topologically-protected degeneracies. In the next subsection we show explicitly that such degeneracies can exist

1.. B s . . . .

Since the ‘phases’ ¢, are treated as real-valued continuous functions in the repeated zone scheme, their absolute values may exceed 27.
However, the labeling scheme guarantees that the full set of phase bands, in particular the Floquet bands ¢, = ¢ (k, T)/T, are always
grouped within a window of at most 27.
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in 2D systems. In section 3 we generalize to other dimensions and symmetry classes. Below we refer to these
topologically-protected degeneracies as ‘topological singularities’.

1.1. Topological singularities in 2D systems

In this subsection we explicitly demonstrate the existence and nature of topological singularities in the evolution
operators of 2D systems. We furthermore show that in a region in k, #-space where U (k, t) is degenerate, the
degeneracy can either be lifted everywhere or reduced to a cluster of isolated singularities.

Let U(k,t) be the bulk time evolution operator of a 2D system with no symmetries other than the discrete
translational symmetry of the lattice. Consider now a point s, = (kg, () in k, #-space where two adjacent phase
bands, mand m//, are degenerate (mod 27). At s, the degenerate subspace is spanned by the Bloch states |),,,)
and |1,/). Due to the continuity of U (k, t) and the existence of gaps to other phase bands, we can assume that the
subspace spanned by the two intersecting bands is constant within some finite sized neighborhood around s in
k, t-space. The remaining non-degenerate bands { | x,,) } and their associated phases { ¢, } can also be assumed to
be constant within this neighbourhood. Close to s, the time evolution operator thus takes the form

U = > I (Xl €7+ 37 %) (o] Map(s), ©)
n=m,m’ a,b=m,m’
where Misa2 x 2 unitary matrix and we parametrize the three-dimensional (3D) (k, ¢) space by a single
variable s. The unitarity of M means that we can write it as

M(s) = exp| —igy(s) — if; ()5, 4)

where summation over repeated indices is used. Here ¢, (s) is a real-valued function, whose value at s, gives the
common eigenvalue of the two degenerate bands, {0; } are the Pauli matrices, and { f] (s) } are real continuous
functions that satisfy f; (sq) = 0.

We assume that U, and thereby f, is differentiable in a neighborhood around s, and expand f; to linear order
in (s — sg) around sg. Noting that f] (sg) = 0, wewrite

M(s) ~ exp[—i(;Sd(s) —i(s — so)jsjkak], (5)

where Sj; = 0if, (s¢)isareal 3 x 3 matrix. The case where the linear termin (s — s,) also vanishes will be
covered shortly.

We first consider the case where the matrix S has rank three, such that the coefficients of all three Pauli
matrices vary independently as s explores the neighborhood around s,. In this case, the degeneracy is
topologically protected, similar to the case of a Weyl node [55]: an infinitesimal change of the time evolution
operator can never lift the degeneracy, but rather can only infinitesimally shift the location where it appears. A
single such degeneracy can thus not be lifted with a continuous deformation of the system, and is therefore
topologically protected. We thus define a topological singularity of a 2D system to be an isolated degeneracy of
the time evolution operator where the matrix S describing the linearization of U'in its neighborhood
(equation (5)) is invertible.

In addition to the isolated singularities described above, we may also find cases where Sis not invertible. This
occurs when two phase bands are degenerate along a line, surface, or 3D region in k, t-space, such that s, is one
point on this manifold. In such cases, the rank of Sis equal to 3-D, where D is the dimension of the degenerate
manifold. These extended degeneracies are not topologically protected: the degeneracy can generically be lifted
in aneighborhood of s, with alocal perturbation, letting f;(s) — f;(s) + &g (s)v;in equation (4). Here §
controls the strength of the perturbation, v is a 3D vector satisfying v;S;; = 0,and g (s) is a real continuous
function that vanishes outside a neighbourhood around s, within which |, ,,v) can be taken to be constant.

Importantly, the local perturbations described above only lift the degeneracy patch-wise, in one small region
atatime. If one tries to lift the degeneracy over the entire manifold, two cases are possible: either the degeneracy
can be lifted everywhere, or there will be a discrete set of points where topological singularities remain. Hence we
conclude that, if the time evolution operator is degenerate throughout a finite-dimensional manifold, it is always
possible to apply an infinitesimal perturbation that either completely lifts the degeneracy, or reduces it to a
cluster of topological singularities.

With the existence of topological singularities established, we now further characterize their properties. Each
singularity can be assigned a charge (or vorticity) g:

q = sgn[det S], 6)

where Sis the linearization of f, (s) around s, see equations (4) and (5).
In 2D systems, the charges of topological singularities have direct connections with the Chern numbers of
the phase bands. Consider the ‘instantaneous’ Chern number of phase band #,

C,(t) = ﬁ f d?k Tr{B,(t)[0x A1), Ok, Bi()]}. Aslongas no singularities are encountered, the Chern number
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C,(t) cannot change due to the continuity of B, (). However, when two phase bands meet at a singularity with
vorticity g, the Chern number for the ‘upper’ phase band changes by g as the singularity is traversed in time,
while the Chern number of the other band changes by —g. Here, the ‘upper’ band isband m + lifthe
singularity connects bands mand m + 1, and band 1, if the singularity connects band 1 and N through the phase
Brillouin zone edge. As a consequence of the argument above, any driving protocol that yields Floquet bands
with different Chern numbers from those of the initial Hamiltonian H(0) must induce one or more topological
singularities in U (k, ).

In this section we showed that the evolution operator of a periodically-driven system may host topologically-
protected degeneracies, or ‘topological singularities.” As we concluded in the beginning of the section,
topological singularities can obstruct the smooth deformation of the evolution of the driven system into that ofa
non-driven system. Specifically, in the case where the ‘bottom’ and ‘top’ phase bands, 1 and N, are connected by
asingularity through the phase Brillouin zone-edge, their respective phase values at the singularity must differ
by 2. In this situation it is impossible to simultaneously flatten both of the bands to zero (compare figure 1(c)
and (d) with figure 2). In contrast, for singularities that do not pass through the phase zone edge (i.e., those
connectingbands mand m + 1, with m < N), the two corresponding phase eigenvalues coincide at the
singularity. In this case nothing prevents deforming the two phase bands simultaneously to zero, thereby
removing the singularity. Hence singularities of the first type, i.e., ‘zone-edge singularities,” are special: it is
precisely these singularities that cannot be eliminated by smooth phase-band deformations, thus distinguishing
driven from non-driven evolution. In section 2 below we formulate the topological classification for 2D
periodically driven systems in terms of the phase bands and zone-edge topological singularities, and derive the
corresponding bulk-edge correspondence.

1.2. Natural quasienergy zone

Before moving on to classification, we briefly introduce some further labeling notation that will be useful for
referring to specific Floquet bands and gaps in the discussion below. In particular, we apply the phase band
labeling prescribed in the beginning of this section to the Floquet bands themselves. We define a convention
where we label Floquet band n such that ¢, (k) = ¢,(k,T)/T, with ¢, (k,t) determined by the labeling
convention explained below equation (1), see figure 1(d). This uniquely determines ‘natural’ quasienergy band
indices for a system, and the bands {¢,, } forn = 1, ..., N define a natural choice of the quasienergy (or Floquet)
Brillouin zone within the repeated zone scheme.

Below we will also apply the labeling scheme to the quasienergy gaps. For the following discussion, we refer to
the quasienergy gap above band m as gap m. Due to the periodicity of quasienergy, a driven system with N bands
has an additional gap (as compared to a non-driven system), which separates band N from band 1, across the
quasienergy zone edge. We thus refer to gap N as the ‘zone-edge gap’ of the Floquet spectrum. In the non-driven
limit T — 0, the zone-edge gap becomes infinitely wide, while the other gaps remain finite.

We note that the natural quasienergy zone identified above has physical meaning, as the quasienergy bands
within the zone are directly related to the spectrum of the time-averaged Hamiltonian. In particular, within the
convention above, the quasienergy bands in the natural zone satisfy

Z@®=%Z@®D
1T k1)
:?ibhH[U&ﬁ@M&ﬁ}

The last equality follows from the spectral decomposition 1, after using the relations P,0,P, = 0,P, — (0;B,)B,,
and zn P, = 1to eliminate the derivatives of the projectors. Finally, substituting i0, U (k,t) = H (k,t) U(k,t)
we find the following non-trivial relation

T
meziﬁmﬁmmm @)

Within the repeated zone scheme, this relation is uniquely satisfied for the quasienergy bands within the
natural zone.

2. Topological classification of Floquet—Bloch systems in 2D

Having introduced the concept of phase bands and demonstrated the existence of topological singularities, we
now consider the implications of these results for the topological properties of a 2D Floquet—Bloch system with
no symmetries. By ‘topological’ we mean those properties that are invariant under any continuous deformation
of the bulk time-evolution operator that preserves its continuity in crystal momentum and time, and keeps the
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U1

T TT

Region T Region II

Figure 3. Continuous deformation of a generic time evolution operator which only preserves information about the topological
singularities spanning the zone-edge gap (region I), and the Floquet bands (region II). These features cannot be removed, since the
Chern indices of the Floquet bands and the total charge of the zone-edge singularities can only be changed by closing at least one
quasienergy gap. Any topological invariant should be expressible in terms of only these non-removable features. Note that the
singularity in the gap around phase ¢ = 0 is eliminated under the deformation.

bulk gaps open in the quasienergy spectrum of the Floquet operator U(T'). Any such quantity is a topological
invariant of the system. Importantly, this definition means that topological invariants must be independent of
the choice of time origin”.

Analogous to a Chern insulator, a 2D Floquet—Bloch system defined in a geometry with edges may host
protected chiral edge modes within its bulk quasienergy gaps. The chiral edge modes are topologically protected,
meaning that the net number #1¢4g, (1) of chiral edge modes in bulk quasienergy gap m is invariant under
continuous deformations of the bulk evolution operator U(k, t), or equivalently of the Hamiltonian H (¢), that
keep quasienergy gap m open. Thus we recognize .44 (1) as a topological invariant of the system.

In this section we demonstrate that considerations about the bulk phase bands allow us to identify all
independent topological invariants of a 2D Floquet—Bloch system. Subsequently, we use these invariants to
construct the bulk-edge correspondence, providing a direct link between the edge mode spectrum and the bulk
phase band properties of 2D Floquet—Bloch systems.

2.1. Topological invariants of 2D systems

In this subsection we identify the properties of a 2D Floquet—Bloch system that are invariant under smooth
deformations of the phase bands. In section 1.1 we found that the phase bands of a 2D system can safely be
deformed anywhere in k, t-space except at isolated topological singularities. Therefore we may expect that the
singularities play an important role in the topological classification of periodically driven systems.

To elucidate the importance of topological singularities we consider the following deformation of a time-
evolution operator U(k, t), shown schematically in figure 3. Without changing the eigenstate projectors B, (k, ),
deform the phase bands ¢, (k, t) to zero everywhere except for within small isolated regions that surround each
zone-edge singularity and within a small time-interval 6t before T, where the phase bands wind linearly to their
final values. These final values, which define the Floquet bands, are kept fixed under the deformation. We refer to
theregiont < T — 6t in k,t spaceasregion I, and to the final region t > T — ¢t asregion II (see figure 3). Any
time-evolution operator can be deformed in this way such that continuity is preserved and no quasienergy gap is
closed. Without changing any topological invariant, the deformation effectively discards all information about
the time-evolution operator except for the phase bands at time ¢ = T (i.e., the Floquet bands themselves), and
the zone-edge singularities.

Consider now the remaining features of the phase band structure that could not be smoothly deformed
away. We found in section 1.1 that it was possible to change the location k, ¢ of each singularity through a
continuous deformation. Through such a deformation, it is furthermore possible to create and annihilate pairs
of zone-edge singularities with opposite charges. Hence the only invariant quantity we can associate with region
Lis the sum of the charges {qi(ZES) } of all zone-edge singularities, Zi qi(ZES). Forregion I, we note thatatt = T
any two projectors P (k,T) and P’ (k, T') can be continuously deformed into each other if and only if their Chern
numbers are the same [6]. Hence the only independent invariants we can associate with region I are the Chern
numbers of the individual phase bandsatt = T.

The arguments above show that a 2D Floquet—Bloch system with N bands has exactly N independent
topological invariants characterizing it. These invariants are the integers

To see this, note that a continuous change of time origin from 0 to ¢’ gives rise to a smooth deformation of the evolution operator from
U(t)to U (t + t")UT (¢'). Given that the quasienergy spectrum is invariant under changes of time origin, the topological invariants must
remain the same for any choice of time origin as well.




10P Publishing

NewJ. Phys. 17 (2015) 125014 FNathan and M S Rudner

Cl) ey CN* 1 Zqi(ZES))) (8)

where C, is the Chern number of Floquet band # (see section 1.2 for definition of the quasienergy band indices).
The index 7in the sum runs over all topological singularities in the zone-edge gap. The Chern number of the last
band Cyris not included since Zn C, = 0. Wessee that while an N-band non-driven system is characterized by
N — lindependent integer-valued (Z) invariants (the Chern numbers of each of the N — 1lowest bands),
Floquet—Bloch systems are characterized by N integer (Z) topological invariants. The additional invariant is the
net charge of the topological singularities in the zone-edge gap.

2.1.1. Bulk-edge correspondence for 2D Floquet—Bloch systems

We now seek to derive a bulk-edge correspondence that gives the net number of chiral edge states that will
appear within a given gap m of the bulk Floquet spectrum when the system is defined in a geometry with an edge.
To this end we identify which non-trivial combinations of the N numbers in equation (8) remain invariant when
all gaps except for gap m are allowed to close (see section 1.2 for the labeling convention for the quasienergy
gaps). Later we will use this feature to relate the invariant combination to the number 72¢4q (1) of edge modes in
gap m, which also shares this property.

In order to find the combinations of the above quantities which have this invariance, we note that the Chern
numbers of the individual bands 1 to 1 can be changed by closing the quasienergy gaps between them. Only
theirsum S,,, = Z:l:l C, remains constant under such operations [6]. Furthermore, if m = N, all zone-edge
singularities can be removed through the planet = T by closing the zone-edge quasienergy gap (i.e., the gap
between band N and band 1). Importantly, however, the Chern number of band 1, and thereby S,,,, changes by g
each time a singularity of charge g is removed in this way (see the discussion at the end of section 1.1 on the
relationship between Chern numbers and singularities). Hence there only exists one independent combination
of the invariants in equation (8) which remains invariant under all of these operations, i.e., when only gap m is
required to stay open:

ummzi@—Z#m ©)
n=1 i

Any two evolutions characterized by the same value of the invariant w,,, can be smoothly deformed into one
another without closing quasienergy gap m. Crucially, this tells us that if topologically-protected chiral edge
modes are possible, the number 7.4, (1) of them in gap m should be some function of w,,,, and possibly m itself.
Standard spectral flow arguments show that chiral edge modes must exist in certain cases, and that
Nedge (M) — Megge(m — 1) = C,,,, see e.g., [51-53]. The only way this can be realized is if #1¢4g (1) = W, + K for
some universal constant K. Considering the trivial special case H (t) = 0, where both wy and #1¢4g. (N) are zero,
we find that K must be zero. We thus arrive at the following new result for the net number of chiral edge modes
ina2D system:

Medge (M) = 3 C — g7 (10)
n=1 i

The simple expression above provides a direct way of evaluating the edge mode count given by the winding
number formula found in [49]. The first term is the result one obtains simply when analyzing a non-driven
system with the phase band framework, taking 7'to be so small that the phase bands do not cross. The second
term has no equivalent in non-driven systems, and accounts for the anomalous edge modes that were discussed
in[19,49]. Additionally, equation (10) shows that the number of edge modes in the zone-edge gap is given by the
net charge of all zone-edge topological singularities.

In appendix A we provide an explicit derivation showing that equation (10) is equivalent to the winding
number formula of [49]. Below we refer to #, [ U] as the winding number of U'in gap m.

2.2. Topological singularities in a specific two-band model

To make our discussion more concrete, in this subsection we demonstrate the results above on a variation of the
explicit model considered in [49]. Consider a tight-binding model on a 2D bipartite square lattice, described by
the time-dependent Bloch Hamiltonian

4
Hk, t) = ZIn(t)(cﬁe“’n’k + o—*e*ibn'k) + Vo, (11)
n=1

where 0, and 0% = (0, £ i0}) / 2 are the Pauli matrices acting in the sublattice space, and the vectors {b,, } are
givenby b; = —b; = (a, 0),and b, = —b, = (0, a), with a being the lattice constant. In real-space,
Hamiltonian (11) consists of hopping terms between nearest neighbour sites on the bipartite lattice. The
Hamiltonian is T-periodic in time. Each driving cycle consists of five time intervals of length T /5, with
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Figure 4. Explicit demonstration of topological singularities and anomalous edge states. (a)—(c) Phase band structures for the model in
equation (11) for fixed values of k,, with singularity charges (all +-1) indicated. The k, values are (a) 0.245/a, (b) 1.533/a, (c) 2.084/a.
(d) Quasienergy band structure of the model in a strip geometry. Both bands have Chern number zero, and we find one chiral mode on
each edge, in each quasienergy gap. Edge modes on opposite edges are indicated by different colors.

J.(t) = A, during the nth interval, while all the other hopping amplitudes are set to zero. In the fifth interval, all
hopping amplitudes are zero while the sublattice potential V remains on.

In [49], anomalous edge modes were observed in the case where A, = J, for certain ranges of the parameters
Jand V. According to the discussion in the subsections above, this implies that topological singularities are
present. Indeed, when in a non-trivial phase, the two phase bands touch through the zone-edge along the line
k. = k,, ataspecific time that depends on parameter values. To demonstrate that this degenerate region
contains topological singularities, we add a small time-dependent perturbation to break the extended
degeneracy into isolated singular points (see section 1.1). We implement the perturbation by reducing the
hoppingin the y-direction slightly compared to the x-direction, such that \; = A\; = J and
X = Ay = (1 — )], where avis a small parameter. We then numerically calculate the time-evolution operator
atarepresentative set of points in (k, t)-space for the parameter choice ] = —2.57/T, V = 0.87/T, and
« = 0.2. From diagonalization of the time-evolution operator we obtain the phase band structure of the model,
and find four topological singularities (see figure 4). One singularity has charge —1 and connects the two bands
through the zone edge, while the other three have charges 1, —1, and —1, but do not cross the zone-edge. The
charges are found numerically.

In figure 4(a)—(c), the phase band structure is plotted for three values of fixed k,. The k, values are chosen
where the four topological singularities appear (two of the singularities appear at the same k,). The Chern
numbers of the Floquet bands are zero.

Next we confine the model to a strip geometry with edges parallel to the y-direction, by truncating the real-
space Hamiltonian of the model in the x-direction. We numerically calculate the Floquet operator of this
truncated tight-binding Hamiltonian and obtain the quasienergy band structure shown in figure 4(d). On each
edge we find the net number of chiral edge modes to be 1, in both bulk quasienergy gaps. This behavior is fully
consistent with result (10) above.

3. Topological classification of Floquet-Bloch systems with symmetries

In the previous section we showed that the richer topological structure of 2D periodically driven systems arises
from the possibility of non-removable singularities in the phase bands of such systems. Building on this result,
we now seek to describe how additional restrictions on the evolution (e.g., as imposed by discrete symmetries)
can protect new types of phase band singularities in 1D, 2D, or 3D. These new singularities provide the basis for a
symmetry-based topological classification of Floquet—Bloch systems.

Inspired by the rich structure of the periodic table of topological insulators in non-driven systems [15, 16],
we focus on driven system analogues of the ten Altland—Zirnbauer (AZ) symmetry classes. In the first subsection
below we describe two types of symmetry conditions on the evolution operator (‘instantaneous’ or ‘time non-
local’) which provide useful ways of generalizing the AZ symmetries to driven systems.

Note that the instantaneous and time non-local conditions are chosen as illustrative examples to
demonstrate the power and adaptability of the phase band framework. These conditions are not necessarily the
only ways of generalizing the AZ symmetries. Note also that these are not the only types of conditions that can
protect singularities—it will be an interesting direction for future work to seek wholly new types of symmetries
on U(t) which may protect additional types of topological singularities.

Following the discussion of smooth phase band deformations from section 2, we find the exhaustive
classification for 1D systems with particle-hole symmetry and identify the related bulk-edge correspondences.
We then go on to find the bulk-edge correspondences for 2D and 3D systems with time-reversal symmetry. The
bulk-edge correspondences that we obtain in this section for one- and two-dimensional systems coincide with
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those found in [22, 50], respectively. To our knowledge, analogous results for the 3D case have not been derived
before.

Within the symmetry framework that we consider, we find that the edge mode spectrum in a single bulk
Floquet gap has the same classification for driven and non-driven systems. However, the global edge mode
spectrum of a periodically driven system generally has a richer classification than its non-driven counterpart,
with a correspondingly richer mathematical relationship between bulk and edge properties. For each symmetry
class, we thus find a larger number of distinct topological phases than in the corresponding non-driven cases.
Interestingly, we find for example that a periodically driven two-band system with time-reversal symmetry can
host topologically protected edge modes, while a minimum of four bands is necessary in the non-driven case.
This richer variety of topological phases in driven systems originates from the periodicity of quasienergy, i.e., the
presence of the zone-edge gap in the Floquet spectrum, and the existence of symmetry-protected topological
singularities which may reside in the corresponding phase band gap.

3.1. Symmetries in periodically driven systems

We now identify two symmetry conditions on the evolution operator which can protect new types of
singularities in the ‘time-bulk’ of the phase band structure (i.e., singularities occurring for intermediate times
0 < t < T):‘instantaneous’ symmetries of the form

U@t) =SU@®)S™, (12)

and ‘time non-local’ symmetries of the form
U(t) = SU(t* - t) U"'(t*)S’l. (13)

Here S may be a unitary or an anti-unitary operator, and ¢,. denotes a special point in the driving cycle. In the
subsequent discussion, we always pick the time origin such that t,, = T. Note that the instantaneous symmetries
relate the evolution operator to itself at a given time, while the time-non-local symmetries relate the evolution
operator to itself at different times.

The conditions in equations (12) and (13) can be used to ensure that the Floquet operator U(T) and/or the
corresponding ‘effective Hamiltonian’ Hg, defined via U(T) = e Her T falls into any one of the ten Altland-
Zirnbauer symmetry classes. For example, particle-hole symmetry is guaranteed via an instantaneous condition
of the form (12), with S anti-unitary (see below). On the other hand, time-reversal and chiral symmetries are
imposed via time-non-local conditions of the form (13), with S anti-unitary and unitary, respectively.
Furthermore, just as in the non-driven case, the symmetry conditions where S is anti-unitary divide into two
subclasses, depending on whether S squaresto 1 or —1.

3.2. Particle-hole symmetry with $? = 1

In this subsection we use the phase band framework to develop a topological classification for periodically driven
systems with particle-hole symmetry (PHS). Here we impose PHS via an instantaneous symmetry condition as
in equation (12), where the operator S is anti-unitary and squares to 1 (analogous to symmetry class D in the AZ
convention [56]). Such a condition is naturally satisfied, for example, by the Bogoliubov-de Gennes
Hamiltonian of a driven spinless superconductor. The 1D case was considered previously in [22]. Here we use
the phase band framework to identify topological invariants and to derive the bulk-edge correspondence,
obtaining results consistent with the findings of [22].

The condition above implies that ‘class D type PHS’ is present if and only if there exists a basis where the
instantaneous Bloch Hamiltonian of the driven system, h (k, t), satisfies i (k,t) = —h(—k,t)*. Consequently,
in this basis, the evolution operator at each time t satisfies U(k,t) = U*(—k,t). This furthermore implies that
the time evolution operator of a particle-hole symmetric system with 2N bands can be written in the form

N
Ul t) = Y[ Bk, e k0 4 Py (k, e 4], (14)
n=1
where the phase bands { ¢, (k, t), ¢, (k, t)} are continuous and non-crossing (as defined in section 1), and, in
the basis specified above,

Pﬁ(k’ t) = P:zk(_k’ t)) (bﬁ(k’ t) = _¢n(_k) t)' (15)

The ambiguity of the labeling of bands is removed by requiring 0 < ¢, < , with the conjugate phases satisfying
—7 < ¢, < 0.Inprevious sections we labeled the bands according to increasing #, starting from the lowest
band. Here, making use of the symmetry of the spectrum, we start the labeling from the band with the smallest
positive phase.

Similar to the approach in sections 1 and 2, we now seek to identify topological invariants by considering
quantities that do not change under smooth deformations of the evolution which preserve the particle-hole
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symmetry, expressed via equations (14) and (15). Preservation of the symmetry can be ensured by continuously
deforming half of the phase bands and projectors, { ¢, (k,t), P,(k,t) }, with their conjugate partners following in
accordance with condition (15). However, as we found for the 2D case considered in the previous section, free
deformation of the phase bands may be obstructed at certain isolated points in k, #-space where protected
singularities are encountered.

In order to see how a singularity may be protected by particle-hole symmetry (in any dimension), consider
an inversion invariant point Kk, in the Brillouin zone, where equation (15) directly relates the phases and
projectors of conjugate partner bands. Suppose that at some time f, two conjugate phase bands 1 and /71 become
degenerate at ky,,; with the labeling we prescribed earlier, m may be either 1 or N. Because these bands form a
conjugate pair, the degeneracy may only occur at phase 0 or 7, see equation (15). For times ¢ close to t,, the
evolution operator at kj,,, can be written

00 )= 5 (e =0+ ) (i)
+ 3 Mar(®)| ) (v, (16)

a,b=1,2

where {|x,), | X:) } are the eigenstates of U (ky,y, t) that do not become degenerate (assuming the system has
more than two bands), and { | ») } are two states that together span the subspace of the degenerate eigenstates
mand matt = to. The2 x 2 matrix M(#) is unitary and depends continuously on ¢. Furthermore it satisfies
M., (tg) = % Oup, where the sign depends on whether the bands meet at phase 7 (for —) or at phase 0 (giving +).

The symmetry (12) implies that U (k,,, t) must be real for all #. Furthermore, we can take |1/1), |1),) to be
real, since the two degenerate eigenstates { | y,,), | X,,) } are complex conjugates of each other. The first sum in
equation (16) is also real, thus implying that M(f) must itself be real. As a result, we can write M(¥) as

M(t) = 4 e o(t=1), (17)

where the parameter \is real.

The expression for M in equation (17) directly manifests the fact that the degeneracy is topologically
protected: any local smooth deformation of the time-evolution operator can only continuously change M(#) via
the parameters A and t, neither of which lifts the degeneracy. The two possible signs of M(#,) indicate that there
can in general be two types of singularities at each inversion invariant point, namely, singularities occurring at
phase 0 and at phase 7.

3.2.1. Classification of 1D systems with PHS

We now use the PHS-protected topological singularities described above to construct the topological
classification and bulk-edge correspondence for one-dimensional systems with particle-hole symmetry. In
terms of the Floquet spectrum, a system with PHS may host topologically protected edge modes in its bulk gaps
at quasienergies 0 and 7/ T. The parities vpy (0) and vpy (7/T) of the numbers of edge modes in these two
Floquet gaps are topological invariants. In [22], vpy (0) and vpy (7 /T) were identified, respectively, with the
parities of the numbers of times the phase-bands cross 0 and  at the inversion-invariant momentum points. We
now use the framework developed above to provide a more complete understanding of this relationship and to
explicitly prove it.

As for the 2D systems discussed in section 2.1, the phase bands of the 1D particle-hole symmetric system can
be freely deformed (while maintaining the symmetry as described above) anywhere except at topological
singularities. Analogous to the procedure depicted in figure 3, we deform the phases ¢, forn = 1, ..., N tozero
everywhere, except around the phase-m-singularities and in a short interval at the end of the driving period
where we let the phases wind to their final values. This is done in a way that keeps U (k, T) fixed, and such that the
conjugate bands follow the deformation to preserve particle-hole symmetry via relation (15). Thus it is evident
that the topological classification of the one-dimensional particle-hole symmetric system should depend only on
the properties of the evolution operator around any phase- (i.e., zone edge) singularities, and att = T (i.e.,on
the Floquet bands themselves).

Which characteristics of the singularities are topologically protected? For one-dimensional systems, all (zone
edge) singularities are topologically identical if the system has more than two bands: the evolution can be
deformed such that the vectors |1 ») in equation (16) are the same for all singularities. To see this, note that any
two pairs of real orthogonal vectors in a complex space of more than 2D can be continuously rotated into each
other, if the space has dimension three or more.

When the vectors |t/1) and |),) are the same for all singularities, it is possible to create or annihilate pairs of
singularities with opposite sign of the parameter A through continuous deformations of the evolution operator.
However, since all (zone edge) singularities are topologically identical as argued above, it is possible through a
local smooth deformation to interchange |1);) and |1,) for an individual singularity, thereby flipping the sign of
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A. Hence all zone edge singularities are identical, and can be created or annihilated pairwise through smooth
phase-band deformations. Thus only the parities(—1)2 and (—1)%« of the numbers Qy and Q,/, of zone edge
singularitiesatk = Oand k = 7 /a, respectively, are topologically invariant (here a is the lattice constant). The
special case of two bands is discussed at the end of the section.

In addition to describing the singularities, we must also keep track of the invariants of the Floquet bands,
which are encoded in the effective Hamiltonian

Hegr (k) = %Z[qbn(k, TRk, T) + ¢,k T)Pa(k, T)].

n

The Floquet bands are completely characterized by the two standard invariants 7, and 1), for a non-driven
particle-hole symmetric system (see, e.g., [15]), where 7, = sgnPf[Hg (k)]for k = 0, 7/a.

Collecting the invariants identified above, we thus find that a generic 1D (translationally-invariant) driven
system with particle-hole symmetry is fully characterized by the fourZ, invariants

(M0 Moo (= D%, (=1)%). (18)

Compared to the case without driving, translationally invariant periodically-driven systems with particle-hole
symmetry are characterized by two additional Z, invariants. The additional invariants relate to phase band
singularities in the zone-edge gap (i.e., at phase ).

We now seek a bulk-edge correspondence which gives the edge mode parities vpy (0) and vpy (7/T) for the
gaps at quasienergies 0 and 7/ T in terms of the four numbers in equation (18). To see which bulk invariants
determine the edge mode parity vpy (7/T) in the quasienergy gap at 7/ T, we first note that the bulk evolution
can be smoothly deformed to ‘flatten’ the Floquet bands to zero quasienergy. That is, we may continuously
transform U(T) — 1(or, equivalently, H.e — 0), without closing the gap at 7/ T. Such a deformation cannot
change the parity of the number of edge modes in the open gap, and therefore vpy (7/T) should not depend on
7o OF 7, /.- Furthermore, note that a real-space gauge transformation can be performed on the 1D system to
make k — k + 7/a. However, a gauge transformation cannot change the number of edge modes which appear
in the gap when an edge is created. Therefore Qy and Q;/, should appear symmetrically in the final expression
for the edge mode parity vpy (r/T). Thus we are led to the expression: vpy (7/T) = 4= (— 1)+ Qe
Considering the special case H (k, t) = 0 fixes the sign, giving

vpn(m/T) = (= 1)+ Qva, (19)

where vpy (m/T) = — 1 corresponds to an odd number of Floquet—Majorana edge modes with quasie-
nergy 7/ T.

For the gap at quasienergy zero, we identify which combinations of the numbers in equation (18) are
invariant when we allow the gap at quasienergy 7/ T to close. By closing this gap, we can remove the zone-edge
singularities without changing the number of edge modes at quasienergy 0. However, each time we remove a
singularity at crystal-momentum k in this way, 17, changes its sign (see appendix C). Hence the only quantities
thatare invariant when we allow the gap at quasienergy 7/ T to close are the numbers (— 1)), for k = 0, 7/a.
From similar arguments as above, the expression should be symmetricink = 0and k = 7/a, and we conclude

vpn (0) = 17, o (— 1) e, (20)

where Qg and Q;/, were the numbers of zone-edge singularities at crystal momentum 0 and 7 /a, respectively.
The results in equations (19) and (20) agree with those obtained in [22]. We see that a system can have a non-
trivial edge mode spectrum if the evolution contains an odd number of zone-edge singularities, even if the bulk
Floquet operator is trivial (i.e., if ny, = 7, ,, = 0).

We finally briefly discuss the special case of two bands. For two-band systems, it is always possible to choose
[1) = (1, 0)and |t),) = (0, 1)inequation (16). Then, the sign of the parameter A in equation (17) is forbidden
to change, and defines a conserved charge for each singularity. The net charges of zone-edge singularities at
k = 0and k = 7/a define two topologically invariant Z indices of the system. This richer classification for
two-band systems crucially relies on unbroken translational symmetry; in particular it immediately breaks down
if the unit cell is doubled. For this reason we expect it to be destroyed by disorder, in contrast to other topological
phases that are expected to be robust against breaking of translation symmetry (see e.g. [57]).

3.3. Time-reversal symmetry with $ = — 1

As a final application, we now apply our framework to periodically driven systems with time-reversal symmetry,
identified as a time non-local symmetry of the form in equation (13) where the symmetry operator Sis anti-
unitary and squares to —1 (analogous to AZ class AIl). The condition S> = — 1implies that the system must
have an even number of bands, taken to be 2N in the discussion below. Following the discussion in section 3.1,
the presence of this symmetry implies that a basis and time-origin exist such that the Hamiltonian of the system
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satisfies H (k,t) = cH*(—k, T — t)o, where o is a unitary, Hermitian matrix that is purely imaginary in the
specified basis (see also, e.g., [50]). In this basis, the evolution operator U (k, t) satisfies

Uk,t) = cU(=k, T — t)*U'(=k,T)o. (21)

Note that by substitutingt = T, and using U(k, 0) = 1, we recover the time reversal symmetry condition on
the Floquet operator itself: U(k,T) = ocUT(~k, T)o.

We begin our discussion of time-reversal invariant (TRI) systems below by constructing the general bulk-
edge correspondence for 2D TRI periodically driven systems. In doing so, we find that the edge mode parities in
the bulk gaps can be non-trivial even if the system has trivial Floquet bands (see also [50]). This allows driven
systems to have edge mode spectra that are impossible to obtain in non-driven systems. In particular, as we
demonstrate subsequently in an illustrative example, a driven two-band system can have helical edge modes in
its Floquet zone-edge gap. This behavior is in contrast to that of a non-driven two band system, where Kramers’
theorem guarantees a gapless bulk. As for the cases with no symmetries or with particle hole symmetry, we find a
close connection between these anomalous edge mode phenomena and the appearance of topological
singularities in the zone-edge gap of the bulk evolution. After working through the example, we conclude with
the topological classification for 3D TRI systems.

3.3.1. Bulk-edge correspondence for TRI systems in 2D

To simplify the derivation of the bulk-edge correspondence for 2D TRI systems, we start by highlighting some
general properties of the Floquet bands of such systems. For a periodically-driven system with time reversal
symmetry in any dimension, Floquet bands 2rm — 1and 2m are related by time-reversal symmetry and the gap
between the bands closes at the inversion-invariant points in the Brillouin zone (in accordance with Kramers’
theorem). This holds for all 1, and only ‘even’ gaps 2 may thus remain open. Here we use the specific
assignment of even and odd indices defined by the ordering scheme of section 1.2.

In a finite geometry, a 2D TRI system can have protected edge modes in its bulk gaps. Time reversal
symmetry requires any chiral modes to come in time-reversal conjugate pairs; Kramers’ theorem guarantees that
an odd number of such pairs cannot be gapped out by any time reversal symmetry preserving perturbation. The
parity vy (m) of the number of such ‘helical’ edge mode pairs appearing in gap 2 is thus a topological
invariant that can be associated with gap 2.

We now set out to find an expression for vy (m). First, noting that for each m the Floquet bands 2m and
2m — larerelated by time-reversal symmetry, to each such pair we associate a Fu-Kane Z, index z,,,, just as for
the bands of a TRI non-driven system [58]. Spectral flow arguments [58], which must hold for both static and
Floquet bands, show that the relative edge mode parities of gaps 2n and 2n — 2 (i.e., above and below the pair of
time-reversal conjugate bands 2n and 2n — 1) are captured by z,,. For a system with 2N bands, we can thus write

vir(m) = vir(N) [] 2w, (22)

n=1

where vy (N) is the edge mode parity in the zone-edge gap. Note that l_Ii\I:1 z, must always be unity; the
prefactor vy (N) ensures that the correct edge mode parity is recovered when setting m = Nin equation (22).
To find v (V) we first simplify the symmetry condition in equation (21) by smoothly deforming U(k, t)
into an evolution whose Floquet operator is the identity. During the deformation we preserve TRI and keep the
zone-edge gap open, such that the edge mode parity g (V) in the zone-edge gap remains unchanged. An
example of such a deformation is given in [50]. We first define an effective Hamiltonian
He (k) = Zn P,(k,T)e, (k), where B, (k, T) is the Floquet eigenstate of band n, and ¢, (k) = ¢, (k,T)/T is the
corresponding quasi-energy of the band (see section 1.2 for the quasienergy zone convention). The family of
evolutions Uk, t; o) = U(k, t)el®r®! for o € [0, 1] defines a smooth interpolation of evolutions from Uto
atime-periodic evolution U, given by

Uk, t) = U (k, t)eiter®r, (23)

The Floquet operator associated with the evolution U (k, ; «) has quasi-energies { (1 — a)e,(k, T)/T};
the spectrum uniformly contracts, and thus the zone-edge gap stays open throughout the interpolation’. Given
that TRI is also preserved during the deformation, g (N') must be the same for Uand U.

Using the fact that U(k, T) = 1, symmetry condition (21) simplifiesto U(k, t) = oU*(=k, T — t)o.An
evolution operator with this property can be written as

? Note that the Floquet operator for a periodic evolution U has only one quasienergy gap open. This gap may or may not be the zone-edge
gap; the index of the gap is determined by continuation of the phase bands, see section 1.2.
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Figure 5. Phase bands and topological singularities for systems with time-reversal symmetry, equation (21). After deforming to a time-
periodic evolution U(k, t) which has its zone-edge gap open, two distinct classes of evolutions are possible, with an even or odd
number of pairs of zone-edge topological singularities. (a) Phase bands of U (t) for a system with an odd number of singularities, and
hence one pair of protected helical edge modes its zone-edge gap. (b) Phase bands of U (¢) for a trivial system, yielding no edge modes
inits zone-edge gap. (c) Example distribution of zone-edge singularities, with their locations in the k,, ¢-plane depicted. The charges
are indicated by the filling of the dots, and bars indicate conjugate partners. (d) Quasienergy band-structure of the model (30), when
defined in a strip geometry along the y-direction. Here we only display the edge spectrum for one edge.

N
Uk, t) = Z[Pn(k, t)e it®D 4 po(k, t)e—i%(k»ﬂ], (24)

n=1
where thebands {B,, B;} forn = 1, ..., N areall orthogonal. We give a specific prescription for defining the
labels 7 and 77 below.
In contrast to the particle-hole symmetric case, TR symmetry relates conjugate bands at different times:

Pi(k,t) = oPY (=k, T — )0,
¢ﬁ(k)t) :_(bn(_k, T — t).

For the last equality we used that ¢, (k,T) = 0. Weassign labels to the bands such thatall ¢, (k, T/2) are
positive, and then order these bands according to increasing ¢,. Their conjugate partners then follow from
equation (26). In figure 5(a) and (b) we show two examples of time-periodic phase-band structures that satisfy
the time reversal symmetry above.

We now smoothly deform one half of the phase bands of U, via the phases { ¢, (k, ) }, in a way that preserves
the boundary condition ¢, (k,T) = 0, while keeping the projectors { P, (k, ) } constant. The other half of the
bands follow in accordance with the symmetry above. Through considerations similar to those made in
section 1.1, we find that the phase bands of U can be deformed to zero everywhere in k, t-space except around
its zone-edge topological singularities (which connect bands Nand N). The edge mode parity vt (N) is thus
completely determined by the constellation of zone-edge singularities of U.

Next we consider which features of the zone-edge singularity constellation are topologically invariant. As for
the case without symmetries, through smooth deformations of U we can annihilate singularities of opposite
charges. If U has a zone-edge singularity with charge g at (k, ), symmetry dictates that it has another with charge
—qat(—k,T — t);see figure 5(c) for an example distribution of zone-edge singularities.

In general, when two singularities annihilate, their conjugate partners must annihilate as well. Importantly,
conjugate singularities cannot annihilate directly with each other (see appendix D). Therefore it is only possible
to annihilate two singularity pairs at a time. To give a concrete example, if singularities 1 and 2 in figure 5(c)
annihilate each other, then by symmetry singularities T and 2 will annihilate as well. Singularities 3 and 3 will
then remain, with no way to be eliminated without closing the zone edge quasienergy gap.

According to the arguments above, the parity (—1)? of the number p of singularity pairs is invariant under
any smooth deformation of the evolution that keeps the zone-edge gap open. Conversely, any two evolutions
0,0 with the same parity can be deformed into each other. In particular, if U has an even number of singularity
pairs, it can be smoothly deformed into the identity. Periodic evolutions U therefore fall into two classes: those
with an odd number of zone edge singularity pairs (figure 5(a)) and those with an even number of pairs
(figure 5(b)). Evolutions within the same class must have the same edge mode parity vty (IN), since they can all

(25)
(26)
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be related by smooth deformations that preserve v g (IN). Thus v1g (IN) must depend only on (—1)?. Since we
already found that evolutions with even p are topologically trivial (i.e., smoothly deformable to the identity), we
identify

vir(N) = (=DP. (27)

The edge mode parity in the zone-edge gap is thus given by the parity of the number of singularity pairs of U.
Combining results (22) and (27), we then obtain for the edge mode parity of gap m:

vir(m) = (=P ]z, (28)

n=1

where p is the number of zone-edge singularity pairs of U(k, t). We see that even if the bulk Floquet operator of a
system is trivial (i.e., z,, = 1 for all n), the edge mode spectrum can be non-trivial. This is precisely the case when
U(k, t) has an odd number of singularity-pairs in its zone-edge gap (see figures 5(a) and (b) ).

We end our discussion by noting that the ‘anomalous’ Z, index v1g (N) = (—1)?, equation (27), can be
found directly as a time-domain expression in terms of U(k, t). According to the time-reversal symmetry
condition U(k, t) = cU*(—k, T — t)o, onesingularity out of each conjugate pair must occur within the first
half of the driving, 0 < ¢t < T /2. Therefore pis in fact equal to the number of zone-edge singularities of V(t),
where V(#) is the evolution given by U(¢) restricted to the first half of the driving”. In section 2 we found that the
number of zone-edge singularities of an evolution is given by winding number of the evolution in its zone-edge
gap. Hence we have

p = wan [V(#)] (mod 2). (29)

The above result is consistent with the results obtained in [50].

3.3.2. Example: Non-trivial Z, index for a two-band TRI system
To illustrate one of the new topological phenomena which arise in periodically driven systems, we now show
that periodic driving allows a 2D TRI system with two bands to have protected helical edge modes. This is in
contrast to the situation for non-driven systems, where a minimum of four bands is required. We explicitly
demonstrate this behavior for a specific model, using the results above as well as direct numerical calculation.
Consider a spin-1/2 particle on a square lattice with one orbital per site. We construct the evolution based on
the model with non-trivial winding numbers presented in section 2.2, now with spin playing the role of what was
an orbital index. Specifically, we define a TRI evolution via the time-periodic Bloch Hamiltonian

{Ho(k, 2t), t<T/2,
Hk, t) = * (30)
oyHy (k, 2(T — t)) 0y, t>T/2,

where,asa2 x 2 matrix, Hy (k,t) has the same form as the Hamiltonian presented in section 2.2. The
Hamiltonian H (k, ) is by construction time-reversal symmetric. In real-space, Hamiltonian (30) contains on-
site terms as well as nearest-neighbour and next-nearest neighbour hopping terms.

In [49] it was noted that the Floquet operator Uy (k, T') associated with Hy (k,t) is unity for the parameter
values 845 = 0,\, = 57/(2 T), and that the corresponding time evolution operator U, (k, ) has winding
number 1. For our model (30), we choose the parameters of Hy such that 45 = 0and \,, = 57/ T. The Floquet
operator of the (translationally invariant) system governed by H is again equal to the identity.

We now use equation (28) to predict the number of helical edge mode pairs, vg (N = 1), that will appear
for this model when defined in a strip geometry. First, note that for the system without edges the Bloch-space
evolution is periodic with its zone-edge gap open, and hence U(k,t) = U(k,t). Second, because the evolution in
the first half of the driving corresponds to that of the model discussed in section 2.2, we know that the evolution
for 0 < ¢ < T/2 possesses exactly one zone edge singularity. Hence p = 1and we have

vir(l) = (=DF = — 1. (3D

We thus expect one helical edge mode pair to appear in the zone edge gap, for each edge.

To confirm the analysis above, we numerically study this model in a strip geometry, with edges parallel to the
y-direction. The Hamiltonian of the strip geometry system is obtained by truncating the real-space tight-binding
Hamiltonian in the x-direction. Using this truncated tight-binding Hamiltonian we numerically calculate the
corresponding Floquet operator, and obtain the quasienergy band structure as a function of the conserved
momentum component k,, see figure 5(d). At each edge we find a pair of helical modes, which are time-reversal
conjugates of each other. This model thus explicitly demonstrates the existence of anomalous helical edge modes

* Note thatif U(k, t) has singularities occurringat t = T /2, they can be moved slightly away from this plane in k, -space by adding a small
perturbation.

15



10P Publishing

NewJ. Phys. 17 (2015) 125014 FNathan and M S Rudner

in 2D periodically driven systems with TRI, and shows that non-trivial topology can be found even in a case with
only two bands.

3.3.3. Z, index for a 3D periodically driven system with time-reversal symmetry

The Z, index for 2D systems, see equations (28) and (29), can also be used to define a Z, index v5p (m) for 3D
systems with time-reversal symmetry. The index v5p (m) indicates whether or not Floquet gap m hosts non-
trivial surface states, analogous to those of a strong topological insulator. In the same way as for the non-driven
case, we consider the two 2D TRI systems defined by the restriction of U(k, t) to the planes k;=0and k; = 7 /a,
whereicanbe x, y or z. We then identify the index vsp (m) as the product of the indices vy (m), from
equation (28), for the two systems. Note that if the indices calculated for the planes k;= 0 and k; = 7/a are the
same, their common index determines whether the system acts as a weak topological insulator in the plane
orthogonal to k;.

4. Discussion

In this paper we found that the ‘phase-band structures’ of time evolution operators provide a powerful basis for
visualizing and understanding the topology of Floquet—Bloch systems. By considering smooth deformations of
the phase bands, we showed that topologically protected degeneracies, or topological singularities, play a crucial
role in distinguishing the topology of driven and non-driven systems. In particular, the presence of phase
Brillouin zone edge topological singularities can present an obstruction to smoothly deforming the evolution of
adriven system into one obtainable in a non-driven system. Our work demonstrates a general method for
topological classification of Floquet—Bloch systems, based on identifying all features of the phase band structure
of a given system that cannot be removed by smooth deformations. This approach appears to offer means to
exhaustively classify Floquet—Bloch systems and to straightforwardly derive the corresponding bulk-edge
correspondences.

In the cases we considered, with symmetries imposed in analogy with the ten Altland—Zirnbauer classes, we
found that the edge spectra associated with individual bulk gaps of the Floquet operator have the same features as
those of non-driven systems in the corresponding symmetry classes. However, we found in all cases that periodic
driving could induce global edge spectra that are impossible to obtain in non-driven systems. In particular, with
periodic driving, topologically protected helical edge states can be produced in time-reversal invariant systems
with only two-bands, while a minimum of four bands is needed without driving. In each case we considered,
these new ‘anomalous’ features were closely related with the appearance of zone-edge singularities in the time-
bulk. These phenomena further demonstrate that the relation between the topological properties of the bulk
evolution and the appearance of protected edge modes is fundamentally changed in the driven context: the
topology of a periodically driven system cannot be fully characterized by the stroboscopic Floquet operator
U(k, T) or the corresponding effective Hamiltonian alone.

Finally, our results provide new intuition about the topology of Floquet—Bloch systems. While time-domain
invariants such as the winding number found in [49] offer a mathematically well-defined prescription for
characterizing topology in driven systems, often a clear physical picture is missing. Here, one of our central
results is that non-trivial topological phenomena in periodically driven systems appear when topological
singularities are introduced into the phase bands of the bulk time-evolution operator. In particular, in any
driven system where the Floquet bands have different topology from that of the initial instantaneous
Hamiltonian (i.e., att = 0), atleast one topological singularity must be encountered during the evolution. We
expect that this insight may help provide guidance for the construction of new driving protocols to realize non-
trivial topological phases in periodically driven systems.

The instantaneous and time-non-local symmetries considered in section 3.1 were chosen to illustrate the
power of the phase band framework. The symmetries altered the topology of the bulk evolution through their
ability to protect new types of topological singularities. However, we expect that other types of conditions could
give rise to new non-trivial topology in the phase bands. The exploration of other symmetries and their role in
the topology of periodically driven systems, as well as the search for good candidate systems for their realization,
are interesting directions of future study.
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Appendix A. Time-domain expressions for the invariants v, and v,

In this appendix we derive a time domain integral expression for the bulk invariant w;, [U] in equation (9),
which corresponds to the number of edge modes appearing in gap # when the system is defined in a geometry
with edges. We directly show that this invariant is equivalent to the winding number invariant W [U.] of [49],
with € set equal to a quasienergy value inside gap m:

wlu,]= f d;k‘it Tr { U},0.0. [ U},05,Un U}, Un |} (A1)
Y8

Here U,, is a time-periodic evolution operator, satistying Uy, (k, T) = 1, which is obtained from the original
evolution U by a smooth deformation in which gap m of the quasienergy spectrum is kept open. Explicitly, the
time-periodic evolution operator U,, can be obtained by deforming the final values of the phase bands ¢, (k, T')
tozerofor n = 1, ..., m, while the final values of the remaining bands are deformed to 2.

In order to demonstrate the equivalence of the two invariants, i.e., to show w,, [U] = W [U,,], we first
consider two special cases and then discuss the general situation.

In this appendix we label points in the 3D k, ¢-space by a single dimensionless vector

(=7 7]
s = , —|.
2n/a T

A.1. Winding number in the case of no singularities

To begin, we first consider the case where Uj, (k, ¢) has no topological singularities in the zone-edge gap. Itis
then possible to continuously deform the evolution operator U, into one corresponding to a non-driven
system, as described in section 1. In doing so, the winding number W [U,, ], a topological invariant, cannot
change its value. After the deformation, W [U,, ] is simply the winding number of a non-driven system described
by the Hamiltonian

o X
Hy,(k) == > B(k,T). (A.2)

n=m+1

The winding number of a system governed by such a Hamiltonian was found in [49] to be Z:;l Cp, where C,,is
the Chern number of Floquet band . Hence

m
W[Um] = ;Cn, (no zone-edge singularities). (A.3)

Note that the winding number will always be zero in the quasienergy zone-edge gap if the phase bands do not
host any zone-edge singularities. This follows from the fact that the sum of Chern numbers for all bands must
evaluate to zero, ZHN: LG =0.

A.2. Winding number in the case of one singularity
We now consider the case where ¢, (k,T) = 0 for all n, and U, (k, ) has only one singularity in the zone-edge
gap, located at sy = (ko/(27/a), to/T). At the singularity, the two touching bands Nand 1 have phases ¢, and
@4 — 2w, where ¢, is a real number determined by details of the evolution. In this case we can deform the phase
bands to zero for all k, ¢, exceptin a small spherical neighbourhood of radius ds that surrounds the singularity
(here lengths are computed with respect to the usual norm on the dimensionless vector s). Within the
neighborhood, all N — 2 bands not involved in the singularity can still be flattened. The phase values of the two
intersecting bands are deformed to evolve linearly from zero at the edge of the neighbourhood to wand — at the
center (letting ¢; go continuously to 7 in the process), see figure 6. Under the deformation we keep the
eigenstates of U, (s) constant everywhere.

The deformed evolution operator U,, is equal to the identity for all s, except in the small region of radius 6s
that surrounds the singularity (see figure 6). Within this neighbourhood, U,, takes the form

Um(s) = Z |Xn> <Xn|+ Z |wu> <¢b| Mab (S)’ (A4)

n=1,N a,b=1,N

where M, (s)isa2 X 2 matrix whose eigenvectors are the eigenvectors of the matrix (s — s¢);Sjxox. Here, the
real invertible 3 x 3 matrix S was defined in section 1.1, and {0y } are the Pauli matrices. From the description of
the flattened phase bands above, we know that the logarithms of the eigenvalues of M must grow linearly from 0
at|s — so| = dsto —imand imats = sq. For|s — sg| < s, My, thus takes the form
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Figure 6. The deformation of an isolated singularity discussed in section A.2. In the figure, phase band 1 (blue) is shifted up by 27 for
clarity of illustration.

Moy (s) = v (s)vy *(s)eim(Is=sol/s=1)
+ V;L(S)VI;L*(s)e_iﬂ(ls—sol/&—l). (A3)

The vectors v—(s) and v*(s) are the eigenvectors of the traceless 2 x 2 Hermitian matrix (s — $9);Sik 0,
corresponding to negative and positive eigenvalue, respectively. Since the matrix Sis real and invertible, we can
writeitas S = R; ARy, where R, and R, are orthogonal and A is a diagonal matrix with positive entries (this is the
singular value decomposition of S, see e.g.,[59]). A continuous deformation of the entries of A to 1 resultsin a
orthogonality-preserving continuous interpolation of the eigenvectors v*(s) to the eigenvectors of

Rix(s — $0)j0r where R = Ry Ry. By continuously deforming the vectors v in this way, U, is deformed into an
evolution operator V/,,, still of the form A.4, but with the matrix M given by

1, |s — sg| > 6s,

M = —1
(s) — exp [%(s — so)iR,-jUj], [s — so| < 6.

(A.6)

Recall that R is orthogonal and its determinant | R | is the charge of the singularity, g = |R|||R,| = |S], see
equation (6). In appendix B we explicitly evaluate the winding number A.1 of the evolution operator V,,,. We
find:

W[Vm] =—|Rl = —q. (A7)

Using the fact that the winding number could not change during the deformation from U,,, to V,,,, we thus
establish

w[U.]=-q (A.8)

In other words, if U,,, contains one isolated singularity, the winding number of U,,, is given by the corresponding
charge of the singularity (with a minus sign).

A.3. The general case
We now consider the general case, where U, has N topological singularities in the zone-edge gap, with charges
{qi(m) }. In order to evaluate the winding number, we deform U, (k, t) as described in section 2.1 and shown in
figure 3. The deformed evolution is the identity everywhere except for in small isolated regions surrounding the
singularities (region I), as well as in the short ramping time-interval ¢ at the end of the driving (region II).

The winding number A.1 is defined as an integral over k, ¢-space of the quantity

E,k, t) = % Tr{U! 9,U, [ULakam, UfnakyUm] }. For the deformed, ‘band-flattened,” system, F,,, is only
T

non-zero in each of the isolated regions that surround the singularities, and in the final ramp region II. We can
therefore split up the integral of F,,, into a sum of integrals over each of these non-trivial regions.

From the first special case we examined, i.e., for an evolution with no singularities, we know that the integral
of E, (k, t) over region Il equals an:1 C,, where {C,, } are the Chern numbers of Floquet bands 1, ..., m. From
the second special case, we know that the integral of E,, (k, t) over one of the regions surrounding a zone-edge
singularity equals minus the charge of the singularity, i.e., —q.
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Summing the integrals over all regions, we obtain:

W[Um] - %C" - gjlq;m). (A.9)

Note that U,,, can be constructed by deforming the phase bands of U only at the end of the driving. Therefore the
net charge of all zone-edge singularities in the time-bulk should be the same for Uand U,,,. Thus

Zi ql.(’”) = Zl. qi(ZES), where {qi(ZES) } are the zone-edge singularity charges for the original system with evolution
governed by U. Hence, we finally have the result for the number of edge modes in a 2D system:

wlUn] = icn — 324 = w,[U]. (A.10)
n=1 i

This is what we set out to show.

Appendix B. Derivation of equation (A8)

In this appendix we prove that the winding number A.1 of an evolution operator V,, of the form in equation A.4,
with the matrix M given in A.6, is equal to —|R|. We begin by inserting V,,, from equations (A.4) and (A.6) into
equation (A.1), to obtain

Eijk

== &s Tr { M'9, M Mo, M Mo, M}, B.1
247721\2 sof <85 (M0, K M j ®-1

where €;j is the Levi—Civita symbol. Summation over repeated indices is used and will be used in the rest of this
appendix.

In order to exploit the s-space spherical symmetry of the deformed evolution V,,,, we shift from Cartesian
coordinates to spherical coordinates centred around s, defined such that

s — 8y = (ssin @ sin ¢, s sin @ cos ¢, s cos 0). (B.2)

After the coordinate transformation, Wis expressed as

_227’( f f do f do U1 JiaJisJky
T MMM ) o

where Jis the Jacobian matrix of the coordinate transformation, and the Greek letters «v, (3, «y run over the
coordinates s, 0, ¢. We now use the following useful identity for the Levi-Civita symbol that holds for any real
invertible 3 x 3 matrix A[59]:

Eag,),
Al

With the help of this identity we see that the Jacobian matrices always cancel out:

A Y A

Tr { M10,M MT9;M M0, M}.

A,aA]/gA]WE,]k = (B.4)

Summing over the indices, we obtain:
1 6sd Wda 27Td
=— s
82 j(; »/(; fo ¢
Tr { MM [ MM, M9, M| }
Using the cyclic property of the trace as well as the identity OMMT' = — MOM", we get
W=— — ds f do f do

Tr { M*aSM [00M7, 0,M] } (B.5)

We now consider the explicit canonical form of M, equation (A.6), in polar coordinates, in the region
|s — so| < st
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M(s, 0, ¢) = — exp(—i(s — so) . 7'), (B.6)
s
where 7; = Rj;0;. Defining § (6, ¢) = (s — s¢)/s, we evaluate each of the factors in the integrand
MIOM=— 5.1,
Os
agM—iSin( )39§'T,

Hence, after performing the integral over s, we obtain

W dHf dngr{ -T[aeg-r,aog.f]}. (B.7)

167

Working on the integrand, we note:
{ 895 T)(G@.?-T)}
= 5; 0p5; 8©sk RmR];,RkC Tr {0,040 }. (B.8)
Using the Pauli matrix identity Tr{o; 0501} = 2igj, we obtain
Te{ (5-7) (908 7)(068-7) } = 51008058 - 2iRia R Rec e
= 5,081 048k - 21 |R| €ijr.

Here we used the Levi-Civita symbol identity (B.4), and the fact that |[R[™! = |R|. Restoring antisymmetry in 0
and ¢, and going back to vector notation, we have

Tr{ (s-7)[ (208 7), (a¢§.7)]} = 4i [RI 5 - (945 x 0,3)
= 4i |R] sin 6. (B.9)

Hence the integrand in equation (B.7) is simply 4i | R | times the surface area element of the sphere. We thus have

T g— def dé 4i R| sin 0
16w
— IR|
Recalling that g = sgn |S| = |R|, we see that the winding number contribution of an isolated singularity is

given by the charge g of the singularity.

Appendix C. Sign change of the Pfaffian for zone-edge singularities passing
throught = T

In section 3.2 of the main text, on the topological classification of 1D systems with particle hole symmetry, we
made use of the fact that the sign of Pf [H.s ] switches when a phase- (i.e., zone edge) singularity passes through
the planet = Tdue to a continuous deformation of the evolution. In this appendix we give a proof of this
statement.

We begin by introducing an alternative labeling for the phase bands at the inversion-invariant points in the
Brillouin zone. A crucial point in this paper is that it is not always possible to define the eigenstate projectors
{B,(k, t)} of the evolution operator such that they are continuous everywhere in k,t-space. However, we can
always define them such that they are continuous along an arbitrary linein k, ¢-space. At an inversion-invariant
point ki, in the momentum Brillouin zone, we can therefore write the evolution operator of a particle-hole
symmetric system in the form

U (kins 1) = X[ B 80 — Bl 0yeiho], (oR)

where both the projectors B, (¢) and the phases (Aﬁn (t) are continuous functions of t, and we suppress the
momentum index ki, for brevity. Here, the projector 13,1T is the transpose of B, in the basis
where H(k,t) = —H*(—k, t).

When we impose the requirement that the projectors { £, (¢) } are continuous in t, the labeling scheme
defined in section 3.2 cannot be employed. In particular, in the original scheme the phases { ¢, (k, t) } were
constrained to live within the interval [0, 7], ‘bouncing’ off the phase Brillouin zone edge when meeting a
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conjugate partner band there. Under the new construction, continuity of the projectors requires that the phases
of conjugate bands pass through each other, such that a phase q?)n (t) may move from inside to outside the
interval [0, 7]. We note that such crossings of partner bands are protected by symmetry and can occur at phases
which are either even or odd multiples of 7r. We identify them respectively as phase-0 and phase-7 topological
singularities.

We now use this picture of topological singularities to show that the Pfaffian of H.g changes its sign when a
phase- singularity passes through the plane t = T. We first express the effective Hamiltonian He (ki ), atthe
inversion invariant point ki,y, in terms of the continuously defined phase bands (;Sn and B;:

Har (ki) = SF (6,D)[ A1) - B (D], (C2)

Here Fis the modulo 27 function, defined such that it takes value between —7 and 7. The Pfaffian of H.¢ can
then be written as (see, e.g., [60]):

PF| Hr (kins) | = Pf[z(ﬁnm - b (T))] [1E(.(m)- (C3)

Above we identified phase-7 singularities as crossings of partner bands (?5,1 ), @n (t) through the phase Brillouin
zone edge at phase 7. Hence, under a continuous deformation where a phase-7 singularity passes through the
planet = T,thevalue of &n (T) for some n crosses through an odd multiple of 7. As <Abn (T) passes through the
quasienergy zone edge, F (&n (T)) therefore changes it sign. During this process, F (&n (T)) forall other nand all
of the eigenstate projectors { B, } may only change infinitesimally. From the above expression for the Pfaffian,
equation (C.3), it then follows that Pf [He (ki) ] changes its sign when a phase-r singularity passes

throught = T.

Appendix D. Proof that TR-conjugate singularities cannot annihilate

In this appendix we show that two TR-conjugate zone-edge singularities cannot annihilate with each other, as
claimed in section 3.3. The argument follows indirectly from the main text.

The discussion in section 3.3 implies that if it were possible for conjugate singularities to annihilate, the
evolution of any system with TRI could be smoothly deformed to the identity, while keeping the zone-edge gap
open. However, in section 3.3 we saw an example of a system with one pair of helical edge modes in its zone-edge
gap. Suppose it were possible to deform the evolution of this system into the identity, without breaking TRI or
closing the zone-edge gap. Then the helical edge modes would have to disappear without a quasienergy gap
closing. However, this is impossible and implies a contradiction. Hence it is not be possible for a pair of time-
reversal conjugate singularities to annihilate each other.
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