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PAPER

Topological singularities and the general classification of Floquet–
Bloch systems
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Niels Bohr International Academy andCenter forQuantumDevices, University of Copenhagen, DK-2100Copenhagen,Denmark

E-mail: nathan@nbi.ku.dk
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Abstract
Recentworks have demonstrated that the Floquet–Bloch bands of periodically-driven systems feature
a richer topological structure than their non-driven counterparts. The additional structure in the
driven case arises from the periodicity of quasienergy, the energy-like quantity that defines the
spectrumof a periodically-driven system.Herewe develop a newparadigm for the topological
classification of Floquet–Bloch bands, based on the time-dependent spectrumof the driven system’s
evolution operator throughout one driving period. Specifically, we show that this spectrummay host
topologically-protected degeneracies at intermediate times, which control the topology of the Floquet
bands of the full driving cycle. This approach provides a natural framework for incorporating the role
of symmetries, enabling a unified and complete classification of Floquet–Bloch bands and yielding
new insight into the topological features that distinguish driven and non-driven systems.

After the discovery [1, 2] and explanation [3–7] of the quantizedHall effects, topology gained new importance as
amechanism for generating extremely robust quantummechanical phenomena. The realization that the Bloch
bands of solid state systems could possess non-trivial topological characteristics led to the prediction [8–10] and
experimental discovery [11, 12] ofwhole new classes ofmaterials [13, 14]—the topological insulators and
superconductors—which host a variety of remarkable and potentially useful phenomena. On a theoretical level,
a complete topological classification [15, 16] of such systems has been developed, predicting a number of new
phases. However,findingmaterials that realize these phases remains a very challenging task, with no known
examples formany topological classes.

Motivated by the great successes and open challenges in the arena of topologicalmatter,many authors have
begun to explore the possibilities for realizing topological phenomena in driven quantum systems [17–43].
Time-dependent driving offers the opportunity to control amaterial’s properties in a variety of newways,
potentially opening new routes for studying topological phenomena in solid state [44], atomic [22, 45, 46], and
optical systems [47, 48].

Intriguingly, driven systemsmay host an even richer array of topological phenomena than their non-driven
counterparts. To date several examples of topological phenomenawhich can only be realized in driven systems
have been found [19, 22, 29, 49, 50], such as the existence of robust chiral edge states in two dimensional (2D)
systemswhose Floquet bands have trivial Chern indices [49], and pairs of non-degenerateMajorana endmodes
with protected quasienergy splittings in one-dimensional (1D) systems [22]. This indicates that periodically
driven systems feature additional topological structure beyond that found in non-driven systems.However, a
unifying principle for understanding and classifying these new phenomena remains lacking.

In this workwe answer the question: under what conditions does the evolution of a driven systembecome
topologically distinct from that of a non-driven system? In doing sowe develop a powerful and general
framework that can be used to understand the topology of periodically driven systems.

In the analysis of periodically driven systems, the Floquet operator, denotedU T ,( ) plays a central role as the
stroboscopic evolution operator that propagates the system forward in time through each complete driving
period,T. The spectrumof the Floquet operator, given byU T e ,n

T
n

i n( )∣ ∣Y ñ = Y ñe- plays an analogous role to
the spectrumof theHamiltonian in a non-driven system,with real-valued energies replaced by periodically-
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defined quasienergies, N T2n ne p e+ = for any integerN. For a systemon a lattice, the single particle spectrum
forms bands, the so-called Floquet bands. Throughout this workwe focus on systems defined on a lattice, with a
finite number of bands.While knowledge of the Floquet bands is sufficient to understandmany aspects of the
dynamics of a driven system, it was recently shown that the topological properties of the evolution are in
particular not described byU(T) alone [49]. A proper description of the topology of driven systemsmust take
into account the full evolutionU(t) for times t throughout the entire driving period, t T0 . 

As ameans of elucidating the nature of the evolutionU t ,( ) we focus on the ‘phase bands’ of the system, i.e.,
the time-dependent spectrumof the system’s evolution operator throughout one driving period. As depicted in
figure 1, for each time t in the interval t T0 ,  the eigenvalues e tki ,{ }( )f of the Bloch evolution operator
U tk,( ) formbands as a function of the crystalmomentum k. For illustrationwe use a ‘repeated zone’
representation for the phase bands, though the complete spectrum is containedwithin a single phase Brillouin
zone of width 2 ,p as indicated by the shaded region infigure 1(d). As a function of time, these phase bands form
sheets which, alongwith the corresponding eigenvectors, contain full information about the evolution of the
system.

Belowwe determinewhen a given system’s evolution can be smoothly deformed into one obtainable in a
non-driven systemby examining smooth deformations of the phase bands that keep the Floquet operatorU(T)
fixed. At time t= 0 the evolution is the identity. Therefore all phase bandsmust originate with phasesfwhich
are integermultiples of 2 .p For a non-driven systemwithHamiltonianH, the evolution operator is given by
U t e .Hti( ) = - In this case the phase bands diverge fromone another linearly in time due to the linear phase
winding Etf = for each eigenstate ofHwith energyE (see figure 1(a)). For the case of a driven system as shown
infigure 1(b), the phase bands can be straightened through a continuous deformation, such that the evolution
becomes indistinguishable fromone generated by a time-independentHamiltonian. Crucially, as we show
below, phase bandsmay be connected via topologically-protected degeneracies, or ‘topological singularities’
(figure 1(c)), which prevent the evolution frombeing deformed into the canonical form for a non-driven system.
These singularities play a central role in defining the topology of periodically driven systems.

After establishing the existence of topological singularities in the bulk evolution, we study their ramifications
for the edgemode spectrumofU(T) for a 2D systemdefined in a geometrywith edges. If such a systemmay host
genuine topologically-protected chiral edgemodes, then by definition the net number ofmodes in each bulk gap
may not change under smooth deformations of the evolution that keep the bulk gaps open. Focusing first on the
bulk evolution, we then identify a complete set of independent topological quantities which are (by definition)
invariant under any smooth deformation of the bulk evolution that preserves the Floquet operatorU Tk, .( )
Sincewe have identified above a complete set of quantities that are invariant under such deformations, we
conclude that the net number of topologically-protected chiral edgemodes in a given gapmust be given by some

Figure 1.Phase band representation of the evolution operatorU tk, ,( ) equation (1). (a) For a non-driven system, the phase eigenvalues
grow linearly in time. (b)Herewe showphase bands of a periodically driven systemwhich are non-degenerate for all k and t. The
evolution can be smoothly deformed into one obtainable in a non-driven systemwithout closing any quasienergy gaps. (c) In this case
the evolution operator features non-removable degeneracies which prevent such a deformation. The evolution is therefore
topologically distinct from that of any non-driven system. (d) Illustration of the phase band labeling scheme defined in section 1. The
shaded region indicates the ‘phase Brillouin zone.’
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function of these invariant bulk quantities. Standard spectralflow arguments that relate features of the bulk and
edge spectra [51–53] let us determine the formof this function, thereby demonstrating the existence and formof
the bulk-edge correspondence in terms of the bulk invariants that we found (see equation (10) below).

Next we showhow themethod can be extended to systems in arbitrary dimensions, also including the role of
symmetries, thus providingmeans for a complete topological classification of Floquet–Bloch systems.We show
that symmetries considered previously, e.g.in[22, 50], which generalize the Altland–Zirnbauer symmetry
classes to the case of periodically driven systems, can be naturally incorporated into the phase-band picture.
Importantly, wefind that these symmetries can protect new types of topological singularities in the bulk.

In general wefind that, for each bulk gap, the edgemode spectrumof a driven system in a given symmetry
class has the same set of protected features as that of a non-driven system in the corresponding class. However,
the global edgemode spectrum and the relation between edgemodes and bulk bands can be quite different.
Examples of such new or ‘anomalous’ edge phenomena include Floquet–Majorana edgemodes [22, 54]with
quasi-energy Tp and chiral edgemodes [49] in a 2D systemwith topologically trivial bulk Floquet bands.Here
we also show that periodic driving, for example, allows two-band systemswith time-reversal symmetry to have
helical edgemodes, while aminimumof four bands is required in the non-driven case.

Interestingly, wefind that all the above phenomena are closely connectedwith the appearance of topological
singularities in the bulk evolution. Due to the additional freedompresented by time-dependence, we further
speculate that theremay be other new types of symmetry conditions (beyond those familiar fromnon-driven
systems)which can protect new types of topological singularities and anomalous edgemode phenomena.

The remainder of the paper is structured as follows. In section 1we formalize the description of phase bands,
and characterize the singularities whichmay prevent them frombeing deformed into a trivial configuration.
Then in section 2we cast the topological characterization of 2D systems (without symmetries) in terms of the
phase bands and their singularities, giving new insight into thewinding number invariants found previously
in[49]. In section 3we showhow additional symmetries (e.g., time reversal or particle-hole symmetry) can be
naturally incorporated into this picture through their abilities to protect new types of singularities. Finally, in
section 4we summarize our results and discuss the outlook for futurework. Technical aspects of derivations are
provided in appendices.

1. Phase bands of the evolution operator

Wenow study the question of when the evolution of a periodically-driven Floquet–Bloch system can be
considered topologically distinct from that of a non-driven system. In order to do this, we begin by defining the
phase band picture of Floquet–Bloch evolution. In this sectionwe focus on ‘bulk’ systemswith discrete
translation symmetry (with infinite extent or periodic boundary conditions). Here, the crystalmomentum k is a
good quantumnumber. For nowwe leave the number of spatial dimensions arbitrary.

The evolution of a periodically-driven quantum systemmay equivalently be prescribed in terms of either a
Hamiltonian H t T H t ,( ) ( )+ = whereT is the driving period, or by the corresponding evolution operator

U t e ,
H t ti d

t

0( ) ( )
 ò= - ¢ ¢

where  denotes time ordering. In this paperwe primarily work directly with the
evolution operatorU t ,( ) whichmost clearly exposes the topological features of the evolution. Importantly,
although theHamiltonian satisfies H t T H t ,( ) ( )+ = the evolution operatorU(t) is generally not periodic
in time.

For bulk systems, crystalmomentum k and time t parametrize a family of Bloch evolution operatorsU tk, ,( )
which act within the space of periodic Bloch functions.When the time-dependentHamiltonian is local and
bounded,U tk,( ) is continuous in crystalmomentum and time.

As an important first step in our analysis, we expressU tk,( ) in terms of its spectral decomposition

U t P tk k, , e , 1
n

N

n
tk

1

i ,n( ) ( ) ( )( )å= f

=

-

where P tk,n ( ) is the projector onto the nth eigenstate ofU tk,( ) and e tki ,n ( )f- is the corresponding eigenvalue.
HereN is the number of bands in the system.

We refer to the functions tk,n{ ( )}f as the phase bands of the system. In contrast to the quasienergy bands
associatedwith a driven system’s Floquet operatorU Tk, ,( ) the phase bands depend on time, and are
continuously defined throughout an entire driving cycle, t T0 .  At time t= T, the phase bands coincide
with the system’s Floquet bands. An illustration of phase bands for a 1D systemwith two bands is shown in
figure 1.

To resolve the ambiguity of the labeling of eigenstates ofU tk,( )wenowdefine a prescription for assigning
the values of the n indices.We focus on the phase bands tk, ,n{ ( )}f andwork in a repeated zone representation
where the spectrum is copied and shifted through all integermultiples of 2 .p Recalling thatU k 1,0 ,( ) = each
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phase eigenvaluemust start from an integermultiple of 2 .p However, asmentioned above, the full spectrum
e tki ,n{ }( )f- ofU tk,( ) is containedwithin one ‘phase Brillouin zone’.

While in principle we could choose k, 0n ( )f to be equal to any integermultiple of 2 ,p we choose towork in a
fundamental phase Brillouin zone inwhich all phases originate from zero, i.e., k, 0 0,n ( )f = for n N1= ¼
(see bold curves infigure 1(d)). Next, we demand that each tk,n ( )f is a real-valued continuous function1 of both
k and t. Finally, we impose an ordering condition: if t tk k, ,n m( ) ( )f f for one point in tk, -space, then this
relationmust hold for all k, t. By ordering the indices such that n m> implies ,n mf f this prescription
defines a unique labeling of the phase bands.

The ordering condition above is constructed such that if two phase bands become degenerate at a particular
value of tk, , the bands do not ‘cross’ (e.g., the indexm stays with the lower branch everywhere, while the index n
stayswith the upper branch). This arrangement is in particularmaintainedwhen a band in the fundamental
zonemeets a band originating froma different zone, see for example band#3 in figure 1(d). Such degeneracies
between phase bands associatedwith different branches play an essential role in defining the topological
characteristics that distinguish driven and non-driven systems.

Wenowuse the phase band picture to demonstrate when it is possible to continuously deform the evolution
of a Floquet–Bloch system into that of a non-driven system, while keepingU Tk,( ) fixed.Naively, the continuity
ofU tk,( ) and of the phase bandsmight lead one to expect that the projectors P tk,n ( ) are continuous aswell. If
this were true, any continuous deformation of the phase bands tk,n ( )f would preserve the continuity of the
evolution operator. It would then always be possible to deform the evolution into that of a non-driven system
using a two-step ‘band-flattening’ procedure (see figure 2). First, for every n N1, , ,= ¼ deform tk,n ( )f to
zero for all t T t0   d- until a small time-interval td beforeT, after which it grows linearly to itsfinal value.
If the interval td is small enough, we can assume that the projectors are constant there, P t P Tk k, , .n n( ) ( )= In
the second step, let t T ,d  while keeping the projectors constant throughout the linear rampof the phase. The
deformed evolution is now identical to that of a non-driven systemwith theHamiltonian

h
T

T P Tk k k
1

, , . 2
n

n n( ) ( ) ( ) ( )åf=

The picture above seems to imply that all periodically-driven systems are topologically equivalent to non-
driven systems (i.e., they can be related by smooth deformations that keep the Floquet operatorfixed). However,
the existence of phenomena such as anomalous edgemodes [19, 49] shows that this cannot be the case.

Where could the argument break down? In the first step, we assumed that the phase bands could be
continuously deformed to zero throughout the entire driving period, up to a short interval td inwhich the
projectors were assumed to be constant. However, in principle onemay imagine that the evolution operator
could host degeneracies aroundwhich the projectors are discontinuous (the degeneracy of the eigenvalues
ensures thatU stays continuous). In the presence of such a discontinuity, the degeneracy could not be lifted
without breaking the continuity ofU. In this way a phase band in the fundamental zonemay become ‘glued’ to
another band from aneighboring branch of phases (seefigure 1(c)).

In the absence of the discontinuities described above, the evolution of any driven system can be smoothly
deformed to that of a non-driven system, as infigure 2, and anomalous edge states would be impossible. Thuswe
are led to the unavoidable conclusion that the evolution operators of periodically driven systemsmust support
topologically-protected degeneracies. In the next subsectionwe show explicitly that such degeneracies can exist

Figure 2.Graphical depiction of the deformation described in section 1, where the time-evolution operator of a periodically driven
system is deformed into the time-evolution operator of a non-driven system. This deformation is always possible if the time-evolution
operator has no degeneracies. Afterflattening, the linear ramp region is expanded to the entire interval t T0 ,< < and the bands are
straightened into a form as in figure 1(a).

1
Since the ‘phases’ nf are treated as real-valued continuous functions in the repeated zone scheme, their absolute valuesmay exceed 2p .

However, the labeling scheme guarantees that the full set of phase bands, in particular the Floquet bands T Tk,n ( )e f= , are always
groupedwithin awindowof atmost 2p .
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in 2D systems. In section 3we generalize to other dimensions and symmetry classes. Belowwe refer to these
topologically-protected degeneracies as ‘topological singularities’.

1.1. Topological singularities in 2D systems
In this subsectionwe explicitly demonstrate the existence and nature of topological singularities in the evolution
operators of 2D systems.We furthermore show that in a region in tk, -spacewhereU tk,( ) is degenerate, the
degeneracy can either be lifted everywhere or reduced to a cluster of isolated singularities.

LetU tk,( ) be the bulk time evolution operator of a 2D systemwith no symmetries other than the discrete
translational symmetry of the lattice. Consider now a point ts k ,0 0 0( )= in tk, -spacewhere two adjacent phase
bands,m and m ,¢ are degenerate (mod 2p). At s ,0 the degenerate subspace is spanned by the Bloch states m∣y ñ
and .m∣y ñ¢ Due to the continuity ofU tk,( ) and the existence of gaps to other phase bands, we can assume that the
subspace spanned by the two intersecting bands is constantwithin some finite sized neighborhood around s0 in

tk, -space. The remaining non-degenerate bands n{∣ }c ñ and their associated phases n{ }f can also be assumed to
be constant within this neighbourhood. Close to s ,0 the time evolution operator thus takes the form

U Ms se , 3
n m m

n n
a b m m

a b ab
,

i

, ,

n( ) ∣ ∣ ∣ ∣ ( ) ( )å åc c y y= ñá + ñáf

¹ ¢

-

= ¢

whereM is a 2×2 unitarymatrix andwe parametrize the three-dimensional (3D) tk,( ) space by a single
variable s.The unitarity ofMmeans that we canwrite it as

M fs s sexp i i , 4j jd( ) ( ) ( ) ( )⎡⎣ ⎤⎦f s= - -

where summation over repeated indices is used.Here sd ( )f is a real-valued function, whose value at s0 gives the
common eigenvalue of the two degenerate bands, j{ }s are the Paulimatrices, and f sj{ ( )} are real continuous
functions that satisfy f s 0.i 0( ) =

Weassume thatU, and thereby f, is differentiable in a neighborhood around s ,0 and expand fj to linear order
in s s0( )- around s .0 Noting that f s 0,j 0( ) = wewrite

M Ss s s sexp i i , 5j jk kd 0( ) ( ) ( ) ( )⎡⎣ ⎤⎦f s» - - -

where S f sjk j k 0( )= ¶ is a real 3×3matrix. The case where the linear term in s s0( )- also vanishes will be
covered shortly.

Wefirst consider the case where thematrix Shas rank three, such that the coefficients of all three Pauli
matrices vary independently as s explores the neighborhood around s .0 In this case, the degeneracy is
topologically protected, similar to the case of aWeyl node [55]: an infinitesimal change of the time evolution
operator can never lift the degeneracy, but rather can only infinitesimally shift the locationwhere it appears. A
single such degeneracy can thus not be liftedwith a continuous deformation of the system, and is therefore
topologically protected.We thus define a topological singularity of a 2D system to be an isolated degeneracy of
the time evolution operator where thematrix S describing the linearization ofU in its neighborhood
(equation (5)) is invertible.

In addition to the isolated singularities described above, wemay alsofind cases where S is not invertible. This
occurs when twophase bands are degenerate along a line, surface, or 3D region in tk, -space, such that s0 is one
point on thismanifold. In such cases, the rank of S is equal to 3-D, whereD is the dimension of the degenerate
manifold. These extended degeneracies are not topologically protected: the degeneracy can generically be lifted
in a neighborhood of s0 with a local perturbation, letting f f g vs s si i i( ) ( ) ( )d + in equation (4). Here δ
controls the strength of the perturbation, v is a 3D vector satisfying v S 0,i ij = and g s( ) is a real continuous
function that vanishes outside a neighbourhood around s ,0 withinwhich m m,∣y ñ¢ can be taken to be constant.

Importantly, the local perturbations described above only lift the degeneracy patch-wise, in one small region
at a time. If one tries to lift the degeneracy over the entiremanifold, two cases are possible: either the degeneracy
can be lifted everywhere, or therewill be a discrete set of points where topological singularities remain.Hencewe
conclude that, if the time evolution operator is degenerate throughout afinite-dimensionalmanifold, it is always
possible to apply an infinitesimal perturbation that either completely lifts the degeneracy, or reduces it to a
cluster of topological singularities.

With the existence of topological singularities established, we now further characterize their properties. Each
singularity can be assigned a charge (or vorticity) q:

q Ssgn det , 6[ ] ( )=

where S is the linearization of f sk ( ) around s ,0 see equations (4) and (5).
In 2D systems, the charges of topological singularities have direct connections with theChern numbers of

the phase bands. Consider the ‘instantaneous’Chern number of phase band n,

C t k P t P t P t
1

4
d Tr , .n n k n k n

2
x y

( ) { ( )[ ( ) ( )]}òp
= ¶ ¶ As long as no singularities are encountered, the Chern number
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Cn(t) cannot change due to the continuity of P t .n ( ) However, when two phase bandsmeet at a singularity with
vorticity q, theChern number for the ‘upper’ phase band changes by q as the singularity is traversed in time,
while the Chern number of the other band changes by q.- Here, the ‘upper’ band is band m 1+ if the
singularity connects bandsm and m 1,+ and band 1, if the singularity connects band 1 andN through the phase
Brillouin zone edge. As a consequence of the argument above, any driving protocol that yields Floquet bands
with different Chern numbers from those of the initialHamiltonianH(0)must induce one ormore topological
singularities inU tk, .( )

In this sectionwe showed that the evolution operator of a periodically-driven systemmay host topologically-
protected degeneracies, or ‘topological singularities.’Aswe concluded in the beginning of the section,
topological singularities can obstruct the smooth deformation of the evolution of the driven system into that of a
non-driven system. Specifically, in the case where the ‘bottom’ and ‘top’ phase bands, 1 andN, are connected by
a singularity through the phase Brillouin zone-edge, their respective phase values at the singularitymust differ
by 2 .p In this situation it is impossible to simultaneously flatten both of the bands to zero (comparefigure 1(c)
and (d)withfigure 2). In contrast, for singularities that do not pass through the phase zone edge (i.e., those
connecting bandsm and m 1,+ with m N< ), the two corresponding phase eigenvalues coincide at the
singularity. In this case nothing prevents deforming the two phase bands simultaneously to zero, thereby
removing the singularity. Hence singularities of the first type, i.e., ‘zone-edge singularities,’ are special: it is
precisely these singularities that cannot be eliminated by smooth phase-band deformations, thus distinguishing
driven fromnon-driven evolution. In section 2 belowwe formulate the topological classification for 2D
periodically driven systems in terms of the phase bands and zone-edge topological singularities, and derive the
corresponding bulk-edge correspondence.

1.2. Natural quasienergy zone
Beforemoving on to classification, we briefly introduce some further labeling notation thatwill be useful for
referring to specific Floquet bands and gaps in the discussion below. In particular, we apply the phase band
labeling prescribed in the beginning of this section to the Floquet bands themselves.We define a convention
wherewe label Floquet band n such that T Tk k, ,n n( ) ( )e f= with tk,n ( )f determined by the labeling
convention explained below equation (1), see figure 1(d). This uniquely determines ‘natural’ quasienergy band
indices for a system, and the bands n{ }e for n N1, ,= ¼ define a natural choice of the quasienergy (or Floquet)
Brillouin zonewithin the repeated zone scheme.

Belowwewill also apply the labeling scheme to the quasienergy gaps. For the following discussion, we refer to
the quasienergy gap above bandm as gapm. Due to the periodicity of quasienergy, a driven systemwithN bands
has an additional gap (as compared to a non-driven system), which separates bandN fromband 1, across the
quasienergy zone edge.We thus refer to gapN as the ‘zone-edge gap’ of the Floquet spectrum. In the non-driven
limitT 0, the zone-edge gap becomes infinitely wide, while the other gaps remain finite.

We note that the natural quasienergy zone identified above has physicalmeaning, as the quasienergy bands
within the zone are directly related to the spectrumof the time-averagedHamiltonian. In particular, within the
convention above, the quasienergy bands in the natural zone satisfy

T
T

T
t

k k

k k

1
,

1
d Tr U ,t i U ,t .

n
n

n
n

T

t
0

( ) ( )

( ) ( )†⎡⎣ ⎤⎦ò

å åe f=

= ¶

The last equality follows from the spectral decomposition1, after using the relations P P P P P ,n t n t n t n n( )¶ = ¶ - ¶
and P 1

n nå = to eliminate the derivatives of the projectors. Finally, substituting U t H t U tk k ki , , ,t ( ) ( ) ( )¶ =
wefind the following non-trivial relation

T
tk k

1
d Tr H ,t . 7

n
n

T

0
( ) [ ( )] ( )òåe =

Within the repeated zone scheme, this relation is uniquely satisfied for the quasienergy bandswithin the
natural zone.

2. Topological classification of Floquet–Bloch systems in 2D

Having introduced the concept of phase bands and demonstrated the existence of topological singularities, we
now consider the implications of these results for the topological properties of a 2DFloquet–Bloch systemwith
no symmetries. By ‘topological’wemean those properties that are invariant under any continuous deformation
of the bulk time-evolution operator that preserves its continuity in crystalmomentum and time, and keeps the
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bulk gaps open in the quasienergy spectrumof the Floquet operatorU T .( ) Any such quantity is a topological
invariant of the system. Importantly, this definitionmeans that topological invariantsmust be independent of
the choice of time origin2.

Analogous to aChern insulator, a 2D Floquet–Bloch systemdefined in a geometrywith edgesmay host
protected chiral edgemodeswithin its bulk quasienergy gaps. The chiral edgemodes are topologically protected,
meaning that the net number n medge ( ) of chiral edgemodes in bulk quasienergy gapm is invariant under
continuous deformations of the bulk evolution operatorU tk, ,( ) or equivalently of theHamiltonian H t ,( ) that
keep quasienergy gapm open. Thuswe recognize n medge ( ) as a topological invariant of the system.

In this sectionwe demonstrate that considerations about the bulk phase bands allowus to identify all
independent topological invariants of a 2DFloquet–Bloch system. Subsequently, we use these invariants to
construct the bulk-edge correspondence, providing a direct link between the edgemode spectrum and the bulk
phase band properties of 2D Floquet–Bloch systems.

2.1. Topological invariants of 2D systems
In this subsectionwe identify the properties of a 2DFloquet–Bloch system that are invariant under smooth
deformations of the phase bands. In section 1.1we found that the phase bands of a 2D system can safely be
deformed anywhere in tk, -space except at isolated topological singularities. Therefore wemay expect that the
singularities play an important role in the topological classification of periodically driven systems.

To elucidate the importance of topological singularities we consider the following deformation of a time-
evolution operatorU tk, ,( ) shown schematically infigure 3.Without changing the eigenstate projectors P tk, ,n ( )
deform the phase bands tk,n ( )f to zero everywhere except for within small isolated regions that surround each
zone-edge singularity andwithin a small time-interval td beforeT, where the phase bandswind linearly to their
final values. Thesefinal values, which define the Floquet bands, are keptfixed under the deformation.We refer to
the region t T td< - in tk, space as region I, and to the final region t T td> - as region II (see figure 3). Any
time-evolution operator can be deformed in this way such that continuity is preserved andno quasienergy gap is
closed.Without changing any topological invariant, the deformation effectively discards all information about
the time-evolution operator except for the phase bands at time t= T (i.e., the Floquet bands themselves), and
the zone-edge singularities.

Consider now the remaining features of the phase band structure that could not be smoothly deformed
away.We found in section 1.1 that it was possible to change the location tk, of each singularity through a
continuous deformation. Through such a deformation, it is furthermore possible to create and annihilate pairs
of zone-edge singularities with opposite charges. Hence the only invariant quantity we can associate with region
I is the sumof the charges qi

ZES{ }( ) of all zone-edge singularities, q .
i i

ZES( )å For region II, we note that at t= T

any two projectors P Tk,( ) and P Tk,( )¢ can be continuously deformed into each other if and only if their Chern
numbers are the same [6]. Hence the only independent invariants we can associate with region II are theChern
numbers of the individual phase bands at t= T.

The arguments above show that a 2DFloquet–Bloch systemwithN bands has exactlyN independent
topological invariants characterizing it. These invariants are the integers

Figure 3.Continuous deformation of a generic time evolution operatorwhich only preserves information about the topological
singularities spanning the zone-edge gap (region I), and the Floquet bands (region II). These features cannot be removed, since the
Chern indices of the Floquet bands and the total charge of the zone-edge singularities can only be changed by closing at least one
quasienergy gap. Any topological invariant should be expressible in terms of only these non-removable features. Note that the
singularity in the gap around phase 0f = is eliminated under the deformation.

2
To see this, note that a continuous change of time origin from0 to t ¢ gives rise to a smooth deformation of the evolution operator from

U t( ) toU t t U t( ) ( )†+ ¢ ¢ . Given that the quasienergy spectrum is invariant under changes of time origin, the topological invariantsmust
remain the same for any choice of time origin as well.
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C C q, , , , 8N
i

i1 1
ZES ( )( )

⎛
⎝⎜

⎞
⎠⎟å¼ -

where Cn is the Chern number of Floquet band n (see section 1.2 for definition of the quasienergy band indices).
The index i in the sum runs over all topological singularities in the zone-edge gap. TheChern number of the last
bandCN is not included since C 0.

n nå = We see that while anN-band non-driven system is characterized by
N 1- independent integer-valued () invariants (the Chern numbers of each of the N 1- lowest bands),
Floquet–Bloch systems are characterized byN integer () topological invariants. The additional invariant is the
net charge of the topological singularities in the zone-edge gap.

2.1.1. Bulk-edge correspondence for 2D Floquet–Bloch systems
Wenow seek to derive a bulk-edge correspondence that gives the net number of chiral edge states that will
appearwithin a given gapm of the bulk Floquet spectrumwhen the system is defined in a geometry with an edge.
To this endwe identify which non-trivial combinations of theNnumbers in equation (8) remain invariant when
all gaps except for gapm are allowed to close (see section 1.2 for the labeling convention for the quasienergy
gaps). Later wewill use this feature to relate the invariant combination to the number n medge ( ) of edgemodes in
gapm, which also shares this property.

In order tofind the combinations of the above quantities which have this invariance, we note that the Chern
numbers of the individual bands 1 tom can be changed by closing the quasienergy gaps between them.Only
their sum S Cm n

m
n1å= = remains constant under such operations [6]. Furthermore, if m N ,¹ all zone-edge

singularities can be removed through the plane t= T by closing the zone-edge quasienergy gap (i.e., the gap
between bandN and band 1). Importantly, however, the Chern number of band 1, and thereby Sm, changes by q
each time a singularity of charge q is removed in this way (see the discussion at the end of section 1.1 on the
relationship betweenChern numbers and singularities). Hence there only exists one independent combination
of the invariants in equation (8)which remains invariant under all of these operations, i.e., when only gapm is
required to stay open:

w U C q . 9m
n

m

n
i

i
1

ZES[ ] ( )( )å å= -
=

Any two evolutions characterized by the same value of the invariantwm can be smoothly deformed into one
another without closing quasienergy gapm. Crucially, this tells us that if topologically-protected chiral edge
modes are possible, the number n medge ( ) of them in gapm should be some function ofwm, and possiblym itself.
Standard spectralflow arguments show that chiral edgemodesmust exist in certain cases, and that
n m n m C1 ,medge edge( ) ( )- - = see e.g., [51–53]. The onlyway this can be realized is if n m w Kmedge ( ) = + for
some universal constantK. Considering the trivial special case H t 0,( ) = where bothwN and n Nedge ( ) are zero,
wefind thatKmust be zero.We thus arrive at the following new result for the net number of chiral edgemodes
in a 2D system:

n m C q . 10
n

m

n
i

iedge
1

ZES( ) ( )( )å å= -
=

The simple expression above provides a direct way of evaluating the edgemode count given by thewinding
number formula found in [49]. Thefirst term is the result one obtains simplywhen analyzing a non-driven
systemwith the phase band framework, takingT to be so small that the phase bands do not cross. The second
termhas no equivalent in non-driven systems, and accounts for the anomalous edgemodes thatwere discussed
in [19, 49]. Additionally, equation (10) shows that the number of edgemodes in the zone-edge gap is given by the
net charge of all zone-edge topological singularities.

In appendix Awe provide an explicit derivation showing that equation (10) is equivalent to thewinding
number formula of [49]. Belowwe refer to w Um [ ]as thewinding number ofU in gapm.

2.2. Topological singularities in a specific two-bandmodel
Tomake our discussionmore concrete, in this subsectionwe demonstrate the results above on a variation of the
explicitmodel considered in [49]. Consider a tight-bindingmodel on a 2Dbipartite square lattice, described by
the time-dependent BlochHamiltonian

H t J t Vk, e e , 11
n

n z
b k b k

1

4
i in n( )( ) ( ) ( )· ·å s s s= + +

=

+ - -

where zs and i 2x y( )s s s=  are the Paulimatrices acting in the sublattice space, and the vectors bn{ }are
given by ab b , 0 ,1 3 ( )= - = and ab b 0, ,2 4 ( )= - = with a being the lattice constant. In real-space,
Hamiltonian (11) consists of hopping terms between nearest neighbour sites on the bipartite lattice. The
Hamiltonian isT-periodic in time. Each driving cycle consists offive time intervals of lengthT 5, with
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J tn n( ) l= during the nth interval, while all the other hopping amplitudes are set to zero. In the fifth interval, all
hopping amplitudes are zerowhile the sublattice potentialV remains on.

In [49], anomalous edgemodeswere observed in the case where J ,nl = for certain ranges of the parameters
J andV. According to the discussion in the subsections above, this implies that topological singularities are
present. Indeed, when in a non-trivial phase, the two phase bands touch through the zone-edge along the line
k k ,x y= at a specific time that depends on parameter values. To demonstrate that this degenerate region
contains topological singularities, we add a small time-dependent perturbation to break the extended
degeneracy into isolated singular points (see section 1.1).We implement the perturbation by reducing the
hopping in the y-direction slightly compared to the x-direction, such that J1 3l l= = and

J1 ,2 4 ( )l l a= = - whereα is a small parameter.We then numerically calculate the time-evolution operator
at a representative set of points in tk,( )-space for the parameter choice J T2.5 ,p= - V T0.8 ,p= and

0.2.a = Fromdiagonalization of the time-evolution operatorwe obtain the phase band structure of themodel,
andfind four topological singularities (see figure 4). One singularity has charge−1 and connects the two bands
through the zone edge, while the other three have charges 1, 1,- and−1, but do not cross the zone-edge. The
charges are found numerically.

Infigure 4(a)–(c), the phase band structure is plotted for three values offixed kx. The kx values are chosen
where the four topological singularities appear (two of the singularities appear at the same kx). TheChern
numbers of the Floquet bands are zero.

Next we confine themodel to a strip geometry with edges parallel to the y-direction, by truncating the real-
spaceHamiltonian of themodel in the x-direction.Wenumerically calculate the Floquet operator of this
truncated tight-bindingHamiltonian and obtain the quasienergy band structure shown infigure 4(d). On each
edgewefind the net number of chiral edgemodes to be 1, in both bulk quasienergy gaps. This behavior is fully
consistent with result (10) above.

3. Topological classification of Floquet-Bloch systemswith symmetries

In the previous sectionwe showed that the richer topological structure of 2Dperiodically driven systems arises
from the possibility of non-removable singularities in the phase bands of such systems. Building on this result,
we now seek to describe how additional restrictions on the evolution (e.g., as imposed by discrete symmetries)
can protect new types of phase band singularities in 1D, 2D, or 3D. These new singularities provide the basis for a
symmetry-based topological classification of Floquet–Bloch systems.

Inspired by the rich structure of the periodic table of topological insulators in non-driven systems [15, 16],
we focus on driven system analogues of the tenAltland–Zirnbauer (AZ) symmetry classes. In thefirst subsection
belowwe describe two types of symmetry conditions on the evolution operator (‘instantaneous’ or ‘time non-
local’)which provide useful ways of generalizing the AZ symmetries to driven systems.

Note that the instantaneous and time non-local conditions are chosen as illustrative examples to
demonstrate the power and adaptability of the phase band framework. These conditions are not necessarily the
only ways of generalizing the AZ symmetries. Note also that these are not the only types of conditions that can
protect singularities—it will be an interesting direction for future work to seekwholly new types of symmetries
onU(t)whichmay protect additional types of topological singularities.

Following the discussion of smooth phase band deformations from section 2, we find the exhaustive
classification for 1D systemswith particle-hole symmetry and identify the related bulk-edge correspondences.
We then go on tofind the bulk-edge correspondences for 2D and 3D systemswith time-reversal symmetry. The
bulk-edge correspondences that we obtain in this section for one- and two-dimensional systems coincide with

Figure 4.Explicit demonstration of topological singularities and anomalous edge states. (a)–(c)Phase band structures for themodel in
equation (11) for fixed values of kx, with singularity charges (all±1) indicated. The kx values are (a) a0.245 , (b) a1.533 , (c) a2.084 .
(d)Quasienergy band structure of themodel in a strip geometry. Both bands have Chern number zero, andwefind one chiralmode on
each edge, in each quasienergy gap. Edgemodes on opposite edges are indicated by different colors.
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those found in [22, 50], respectively. To our knowledge, analogous results for the 3D case have not been derived
before.

Within the symmetry framework that we consider, wefind that the edgemode spectrum in a single bulk
Floquet gap has the same classification for driven and non-driven systems.However, the global edgemode
spectrumof a periodically driven system generally has a richer classification than its non-driven counterpart,
with a correspondingly richermathematical relationship between bulk and edge properties. For each symmetry
class, we thusfind a larger number of distinct topological phases than in the corresponding non-driven cases.
Interestingly, wefind for example that a periodically driven two-band systemwith time-reversal symmetry can
host topologically protected edgemodes, while aminimumof four bands is necessary in the non-driven case.
This richer variety of topological phases in driven systems originates from the periodicity of quasienergy, i.e., the
presence of the zone-edge gap in the Floquet spectrum, and the existence of symmetry-protected topological
singularities whichmay reside in the corresponding phase band gap.

3.1. Symmetries in periodically driven systems
Wenow identify two symmetry conditions on the evolution operator which can protect new types of
singularities in the ‘time-bulk’ of the phase band structure (i.e., singularities occurring for intermediate times

t T0  < ): ‘instantaneous’ symmetries of the form

U t SU t S , 121( ) ( ) ( )= -

and ‘time non-local’ symmetries of the form

U t SU t t U t S . 131( ) ( )( ) ( )†* *= - -

Here Smay be a unitary or an anti-unitary operator, and t* denotes a special point in the driving cycle. In the
subsequent discussion, we always pick the time origin such that t T .* = Note that the instantaneous symmetries
relate the evolution operator to itself at a given time, while the time-non-local symmetries relate the evolution
operator to itself at different times.

The conditions in equations (12) and (13) can be used to ensure that the Floquet operatorU(T) and/or the
corresponding ‘effectiveHamiltonian’ H ,eff defined viaU T e ,H Ti eff( ) = - falls into any one of the tenAltland-
Zirnbauer symmetry classes. For example, particle-hole symmetry is guaranteed via an instantaneous condition
of the form (12), with S anti-unitary (see below). On the other hand, time-reversal and chiral symmetries are
imposed via time-non-local conditions of the form (13), with S anti-unitary and unitary, respectively.
Furthermore, just as in the non-driven case, the symmetry conditionswhere S is anti-unitary divide into two
subclasses, depending onwhether S squares to 1 or−1.

3.2. Particle-hole symmetrywith S 12 =
In this subsectionwe use the phase band framework to develop a topological classification for periodically driven
systemswith particle-hole symmetry (PHS). Here we impose PHS via an instantaneous symmetry condition as
in equation (12), where the operator S is anti-unitary and squares to 1 (analogous to symmetry class D in the AZ
convention [56]). Such a condition is naturally satisfied, for example, by the Bogoliubov-deGennes
Hamiltonian of a driven spinless superconductor. The 1D casewas considered previously in [22]. Herewe use
the phase band framework to identify topological invariants and to derive the bulk-edge correspondence,
obtaining results consistent with thefindings of [22].

The condition above implies that ‘class D type PHS’ is present if and only if there exists a basis where the
instantaneous BlochHamiltonian of the driven system, h tk, ,( ) satisfies h t h tk k, , .( ) ( )*= - - Consequently,
in this basis, the evolution operator at each time t satisfiesU t U tk k, , .( ) ( )*= - This furthermore implies that
the time evolution operator of a particle-hole symmetric systemwith N2 bands can bewritten in the form

U t P t P tk k k, , e , e , 14
n

N

n
t

n
tk k

1

i , i ,n n( ) ( ) ( ) ( )( )
¯

( )¯⎡⎣ ⎤⎦å= +f f

=

- -

where the phase bands t tk k, , ,n n{ ( ) ( )}¯f f are continuous and non-crossing (as defined in section 1), and, in
the basis specified above,

P t P t t tk k k k, , , , , . 15n n n n( ) ( ) ( ) ( ) ( )¯ ¯* f f= - = - -

The ambiguity of the labeling of bands is removed by requiring 0 ,n f p with the conjugate phases satisfying
0.n̄ p f- In previous sections we labeled the bands according to increasing n, starting from the lowest

band.Here,making use of the symmetry of the spectrum,we start the labeling from the bandwith the smallest
positive phase.

Similar to the approach in sections 1 and 2, we now seek to identify topological invariants by considering
quantities that do not change under smooth deformations of the evolutionwhich preserve the particle-hole
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symmetry, expressed via equations (14) and (15). Preservation of the symmetry can be ensured by continuously
deforming half of the phase bands and projectors, t P tk k, , , ,n n{ ( ) ( )}f with their conjugate partners following in
accordancewith condition (15). However, as we found for the 2D case considered in the previous section, free
deformation of the phase bandsmay be obstructed at certain isolated points in tk, -spacewhere protected
singularities are encountered.

In order to see how a singularitymay be protected by particle-hole symmetry (in any dimension), consider
an inversion invariant point k inv in the Brillouin zone, where equation (15) directly relates the phases and
projectors of conjugate partner bands. Suppose that at some time t0 two conjugate phase bandsm and m̄ become
degenerate at k ;inv with the labelingwe prescribed earlier,mmay be either 1 orN. Because these bands form a
conjugate pair, the degeneracymay only occur at phase 0 orπ, see equation (15). For times t close to t0, the
evolution operator at k inv can bewritten

U t

M t

k , e e

, 16

n m
n n

t
n n

t

a b
ab a b

inv
i i

, 1,2

n n( )( )
( ) ( )

( ) ( )* *å

å

c c c c

y y

= +

+

f f

¹

-

=

where ,n n{∣ ∣ }*c cñ ñ are the eigenstates ofU tk ,inv 0( ) that do not become degenerate (assuming the systemhas
more than two bands), and 1,2{∣ }y ñ are two states that together span the subspace of the degenerate eigenstates
m and m̄ at t t .0= The 2×2matrixM(t) is unitary and depends continuously on t. Furthermore it satisfies
M t ,ab ab0( ) d=  where the sign depends onwhether the bandsmeet at phaseπ (for−) or at phase 0 (giving+).

The symmetry (12) implies thatU tk ,inv( )must be real for all t. Furthermore, we can take ,1 2∣ ∣y yñ ñ to be
real, since the two degenerate eigenstates ,m m{∣ ∣ }¯c cñ ñ are complex conjugates of each other. Thefirst sum in
equation (16) is also real, thus implying thatM(t)must itself be real. As a result, we canwriteM(t) as

M t e , 17t ti y 0( )( ) ( )=  ls- -

where the parameterλ is real.
The expression forM in equation (17) directlymanifests the fact that the degeneracy is topologically

protected: any local smooth deformation of the time-evolution operator can only continuously changeM(t) via
the parametersλ and t0, neither of which lifts the degeneracy. The two possible signs of M t0( ) indicate that there
can in general be two types of singularities at each inversion invariant point, namely, singularities occurring at
phase 0 and at phaseπ.

3.2.1. Classification of 1D systems with PHS
Wenowuse the PHS-protected topological singularities described above to construct the topological
classification and bulk-edge correspondence for one-dimensional systemswith particle-hole symmetry. In
terms of the Floquet spectrum, a systemwith PHSmay host topologically protected edgemodes in its bulk gaps
at quasienergies 0 and T .p The parities 0PH ( )n and TPH ( )n p of the numbers of edgemodes in these two
Floquet gaps are topological invariants. In [22], 0PH ( )n and TPH ( )n p were identified, respectively, with the
parities of the numbers of times the phase-bands cross 0 andπ at the inversion-invariantmomentumpoints.We
nowuse the framework developed above to provide amore complete understanding of this relationship and to
explicitly prove it.

As for the 2D systems discussed in section 2.1, the phase bands of the 1Dparticle-hole symmetric system can
be freely deformed (whilemaintaining the symmetry as described above) anywhere except at topological
singularities. Analogous to the procedure depicted infigure 3, we deform the phases nf for n N1, ,= ¼ to zero
everywhere, except around the phase-π-singularities and in a short interval at the end of the driving period
wherewe let the phases wind to their final values. This is done in away that keepsU k T,( )fixed, and such that the
conjugate bands follow the deformation to preserve particle-hole symmetry via relation (15). Thus it is evident
that the topological classification of the one-dimensional particle-hole symmetric system should depend only on
the properties of the evolution operator around any phase-π (i.e., zone edge) singularities, and at t= T (i.e., on
the Floquet bands themselves).

Which characteristics of the singularities are topologically protected? For one-dimensional systems, all (zone
edge) singularities are topologically identical if the systemhasmore than two bands: the evolution can be
deformed such that the vectors 1,2∣y ñ in equation (16) are the same for all singularities. To see this, note that any
two pairs of real orthogonal vectors in a complex space ofmore than 2D can be continuously rotated into each
other, if the space has dimension three ormore.

When the vectors 1∣y ñand 2∣y ñare the same for all singularities, it is possible to create or annihilate pairs of
singularities with opposite sign of the parameterλ through continuous deformations of the evolution operator.
However, since all (zone edge) singularities are topologically identical as argued above, it is possible through a
local smooth deformation to interchange 1∣y ñand 2∣y ñ for an individual singularity, thereby flipping the sign of

11

New J. Phys. 17 (2015) 125014 FNathan andMSRudner



λ. Hence all zone edge singularities are identical, and can be created or annihilated pairwise through smooth
phase-band deformations. Thus only the parities 1 Q0( )- and 1 Q a( )- p of the numbersQ0 and Q ap of zone edge
singularities at k= 0 and k a,p= respectively, are topologically invariant (here a is the lattice constant). The
special case of two bands is discussed at the end of the section.

In addition to describing the singularities, wemust also keep track of the invariants of the Floquet bands,
which are encoded in the effectiveHamiltonian

H k
T

k T P k T k T P k T
1

, , , , .
n

n n n neff ( ) ( ) ( ) ( ) ( )¯ ¯
⎡⎣ ⎤⎦å f f= +

The Floquet bands are completely characterized by the two standard invariants 0h and hp for a non-driven
particle-hole symmetric system (see, e.g., [15]), where H ksgnPfk eff[ ( )]h = for k a0, .p=

Collecting the invariants identified above, we thusfind that a generic 1D (translationally-invariant) driven
systemwith particle-hole symmetry is fully characterized by the four 2 invariants

, , 1 , 1 . 18a
Q Q

0
a0( )( ) ( ) ( )h h - -p

p

Compared to the casewithout driving, translationally invariant periodically-driven systemswith particle-hole
symmetry are characterized by two additional 2 invariants. The additional invariants relate to phase band
singularities in the zone-edge gap (i.e., at phaseπ).

We now seek a bulk-edge correspondence which gives the edgemode parities 0PH ( )n and TPH ( )n p for the
gaps at quasienergies 0 and Tp in terms of the four numbers in equation (18). To seewhich bulk invariants
determine the edgemode parity TPH ( )n p in the quasienergy gap at T ,p wefirst note that the bulk evolution
can be smoothly deformed to ‘flatten’ the Floquet bands to zero quasienergy. That is, wemay continuously
transformU T 1( )  (or, equivalently, H 0eff  ), without closing the gap at T .p Such a deformation cannot
change the parity of the number of edgemodes in the open gap, and therefore TPH ( )n p should not depend on

0h or .ahp Furthermore, note that a real-space gauge transformation can be performed on the 1D system to
make k k a.p + However, a gauge transformation cannot change the number of edgemodes which appear
in the gapwhen an edge is created. ThereforeQ0 and Q ap should appear symmetrically in the final expression
for the edgemode parity T .PH ( )n p Thuswe are led to the expression: T 1 .Q Q

PH
a0( ) ( )n p =  - + p

Considering the special case H k t, 0( ) = fixes the sign, giving

T 1 , 19Q Q
PH

a0( ) ( ) ( )n p = - + p

where T 1PH ( )n p = - corresponds to an odd number of Floquet–Majorana edgemodeswith quasie-
nergy T .p

For the gap at quasienergy zero, we identify which combinations of the numbers in equation (18) are
invariant whenwe allow the gap at quasienergy Tp to close. By closing this gap, we can remove the zone-edge
singularities without changing the number of edgemodes at quasienergy 0.However, each timewe remove a
singularity at crystal-momentum k in this way, kh changes its sign (see appendix C). Hence the only quantities
that are invariant whenwe allow the gap at quasienergy Tp to close are the numbers 1 Q

k
k( ) h- for k a0, .p=

From similar arguments as above, the expression should be symmetric in k= 0 and k a,p= andwe conclude

0 1 , 20a
Q Q

PH 0
a0( ) ( ) ( )n h h= -p

+ p

whereQ0 and Q ap were the numbers of zone-edge singularities at crystalmomentum0 and a,p respectively.
The results in equations (19)and(20) agree with those obtained in [22].We see that a system can have a non-
trivial edgemode spectrum if the evolution contains an odd number of zone-edge singularities, even if the bulk
Floquet operator is trivial (i.e., if 0a0h h= =p ).

Wefinally briefly discuss the special case of two bands. For two-band systems, it is always possible to choose
1, 01∣ ( )y ñ = and 0, 12∣ ( )y ñ = in equation (16). Then, the sign of the parameterλ in equation (17) is forbidden

to change, and defines a conserved charge for each singularity. The net charges of zone-edge singularities at
k= 0 and k ap= define two topologically invariant  indices of the system. This richer classification for
two-band systems crucially relies on unbroken translational symmetry; in particular it immediately breaks down
if the unit cell is doubled. For this reasonwe expect it to be destroyed by disorder, in contrast to other topological
phases that are expected to be robust against breaking of translation symmetry (see e.g. [57]).

3.3. Time-reversal symmetrywith S 12 = -
As afinal application, we now apply our framework to periodically driven systemswith time-reversal symmetry,
identified as a time non-local symmetry of the form in equation (13)where the symmetry operator S is anti-
unitary and squares to−1 (analogous toAZ class AII). The condition S 12 = - implies that the systemmust
have an evennumber of bands, taken to be N2 in the discussion below. Following the discussion in section 3.1,
the presence of this symmetry implies that a basis and time-origin exist such that theHamiltonian of the system
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satisfies H t H T tk k, , ,( ) ( )*s s= - - whereσ is a unitary, Hermitianmatrix that is purely imaginary in the
specified basis (see also, e.g., [50]). In this basis, the evolution operatorU tk,( ) satisfies

U t U T t U Tk k k, , , . 21T( ) ( ) ( ) ( )*s s= - - -

Note that by substituting t= T, and usingU k, 0 1,( ) = we recover the time reversal symmetry condition on
the Floquet operator itself:U T U Tk k, , .T( ) ( )s s= -

Webegin our discussion of time-reversal invariant (TRI) systems below by constructing the general bulk-
edge correspondence for 2DTRI periodically driven systems. In doing so, wefind that the edgemode parities in
the bulk gaps can be non-trivial even if the systemhas trivial Floquet bands (see also [50]). This allows driven
systems to have edgemode spectra that are impossible to obtain in non-driven systems. In particular, as we
demonstrate subsequently in an illustrative example, a driven two-band system can have helical edgemodes in
its Floquet zone-edge gap. This behavior is in contrast to that of a non-driven two band system,where Kramers’
theorem guarantees a gapless bulk. As for the cases with no symmetries or with particle hole symmetry, wefind a
close connection between these anomalous edgemode phenomena and the appearance of topological
singularities in the zone-edge gap of the bulk evolution. After working through the example, we concludewith
the topological classification for 3DTRI systems.

3.3.1. Bulk-edge correspondence for TRI systems in 2D
To simplify the derivation of the bulk-edge correspondence for 2DTRI systems, we start by highlighting some
general properties of the Floquet bands of such systems. For a periodically-driven systemwith time reversal
symmetry in any dimension, Floquet bands m2 1- and m2 are related by time-reversal symmetry and the gap
between the bands closes at the inversion-invariant points in the Brillouin zone (in accordancewithKramers’
theorem). This holds for allm, and only ‘even’ gaps m2 may thus remain open.Herewe use the specific
assignment of even and odd indices defined by the ordering scheme of section 1.2.

In afinite geometry, a 2DTRI system can have protected edgemodes in its bulk gaps. Time reversal
symmetry requires any chiralmodes to come in time-reversal conjugate pairs; Kramers’ theorem guarantees that
an odd number of such pairs cannot be gapped out by any time reversal symmetry preserving perturbation. The
parity mTR ( )n of the number of such ‘helical’ edgemode pairs appearing in gap m2 is thus a topological
invariant that can be associatedwith gap m2 .

Wenow set out tofind an expression for m .TR ( )n First, noting that for eachm the Floquet bands m2 and
m2 1- are related by time-reversal symmetry, to each such pair we associate a Fu-Kane 2 index zm, just as for
the bands of a TRI non-driven system [58]. Spectralflow arguments [58], whichmust hold for both static and
Floquet bands, show that the relative edgemode parities of gaps n2 and n2 2- (i.e., above and below the pair of
time-reversal conjugate bands n2 and n2 1- ) are captured by zn. For a systemwith N2 bands, we can thuswrite

m N z , 22
n

m

nTR TR
1

( ) ( ) ( )n n=
=

where NTR ( )n is the edgemode parity in the zone-edge gap.Note that z
n

N
n1 =
must always be unity; the

prefactor NTR ( )n ensures that the correct edgemode parity is recoveredwhen settingm= N in equation (22).
Tofind NTR ( )n wefirst simplify the symmetry condition in equation (21) by smoothly deformingU tk,( )

into an evolutionwhose Floquet operator is the identity. During the deformationwe preserve TRI and keep the
zone-edge gap open, such that the edgemode parity NTR ( )n in the zone-edge gap remains unchanged. An
example of such a deformation is given in [50].Wefirst define an effectiveHamiltonian
H P Tk k k, ,

n n neff ( ) ( ) ( )å e= where P Tk,n ( ) is the Floquet eigenstate of band n, and T Tk k,n n( ) ( )e f= is the
corresponding quasi-energy of the band (see section 1.2 for the quasienergy zone convention). The family of
evolutionsU t U tk k, ; , e H tki eff( ) ( ) ( )a = a for 0, 1[ ]a Î defines a smooth interpolation of evolutions fromU to
a time-periodic evolutionU ,˜ given by

U t U tk k, , e . 23H tki eff˜ ( ) ( ) ( )( )=

The Floquet operator associatedwith the evolutionU tk, ;( )a has quasi-energies T Tk1 , ;n{( ) ( ) }a e-
the spectrumuniformly contracts, and thus the zone-edge gap stays open throughout the interpolation3. Given
that TRI is also preserved during the deformation, NTR ( )n must be the same forU andU .˜

Using the fact thatU Tk, 1,˜ ( ) = symmetry condition(21) simplifies toU t U T tk k, , .˜ ( ) ˜ ( )*s s= - - An
evolution operator with this property can bewritten as

3
Note that the Floquet operator for a periodic evolution Ũ has only one quasienergy gap open. This gapmay ormay not be the zone-edge

gap; the index of the gap is determined by continuation of the phase bands, see section1.2.
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U t P t P tk k k, , e , e , 24
n

N

n
t

n
tk k

1

i , i ,n n˜ ( ) ( ) ( ) ( )( )
¯

( )¯⎡⎣ ⎤⎦å= +f f

=

- -

where the bands P P,n n{ }¯ for n N1, ,= ¼ are all orthogonal.We give a specific prescription for defining the
labels n and n̄ below.

In contrast to the particle-hole symmetric case, TR symmetry relates conjugate bands at different times:

P t P T tk k, , , 25n n
T( ) ( ) ( )¯ s s= - -

t T tk k, , . 26n n( ) ( ) ( )¯f f=- - -

For the last equality we used that Tk, 0.n ( )f = Weassign labels to the bands such that all Tk, 2n ( )f are
positive, and then order these bands according to increasing .nf Their conjugate partners then follow from
equation (26). Infigure 5(a) and (b)we show two examples of time-periodic phase-band structures that satisfy
the time reversal symmetry above.

We now smoothly deformone half of the phase bands ofU ,˜ via the phases tk, ,n{ ( )}f in away that preserves
the boundary condition Tk, 0,n ( )f = while keeping the projectors P tk,n{ ( )}constant. The other half of the
bands follow in accordance with the symmetry above. Through considerations similar to thosemade in
section 1.1, wefind that the phase bands of Ũ can be deformed to zero everywhere in tk, -space except around
its zone-edge topological singularities (which connect bandsN and N̄ ). The edgemode parity NTR ( )n is thus
completely determined by the constellation of zone-edge singularities ofU .˜

Nextwe consider which features of the zone-edge singularity constellation are topologically invariant. As for
the casewithout symmetries, through smooth deformations of Ũ we can annihilate singularities of opposite
charges. If Ũ has a zone-edge singularity with charge q at tk, ,( ) symmetry dictates that it has anotherwith charge

q- at T tk, ;( )- - see figure 5(c) for an example distribution of zone-edge singularities.
In general, when two singularities annihilate, their conjugate partnersmust annihilate aswell. Importantly,

conjugate singularities cannot annihilate directly with each other (see appendixD). Therefore it is only possible
to annihilate two singularity pairs at a time. To give a concrete example, if singularities 1 and 2 infigure 5(c)
annihilate each other, then by symmetry singularities 1̄ and 2̄ will annihilate aswell. Singularities 3 and 3̄will
then remain, with noway to be eliminatedwithout closing the zone edge quasienergy gap.

According to the arguments above, the parity 1 p( )- of the number p of singularity pairs is invariant under
any smooth deformation of the evolution that keeps the zone-edge gap open. Conversely, any two evolutions
U ,˜ Ũ ¢with the same parity can be deformed into each other. In particular, if Ũ has an even number of singularity
pairs, it can be smoothly deformed into the identity. Periodic evolutions Ũ therefore fall into two classes: those
with an odd number of zone edge singularity pairs (figure 5(a)) and thosewith an even number of pairs
(figure 5(b)). Evolutions within the same classmust have the same edgemode parity N ,TR ( )n since they can all

Figure 5.Phase bands and topological singularities for systemswith time-reversal symmetry, equation (21). After deforming to a time-
periodic evolutionU tk,˜ ( )which has its zone-edge gap open, two distinct classes of evolutions are possible, with an even or odd
number of pairs of zone-edge topological singularities. (a)Phase bands ofU t˜ ( ) for a systemwith an oddnumber of singularities, and
hence one pair of protected helical edgemodes its zone-edge gap. (b)Phase bands ofU t˜ ( ) for a trivial system, yielding no edgemodes
in its zone-edge gap. (c)Example distribution of zone-edge singularities, with their locations in the k t,x -plane depicted. The charges
are indicated by thefilling of the dots, and bars indicate conjugate partners. (d)Quasienergy band-structure of themodel (30), when
defined in a strip geometry along the y-direction.Herewe only display the edge spectrum for one edge.
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be related by smooth deformations that preserve N .TR ( )n Thus NTR ( )n must depend only on 1 .p( )- Sincewe
already found that evolutions with even p are topologically trivial (i.e., smoothly deformable to the identity), we
identify

N 1 . 27p
TR ( ) ( ) ( )n = -

The edgemode parity in the zone-edge gap is thus given by the parity of the number of singularity pairs ofU .˜
Combining results (22) and (27), we then obtain for the edgemode parity of gapm:

m z1 , 28p

n

m

nTR
1

( ) ( ) ( )n = -
=

where p is the number of zone-edge singularity pairs ofU tk, .˜ ( ) We see that even if the bulk Floquet operator of a
system is trivial (i.e., zn= 1 for all n), the edgemode spectrum can be non-trivial. This is precisely the case when
U tk,˜ ( ) has an oddnumber of singularity-pairs in its zone-edge gap (see figures 5(a) and (b) ).

We end our discussion by noting that the ‘anomalous’ 2 index N 1 ,p
TR ( ) ( )n = - equation (27), can be

found directly as a time-domain expression in terms ofU tk, .˜ ( ) According to the time-reversal symmetry
conditionU t U T tk k, , ,˜ ( ) ˜ ( )*s s= - - one singularity out of each conjugate pairmust occurwithin the first
half of the driving, t T0 2.< < Therefore p is in fact equal to the number of zone-edge singularities ofV t ,( )
whereV(t) is the evolution given byU t˜ ( ) restricted to the first half of the driving4. In section 2we found that the
number of zone-edge singularities of an evolution is given bywinding number of the evolution in its zone-edge
gap.Hencewe have

p w V t mod 2 . 29N2 [ ( )] ( ) ( )º

The above result is consistent with the results obtained in [50].

3.3.2. Example: Non-trivial 2 index for a two-band TRI system
To illustrate one of the new topological phenomenawhich arise in periodically driven systems, we now show
that periodic driving allows a 2DTRI systemwith two bands to have protected helical edgemodes. This is in
contrast to the situation for non-driven systems, where aminimumof four bands is required.We explicitly
demonstrate this behavior for a specificmodel, using the results above aswell as direct numerical calculation.

Consider a spin-1/2 particle on a square lattice with one orbital per site.We construct the evolution based on
themodel with non-trivial winding numbers presented in section 2.2, nowwith spin playing the role of what was
an orbital index. Specifically, we define a TRI evolution via the time-periodic BlochHamiltonian

H t
H t t T

H T t t T
k

k

k
,

, 2 , 2,

, 2 , 2,
30

y y

0

0
( )

( )
( ( ))

( )
⎧⎨⎩ *s s

=
<

- >

where, as a 2×2matrix, H tk,0 ( ) has the same form as theHamiltonian presented in section 2.2. The
Hamiltonian H tk,( ) is by construction time-reversal symmetric. In real-space, Hamiltonian (30) contains on-
site terms as well as nearest-neighbour and next-nearest neighbour hopping terms.

In [49] it was noted that the Floquet operatorU Tk,0 ( ) associatedwith H tk,0 ( ) is unity for the parameter
values 0,ABd = T5 2 ,n ( )l p= and that the corresponding time evolution operatorU tk,0 ( ) haswinding
number 1. For ourmodel (30), we choose the parameters ofH0 such that 0ABd = and T5 .nl p= The Floquet
operator of the (translationally invariant) system governed byH is again equal to the identity.

We nowuse equation (28) to predict the number of helical edgemode pairs, N 1 ,TR ( )n = that will appear
for thismodel when defined in a strip geometry. First, note that for the systemwithout edges the Bloch-space
evolution is periodic with its zone-edge gap open, and henceU t U tk k, , .˜ ( ) ( )= Second, because the evolution in
thefirst half of the driving corresponds to that of themodel discussed in section 2.2, we know that the evolution
for t T0 2< possesses exactly one zone edge singularity. Hence p= 1 andwe have

1 1 1. 31p
TR ( ) ( ) ( )n = - = -

We thus expect one helical edgemode pair to appear in the zone edge gap, for each edge.
To confirm the analysis above, we numerically study thismodel in a strip geometry, with edges parallel to the

y-direction. TheHamiltonian of the strip geometry system is obtained by truncating the real-space tight-binding
Hamiltonian in the x-direction. Using this truncated tight-bindingHamiltonianwe numerically calculate the
corresponding Floquet operator, and obtain the quasienergy band structure as a function of the conserved
momentum component ky, see figure 5(d). At each edgewe find a pair of helicalmodes, which are time-reversal
conjugates of each other. Thismodel thus explicitly demonstrates the existence of anomalous helical edgemodes

4
Note that ifU tk,˜ ( ) has singularities occurring at t T 2= , they can bemoved slightly away from this plane in tk, -space by adding a small

perturbation.
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in 2Dperiodically driven systemswith TRI, and shows that non-trivial topology can be found even in a case with
only two bands.

3.3.3. 2 index for a 3D periodically driven systemwith time-reversal symmetry
The 2 index for 2D systems, see equations (28)and(29), can also be used to define a 2 index m3D ( )n for 3D
systemswith time-reversal symmetry. The index m3D ( )n indicates whether or not Floquet gapmhosts non-
trivial surface states, analogous to those of a strong topological insulator. In the sameway as for the non-driven
case, we consider the two 2DTRI systems defined by the restriction ofU tk,( ) to the planes ki= 0 and k a,i p=
where i can be x y, or z.We then identify the index m3D ( )n as the product of the indices m ,TR ( )n from
equation (28), for the two systems. Note that if the indices calculated for the planes ki= 0 and k ai p= are the
same, their common index determines whether the system acts as aweak topological insulator in the plane
orthogonal to ki.

4.Discussion

In this paper we found that the ‘phase-band structures’ of time evolution operators provide a powerful basis for
visualizing and understanding the topology of Floquet–Bloch systems. By considering smooth deformations of
the phase bands, we showed that topologically protected degeneracies, or topological singularities, play a crucial
role in distinguishing the topology of driven and non-driven systems. In particular, the presence of phase
Brillouin zone edge topological singularities can present an obstruction to smoothly deforming the evolution of
a driven system into one obtainable in a non-driven system.Ourwork demonstrates a generalmethod for
topological classification of Floquet–Bloch systems, based on identifying all features of the phase band structure
of a given system that cannot be removed by smooth deformations. This approach appears to offermeans to
exhaustively classify Floquet–Bloch systems and to straightforwardly derive the corresponding bulk-edge
correspondences.

In the cases we considered, with symmetries imposed in analogywith the tenAltland–Zirnbauer classes, we
found that the edge spectra associatedwith individual bulk gaps of the Floquet operator have the same features as
those of non-driven systems in the corresponding symmetry classes. However, we found in all cases that periodic
driving could induce global edge spectra that are impossible to obtain in non-driven systems. In particular, with
periodic driving, topologically protected helical edge states can be produced in time-reversal invariant systems
with only two-bands, while aminimumof four bands is neededwithout driving. In each case we considered,
these new ‘anomalous’ features were closely relatedwith the appearance of zone-edge singularities in the time-
bulk. These phenomena further demonstrate that the relation between the topological properties of the bulk
evolution and the appearance of protected edgemodes is fundamentally changed in the driven context: the
topology of a periodically driven system cannot be fully characterized by the stroboscopic Floquet operator
U Tk,( ) or the corresponding effectiveHamiltonian alone.

Finally, our results provide new intuition about the topology of Floquet–Bloch systems.While time-domain
invariants such as thewinding number found in [49] offer amathematically well-defined prescription for
characterizing topology in driven systems, often a clear physical picture ismissing.Here, one of our central
results is that non-trivial topological phenomena in periodically driven systems appear when topological
singularities are introduced into the phase bands of the bulk time-evolution operator. In particular, in any
driven systemwhere the Floquet bands have different topology from that of the initial instantaneous
Hamiltonian (i.e., at t = 0), at least one topological singularitymust be encountered during the evolution.We
expect that this insightmay help provide guidance for the construction of new driving protocols to realize non-
trivial topological phases in periodically driven systems.

The instantaneous and time-non-local symmetries considered in section 3.1were chosen to illustrate the
power of the phase band framework. The symmetries altered the topology of the bulk evolution through their
ability to protect new types of topological singularities. However, we expect that other types of conditions could
give rise to newnon-trivial topology in the phase bands. The exploration of other symmetries and their role in
the topology of periodically driven systems, as well as the search for good candidate systems for their realization,
are interesting directions of future study.
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AppendixA. Time-domain expressions for the invariants 0n and 1n

In this appendixwe derive a time domain integral expression for the bulk invariant w Um [ ] in equation (9),
which corresponds to the number of edgemodes appearing in gapmwhen the system is defined in a geometry
with edges.We directly show that this invariant is equivalent to thewinding number invariantW U[ ]e of [49],
with ε set equal to a quasienergy value inside gapm:

W U
k td d

8
Tr U U U U , U U . A.1m m t m m k m m k m

2

2 x y{ } ( )† † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ò p
= ¶ ¶ ¶

HereUm is a time-periodic evolution operator, satisfyingU Tk, 1,m ( ) = which is obtained from the original
evolutionU by a smooth deformation inwhich gapm of the quasienergy spectrum is kept open. Explicitly, the
time-periodic evolution operatorUm can be obtained by deforming the final values of the phase bands Tk,n ( )f
to zero for n m1, , ,= ¼ while thefinal values of the remaining bands are deformed to 2 .p

In order to demonstrate the equivalence of the two invariants, i.e., to show w U W U ,m m[ ] [ ]= wefirst
consider two special cases and then discuss the general situation.

In this appendixwe label points in the 3D tk, -space by a single dimensionless vector

a

t

T
s

k

2
, .

⎛
⎝⎜

⎞
⎠⎟p

=

A.1.Winding number in the case of no singularities
To begin, wefirst consider the case whereU tk,m ( ) has no topological singularities in the zone-edge gap. It is
then possible to continuously deform the evolution operatorUm into one corresponding to a non-driven
system, as described in section 1. In doing so, thewinding numberW U ,m[ ] a topological invariant, cannot
change its value. After the deformation,W Um[ ] is simply thewinding number of a non-driven systemdescribed
by theHamiltonian

H
T

P Tk k
2

, . A.2m
n m

N

n
1

( ) ( ) ( )åp
=

= +

Thewinding number of a system governed by such aHamiltonianwas found in [49] to be C ,
n

m
n1å = whereCn is

the Chern number of Floquet band n. Hence

W U C , no zone edge singularities . A.3m
n

m

n
1

( - ) ( )⎡⎣ ⎤⎦ å=
=

Note that thewinding numberwill always be zero in the quasienergy zone-edge gap if the phase bands do not
host any zone-edge singularities. This follows from the fact that the sumofChern numbers for all bandsmust
evaluate to zero, C 0.

n

N
n1å ==

A.2.Winding number in the case of one singularity
Wenow consider the casewhere Tk, 0n ( )f = for all n, andU tk,m ( ) has only one singularity in the zone-edge
gap, located at a t Ts k 2 , .0 0 0( ( ) )p= At the singularity, the two touching bandsN and 1 have phases df and

2 ,df p- where df is a real number determined by details of the evolution. In this case we can deform the phase
bands to zero for all tk, , except in a small spherical neighbourhood of radius sd that surrounds the singularity
(here lengths are computedwith respect to the usual normon the dimensionless vector s).Within the
neighborhood, all N 2- bands not involved in the singularity can still beflattened. The phase values of the two
intersecting bands are deformed to evolve linearly from zero at the edge of the neighbourhood toπ and p- at the
center (letting df go continuously toπ in the process), see figure 6.Under the deformationwe keep the
eigenstates ofU sm ( ) constant everywhere.

The deformed evolution operatorUm˜ is equal to the identity for all s, except in the small region of radius sd
that surrounds the singularity (see figure 6).Within this neighbourhood,Um˜ takes the form

U Ms s , A.4m
n N

n n
a b N

a b ab
1, , 1,

˜ ( ) ∣ ∣ ∣ ∣ ( ) ( )å åc c y y= ñá + ñá
¹ =

where M sab ( ) is a 2×2matrix whose eigenvectors are the eigenvectors of thematrix Ss s .j jk k0( ) s- Here, the
real invertible 3×3matrix Swas defined in section 1.1, and k{ }s are the Paulimatrices. From the description of
theflattened phase bands above, we know that the logarithms of the eigenvalues ofMmust grow linearly from0
at ss s0∣ ∣ d- = to ip- and ip at s s .0= For ss s ,0∣ ∣ d- < Mab thus takes the form

17

New J. Phys. 17 (2015) 125014 FNathan andMSRudner



M v v
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e

e . A.5
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i 1
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0
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( ) ( ) ( )

( ) ( ) ( )

∣ ∣

∣ ∣

*
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=

+

p d

p d

- - - -

+ + - - -

The vectors v s( )- and v s( )+ are the eigenvectors of the traceless 2×2Hermitianmatrix Ss s ,j jk k0( ) s-
corresponding to negative and positive eigenvalue, respectively. Since thematrix S is real and invertible, we can
write it as S R R ,1 2= L whereR1 andR2 are orthogonal andΛ is a diagonalmatrix with positive entries (this is the
singular value decomposition of S, see e.g.,[59]). A continuous deformation of the entries ofΛ to 1 results in a
orthogonality-preserving continuous interpolation of the eigenvectors v s( ) to the eigenvectors of
R s s ,jk j k0( ) s- where R R R .1 2= By continuously deforming the vectors v in this way,Um˜ is deformed into an
evolution operatorVm still of the formA.4, butwith thematrixM given by

M

s

s
R s

s

s s

s s s s

1, ,

exp
i

, .
A.6

i
ij j

0

0 0( )( )
∣ ∣

∣ ∣
( )

⎧
⎨⎪
⎩⎪

⎡
⎣⎢

⎤
⎦⎥

d
p

d
s d

=
- >

-
-

- - <

Recall thatR is orthogonal and its determinant R∣ ∣ is the charge of the singularity, q R R S ,1 2∣ ∣∣ ∣ ∣ ∣= = see
equation (6). In appendix Bwe explicitly evaluate thewinding number A.1 of the evolution operatorVm.We
find:

W V R q. A.7m ∣ ∣ ( )⎡⎣ ⎤⎦ = - º -

Using the fact that thewinding number could not change during the deformation fromUm toVm, we thus
establish

W U q. A.8m ( )⎡⎣ ⎤⎦ = -

In otherwords, ifUm contains one isolated singularity, thewinding number ofUm is given by the corresponding
charge of the singularity (with aminus sign).

A.3. The general case
Wenow consider the general case, whereUm hasN topological singularities in the zone-edge gap, with charges
q .i

m{ }( ) In order to evaluate thewinding number, we deformU tk,m ( ) as described in section 2.1 and shown in
figure 3. The deformed evolution is the identity everywhere except for in small isolated regions surrounding the
singularities (region I), as well as in the short ramping time-interval td at the end of the driving (region II).

Thewinding number A.1 is defined as an integral over tk, -space of the quantity

F tk,
1

8
Tr U U U U , U U .m m t m m k m m k m2 x y

( ) { [ ]}† † †

p
= ¶ ¶ ¶ For the deformed, ‘band-flattened,’ system, Fm is only

non-zero in each of the isolated regions that surround the singularities, and in the final ramp region II.We can
therefore split up the integral of Fm into a sumof integrals over each of these non-trivial regions.

From thefirst special case we examined, i.e., for an evolutionwith no singularities, we know that the integral
of F tk,m ( ) over region II equals C ,

n

m
n1å = where Cn{ }are theChern numbers of Floquet bands m1, , .¼ From

the second special case, we know that the integral of F tk,m ( ) over one of the regions surrounding a zone-edge
singularity equalsminus the charge of the singularity, i.e., q.-

Figure 6.The deformation of an isolated singularity discussed in sectionA.2. In the figure, phase band 1 (blue) is shifted up by 2p for
clarity of illustration.
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Summing the integrals over all regions, we obtain:

W U C q . A.9m
n

m

n
i

N

i
m

1 1

( )( )⎡⎣ ⎤⎦ å å= -
= =

Note thatUm can be constructed by deforming the phase bands ofU only at the end of the driving. Therefore the
net charge of all zone-edge singularities in the time-bulk should be the same forU andUm. Thus

q q ,
i i

m
i i

ZES( ) ( )å å= where qi
ZES{ }( ) are the zone-edge singularity charges for the original systemwith evolution

governed byU. Hence, wefinally have the result for the number of edgemodes in a 2D system:

W U C q w U . A.10m
n

m

n
i

i m
1

ZES [ ] ( )( )⎡⎣ ⎤⎦ å å= - =
=

This is what we set out to show.

Appendix B.Derivation of equation (A8)

In this appendixwe prove that thewinding number A.1 of an evolution operatorVm of the form in equationA.4,
with thematrixM given in A.6, is equal to R .∣ ∣- Webegin by insertingVm from equations (A.4) and (A.6) into
equation (A.1), to obtain

W s
24

d Tr M M M M M M , B.1
ijk

ss s
s s s2

3
i j k

0

{ } ( )† † †ò
e
p

= ¶ ¶ ¶
d- <

where ijke is the Levi–Civita symbol. Summation over repeated indices is used andwill be used in the rest of this
appendix.

In order to exploit the s-space spherical symmetry of the deformed evolutionVm, we shift fromCartesian
coordinates to spherical coordinates centred around s ,0 defined such that

s s ss s sin sin , sin cos , cos . B.20 ( ) ( )q f q f q- º

After the coordinate transformation,W is expressed as

W s J J J J
24

d d d

Tr M M M M M M , B.3

ijk s

i j k2 0 0 0

2

{ }
∣ ∣

· ( )† † †

ò ò ò
e
p

q f=

¶ ¶ ¶

d p p
a b g

a b g

where J is the Jacobianmatrix of the coordinate transformation, and theGreek letters , ,a b g run over the
coordinates s, , .q f Wenowuse the following useful identity for the Levi-Civita symbol that holds for any real
invertible 3×3matrixA[59]:

A A A
A

. B.4i j k ijk ∣ ∣
( )e

e
=a b g

abg

With the help of this identity we see that the Jacobianmatrices always cancel out:

W s
24

d d d

Tr M M M M M M .

s

2 0 0 0

2

{ }† † †

ò ò ò
e
p

q f=

¶ ¶ ¶

abg d p p

a b g

Summing over the indices, we obtain:

W s
1

8
d d d

Tr M M M M, M M .

s

s

2 0 0 0

2

{ }† † †⎡⎣ ⎤⎦
ò ò òp

q f=

¶ ¶ ¶

d p p

q f

Using the cyclic property of the trace aswell as the identity MM M M ,† †¶ = - ¶ we get

W s
1

8
d d d

Tr M M M , M . B.5

s

s

2 0 0 0

2

{ } ( )† †⎡⎣ ⎤⎦
ò ò òp

q f=-

¶ ¶ ¶

d p p

q f

Wenow consider the explicit canonical formofM, equation (A.6), in polar coordinates, in the region
ss s :0∣ ∣  d-
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M
s

s s s, , exp
i

, B.60( )( ) · ( )⎜ ⎟⎛
⎝

⎞
⎠tq f

p
d

= - - -

where R .i ij jt s= Defining s ss s, ,0ˆ ( ) ( )q f = - we evaluate each of the factors in the integrand

M M
s

s

M
s

s
s

M
s

s
s

i
,

i sin ,

i sin .

s ˆ ·

ˆ ·

ˆ ·

†

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

t

t

t

p
d

p
d
p
d

¶ =-

¶ = ¶

¶ = ¶

q q

f f

Hence, after performing the integral over s, we obtain

W s s s
i

16
d d Tr , . B.7

0 0

2 { }ˆ · ˆ · ˆ · ( )⎡⎣ ⎤⎦ò ò t t t
p

q f= ¶ ¶
p p

q f

Working on the integrand, we note:

s s s

s s s R R R

Tr

Tr . B.8i j k ia jb kc a b c

{ }( )( )( )ˆ · ˆ · ˆ ·

ˆ ˆ ˆ { } ( )

t t t

s s s

¶ ¶

= ¶ ¶

q f

q f

Using the Paulimatrix identity Tr 2i ,i j k ijk{ }s s s e= we obtain

s s s s s s iR R R

s s s i R

Tr 2

2 .

i j k ia jb kc abc

i j k ijk

{ }( )( )( )ˆ · ˆ · ˆ · ˆ ˆ ˆ ·

ˆ ˆ ˆ · ∣ ∣

t t t e

e

¶ ¶ = ¶ ¶

= ¶ ¶

q f q f

q f

Herewe used the Levi-Civita symbol identity (B.4), and the fact that R R .1∣ ∣ ∣ ∣=- Restoring antisymmetry in θ
andf, and going back to vector notation, we have

s s s R s s s

R

Tr , 4i

4i sin . B.9

{ }( ) ( ) ( ) ( )ˆ · ˆ · ˆ · ∣ ∣ ˆ · ˆ ˆ

∣ ∣ ( )

⎡⎣ ⎤⎦t t t

q

¶ ¶ = ¶ ´ ¶

=

q f q f

Hence the integrand in equation (B.7) is simply R4i ∣ ∣ times the surface area element of the sphere.We thus have

W R

R

i

16
d d 4i sin

0 0

2
∣ ∣

∣ ∣
ò òp

q f q=

=-

p p

Recalling that q sgn S R ,∣ ∣ ∣ ∣= = we see that thewinding number contribution of an isolated singularity is
given by the charge q of the singularity.

AppendixC. Sign change of the Pfaffian for zone-edge singularities passing
through t= T

In section 3.2 of themain text, on the topological classification of 1D systemswith particle hole symmetry, we
made use of the fact that the sign of Pf Heff[ ] switches when a phase-π (i.e., zone edge) singularity passes through
the plane t= T due to a continuous deformation of the evolution. In this appendixwe give a proof of this
statement.

We begin by introducing an alternative labeling for the phase bands at the inversion-invariant points in the
Brillouin zone. A crucial point in this paper is that it is not always possible to define the eigenstate projectors
P k t,n{ ( )}of the evolution operator such that they are continuous everywhere in k,t-space. However, we can
always define them such that they are continuous along an arbitrary line in k t, -space. At an inversion-invariant
point kinv in themomentumBrillouin zone, we can therefore write the evolution operator of a particle-hole
symmetric system in the form

U k t P t P t, e e , C.1
n

n
t

n
t

inv
i T in n( ) ˆ ( ) ˆ ( ) ( )ˆ ( ) ˆ ( )⎡⎣ ⎤⎦å= -f f-

where both the projectors P tn̂ ( ) and the phases tn
ˆ ( )f are continuous functions of t, andwe suppress the

momentum index kinv for brevity. Here, the projector Pn
Tˆ is the transpose of Pn̂ in the basis

where H k t H k t, , .( ) ( )*= - -
Whenwe impose the requirement that the projectors P tn{ ˆ ( )}are continuous in t, the labeling scheme

defined in section 3.2 cannot be employed. In particular, in the original scheme the phases k t,n{ ( )}f were
constrained to live within the interval 0, ,[ ]p ‘bouncing’ off the phase Brillouin zone edgewhenmeeting a
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conjugate partner band there. Under the new construction, continuity of the projectors requires that the phases
of conjugate bands pass through each other, such that a phase tn

ˆ ( )f maymove from inside to outside the
interval 0, .[ ]p Wenote that such crossings of partner bands are protected by symmetry and can occur at phases
which are either even or oddmultiples ofπ.We identify them respectively as phase-0 and phase-π topological
singularities.

We nowuse this picture of topological singularities to show that the Pfaffian of Heff changes its signwhen a
phase-π singularity passes through the plane t= T.We first express the effectiveHamiltonian H k ,eff inv( ) at the
inversion invariant point k ,inv in terms of the continuously defined phase bands nf̂ and P :n̂

H k F T P T P T . C.2
n

n n neff inv
T( )( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )⎡⎣ ⎤⎦å f= -

Here F is themodulo 2p function, defined such that it takes value between p- andπ. The Pfaffian of Heff can
then bewritten as (see, e.g., [60]):

P PPf H k Pf T T F T . C.3n n neff inv
n

T

n
( ) ( )( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥å  f= -

Abovewe identified phase-π singularities as crossings of partner bands t ,n
ˆ ( )f tn

ˆ ( )¯f through the phase Brillouin
zone edge at phaseπ. Hence, under a continuous deformationwhere a phase-π singularity passes through the
plane t= T, the value of Tn

ˆ ( )f for some n crosses through an oddmultiple ofπ. As Tn
ˆ ( )f passes through the

quasienergy zone edge, F Tn( ˆ ( ))f therefore changes it sign. During this process, F Tn( ˆ ( ))f for all other n and all
of the eigenstate projectors Pn{ ˆ }may only change infinitesimally. From the above expression for the Pfaffian,
equation (C.3), it then follows that Pf H keff inv[ ( )] changes its signwhen a phase-π singularity passes
through t= T.

AppendixD. Proof that TR-conjugate singularities cannot annihilate

In this appendixwe show that twoTR-conjugate zone-edge singularities cannot annihilate with each other, as
claimed in section 3.3. The argument follows indirectly from themain text.

The discussion in section 3.3 implies that if it were possible for conjugate singularities to annihilate, the
evolution of any systemwith TRI could be smoothly deformed to the identity, while keeping the zone-edge gap
open.However, in section 3.3we saw an example of a systemwith one pair of helical edgemodes in its zone-edge
gap. Suppose it were possible to deform the evolution of this system into the identity, without breaking TRI or
closing the zone-edge gap. Then the helical edgemodes would have to disappear without a quasienergy gap
closing.However, this is impossible and implies a contradiction. Hence it is not be possible for a pair of time-
reversal conjugate singularities to annihilate each other.
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