60 research outputs found

    Topological visual localization using decentralized galois lattices

    Get PDF
    This paper presents a new decentralized method for selecting visual landmarks in a structured environment. Different images, issued from the different places, are analyzed, and primitives are extracted to determine whether or not features are present in the images. Subsequently, landmarks are selected as a combination of these features with a mathematical formalism called Galois - or concept - lattices. The main drawback of the general approach is the exponential complexity of lattice building algorithms. A decentralized approach is therefore defined and detailed here: it leads to smaller lattices, and thus to better performance as well as an improved legibility

    Topological Visual Localization Using Decentralized Galois Lattices

    Get PDF
    Abstract. This paper presents a new decentralized method for selecting visual landmarks in a structured environment. Different images, issued from the different places, are analyzed, and primitives are extracted to determine whether or not features are present in the images. Subsequently, landmarks are selected as a combination of these features with a mathematical formalism called Galois -or concept-lattices. The main drawback of the general approach is the exponential complexity of lattice building algorithms. A decentralized approach is therefore defined and detailed here: it leads to smaller lattices, and thus to better performance as well as an improved legibility

    Characterization of image sets: the Galois Lattice approach

    Get PDF
    This paper presents a new method for supervised image classification. One or several landmarks are attached to each class, with the intention of characterizing it and discriminating it from the other classes. The different features, deduced from image primitives, and their relationships with the sets of images are structured and organized into a hierarchy thanks to an original method relying on a mathematical formalism called Galois (or Concept) Lattices. Such lattices allow us to select features as landmarks of specific classes. This paper details the feature selection process and illustrates this through a robotic example in a structured environment. The class of any image is the room from which the image is shot by the robot camera. In the discussion, we compare this approach with decision trees and we give some issues for future research

    Approche décentralisée des treillis de Galois pour la localisation topologique

    Get PDF
    Ce papier présente une nouvelle technique pour la localisation d'un robot mobile autonome dans un environnement structuré. La localisation est topologique et se base sur les amers visuels. Ces amers sont des combinaisons de caractéristiques visuelles sélectionnées à l'aide d'un formalisme mathématique appelé treillis de Galois, ou treillis de concepts. Pour des très gros contextes, l'approche décentralisée est introduite afin de réduire le nombre de concepts et le temps de construction du treillis. Les algorithmes complets ont été validés expérimentalement et sont exposés dans ce papier

    Computational Intelligence and Human- Computer Interaction: Modern Methods and Applications

    Get PDF
    The present book contains all of the articles that were accepted and published in the Special Issue of MDPI’s journal Mathematics titled "Computational Intelligence and Human–Computer Interaction: Modern Methods and Applications". This Special Issue covered a wide range of topics connected to the theory and application of different computational intelligence techniques to the domain of human–computer interaction, such as automatic speech recognition, speech processing and analysis, virtual reality, emotion-aware applications, digital storytelling, natural language processing, smart cars and devices, and online learning. We hope that this book will be interesting and useful for those working in various areas of artificial intelligence, human–computer interaction, and software engineering as well as for those who are interested in how these domains are connected in real-life situations

    Graduate School: Course Decriptions, 1972-73

    Full text link
    Official publication of Cornell University V.64 1972/7

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore