3 research outputs found

    Exploring Topological Environments

    Get PDF
    Simultaneous localization and mapping (SLAM) addresses the task of incrementally building a map of the environment with a robot while simultaneously localizing the robot relative to that map. SLAM is generally regarded as one of the most important problems in the pursuit of building truly autonomous mobile robots. This thesis considers the SLAM problem within a topological framework, in which the world and its representation are modelled as a graph. A topological framework provides a useful model within which to explore fundamental limits to exploration and mapping. Given a topological world, it is not, in general, possible to map the world deterministically without resorting to some type of marking aids. Early work demonstrated that a single movable marker was sufficient but is this necessary? This thesis shows that deterministic mapping is possible if both explicit place and back-link information exist in one vertex. Such 'directional lighthouse' information can be established in a number of ways including through the addition of a simple directional immovable marker to the environment. This thesis also explores non-deterministic approaches that map the world with less marking information. The algorithms are evaluated through performance analysis and experimental validation. Furthermore, the basic sensing and locomotion assumptions that underlie these algorithms are evaluated using a differential drive robot and an autonomous visual sensor

    Exploring Topological Environments

    Get PDF
    Simultaneous localization and mapping (SLAM) addresses the task of incrementally building a map of the environment with a robot while simultaneously localizing the robot relative to that map. SLAM is generally regarded as one of the most important problems in the pursuit of building truly autonomous mobile robots. This thesis considers the SLAM problem within a topological framework, in which the world and its representation are modelled as a graph. A topological framework provides a useful model within which to explore fundamental limits to exploration and mapping. Given a topological world, it is not, in general, possible to map the world deterministically without resorting to some type of marking aids. Early work demonstrated that a single movable marker was sufficient but is this necessary? This thesis shows that deterministic mapping is possible if both explicit place and back-link information exist in one vertex. Such 'directional lighthouse' information can be established in a number of ways including through the addition of a simple directional immovable marker to the environment. This thesis also explores non-deterministic approaches that map the world with less marking information. The algorithms are evaluated through performance analysis and experimental validation. Furthermore, the basic sensing and locomotion assumptions that underlie these algorithms are evaluated using a differential drive robot and an autonomous visual sensor

    A cooperative architecture for target localization using underwater vehicles

    Get PDF
    Nous nous intéressons à l'architecture de robots marins et sous-marins autonomes dans le cadre de missions nécessitant leur coopération. Cette coopération s'avère difficile du fait que la communication (acoustique) est très contrainte en termes de débit et de portée.  Notre travail se place dans le contexte de missions d'exploration pour détecter des éléments particuliers sur les fonds marins, et en particulier des sources d'eau chaude. Pour cela, le véhicule sous-marin parcours des segments de droite pré-planifiés et rejoint des points de rendez-vous (points de communication). Ces derniers permettent d'assurer le suivi de bon déroulement de la mission, mais surtout de mettre en oeuvre des schémas de coopération entre les véhicules sous-marins. Au fur et à mesure de l'exploration, les sous-marins construisent et mettent à jour une représentation de l'environnement qui décrit les probabilités de localisation de sources. Une approche adaptative exploite ces informations et permet de dévier les sous-marins de leurs plan initial pour augmenter la quantité d'information, tout en respectant les contraintes du plan initial, et en particulier les rendez-vous de communication. Lors des rendez-vous, chaque véhicule échange ses données avec les autres, en ne transmettant que les informations nécessaires à la mise en place de schémas de coopération. L'ensemble de ces fonctions sont intégrées au sein de l'architecture existante T-REX, pour laquelle nous proposons des composants supplémentaires qui permettent la cartographie des fonds et la définition de schémas de coopération. Différentes simulations permettent d'évaluer les travaux proposés. ABSTRACT : There is a growing research interest in Autonomous Underwater Vehicles (AUV), due to the need for increasing our knowledge about the deep sea and understanding the effects the human way of life has on it. This need has pushed the development of new technologies to design more efficient and more autonomous underwater vehicles. Autonomy refers, in the context of this thesis, to the “decisional autonomy”, i.e. the capability of taking decisions, in uncertain, varying and unknown environments. A more recent concern in AUV area is to consider a fleet of vehicles (AUV, ASV, etc). Indeed, multiple vehicles with heterogeneous capabilities have several advantages over a single vehicle system, and in particular the potential to accomplish tasks faster and better than a single vehicle. Underwater target localization using several AUVs (Autonomous Underwater Vehicles) is a challenging issue. A systematic and exhaustive coverage strategy is not efficient in term of exploration time: it can be improved by making the AUVs share their information and cooperate to optimize their motions. The contribution of this thesis is the definition of an architecture that integrates such a strategy that adapts each vehicle motions according to its and others’ sensory information. Communication points are required to make underwater vehicles exchange information : for that purpose the system involves one ASV (Autonomous Surface Vehicle), that helps the AUVs re-localize and exchange data, and two AUVs that adapt their strategy according to gathered information, while satisfying the associated communication constraints. Each AUV is endowed with a sensor that estimates its distance with respect to targets, and cooperates with others to explore an area with the help of an ASV. To provide the required autonomy to these vehicles, we build upon an existing system (T-REX) with additional components, which provides an embedded planning and execution control framework. Simulation results are carried out to evaluate the proposed architecture and adaptive exploration strategy
    corecore