828 research outputs found

    Model Checking Spatial Logics for Closure Spaces

    Full text link
    Spatial aspects of computation are becoming increasingly relevant in Computer Science, especially in the field of collective adaptive systems and when dealing with systems distributed in physical space. Traditional formal verification techniques are well suited to analyse the temporal evolution of programs; however, properties of space are typically not taken into account explicitly. We present a topology-based approach to formal verification of spatial properties depending upon physical space. We define an appropriate logic, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. We lift the topological definitions to the more general setting of closure spaces, also encompassing discrete, graph-based structures. We extend the framework with a spatial surrounded operator, a propagation operator and with some collective operators. The latter are interpreted over arbitrary sets of points instead of individual points in space. We define efficient model checking procedures, both for the individual and the collective spatial fragments of the logic and provide a proof-of-concept tool

    Modal logic of planar polygons

    Get PDF
    We study the modal logic of the closure algebra P2P_2, generated by the set of all polygons in the Euclidean plane R2\mathbb{R}^2. We show that this logic is finitely axiomatizable, is complete with respect to the class of frames we call "crown" frames, is not first order definable, does not have the Craig interpolation property, and its validity problem is PSPACE-complete

    On the Decidability of Connectedness Constraints in 2D and 3D Euclidean Spaces

    Get PDF
    We investigate (quantifier-free) spatial constraint languages with equality, contact and connectedness predicates as well as Boolean operations on regions, interpreted over low-dimensional Euclidean spaces. We show that the complexity of reasoning varies dramatically depending on the dimension of the space and on the type of regions considered. For example, the logic with the interior-connectedness predicate (and without contact) is undecidable over polygons or regular closed sets in the Euclidean plane, NP-complete over regular closed sets in three-dimensional Euclidean space, and ExpTime-complete over polyhedra in three-dimensional Euclidean space.Comment: Accepted for publication in the IJCAI 2011 proceeding

    Succinctness in subsystems of the spatial mu-calculus

    Full text link
    In this paper we systematically explore questions of succinctness in modal logics employed in spatial reasoning. We show that the closure operator, despite being less expressive, is exponentially more succinct than the limit-point operator, and that the μ\mu-calculus is exponentially more succinct than the equally-expressive tangled limit operator. These results hold for any class of spaces containing at least one crowded metric space or containing all spaces based on ordinals below ωω\omega^\omega, with the usual limit operator. We also show that these results continue to hold even if we enrich the less succinct language with the universal modality

    Distributive contact join-semilattices

    Full text link
    Contact algebra is one of the main tools in region-based theory of space. In \cite{dmvw1, dmvw2,iv,i1} it is generalized by dropping the operation Boolean complement. Furthermore we can generalize contact algebra by dropping also the operation meet. We call the obtained structure a distributive contact join-semilattice (DCJS). We obtain representation theorems for DCJS and the universal theory of DCJS which is decidable
    corecore