12,032 research outputs found

    Loop Quantum Gravity a la Aharonov-Bohm

    Full text link
    The state space of Loop Quantum Gravity admits a decomposition into orthogonal subspaces associated to diffeomorphism equivalence classes of spin-network graphs. In this paper I investigate the possibility of obtaining this state space from the quantization of a topological field theory with many degrees of freedom. The starting point is a 3-manifold with a network of defect-lines. A locally-flat connection on this manifold can have non-trivial holonomy around non-contractible loops. This is in fact the mathematical origin of the Aharonov-Bohm effect. I quantize this theory using standard field theoretical methods. The functional integral defining the scalar product is shown to reduce to a finite dimensional integral over moduli space. A non-trivial measure given by the Faddeev-Popov determinant is derived. I argue that the scalar product obtained coincides with the one used in Loop Quantum Gravity. I provide an explicit derivation in the case of a single defect-line, corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded

    Complex Networks and Symmetry I: A Review

    Get PDF
    In this review we establish various connections between complex networks and symmetry. While special types of symmetries (e.g., automorphisms) are studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis of more general symmetries in real complex networks is far less developed. We argue that real networks, as any entity characterized by imperfections or errors, necessarily require a stochastic notion of invariance. We therefore propose a definition of stochastic symmetry based on graph ensembles and use it to review the main results of network theory from an unusual perspective. The results discussed here and in a companion paper show that stochastic symmetry highlights the most informative topological properties of real networks, even in noisy situations unaccessible to exact techniques.Comment: Final accepted versio

    Extended matter coupled to BF theory

    Get PDF
    Recently, a topological field theory of membrane-matter coupled to BF theory in arbitrary spacetime dimensions was proposed [1]. In this paper, we discuss various aspects of the four-dimensional theory. Firstly, we study classical solutions leading to an interpretation of the theory in terms of strings propagating on a flat spacetime. We also show that the general classical solutions of the theory are in one-to-one correspondence with solutions of Einstein's equations in the presence of distributional matter (cosmic strings). Secondly, we quantize the theory and present, in particular, a prescription to regularize the physical inner product of the canonical theory. We show how the resulting transition amplitudes are dual to evaluations of Feynman diagrams coupled to three-dimensional quantum gravity. Finally, we remove the regulator by proving the topological invariance of the transition amplitudes.Comment: 27 pages, 7 figure

    On 2-form gauge models of topological phases

    Get PDF
    We explore various aspects of 2-form topological gauge theories in (3+1)d. These theories can be constructed as sigma models with target space the second classifying space B2GB^2G of the symmetry group GG, and they are classified by cohomology classes of B2GB^2G. Discrete topological gauge theories can typically be embedded into continuous quantum field theories. In the 2-form case, the continuous theory is shown to be a strict 2-group gauge theory. This embedding is studied by carefully constructing the space of qq-form connections using the technology of Deligne-Beilinson cohomology. The same techniques can then be used to study more general models built from Postnikov towers. For finite symmetry groups, 2-form topological theories have a natural lattice interpretation, which we use to construct a lattice Hamiltonian model in (3+1)d that is exactly solvable. This construction relies on the introduction of a cohomology, dubbed 2-form cohomology, of algebraic cocycles that are identified with the simplicial cocycles of B2GB^2G as provided by the so-called WW-construction of Eilenberg-MacLane spaces. We show algebraically and geometrically how a 2-form 4-cocycle reduces to the associator and the braiding isomorphisms of a premodular category of GG-graded vector spaces. This is used to show the correspondence between our 2-form gauge model and the Walker-Wang model.Comment: 78 page

    Topological Defects on the Lattice I: The Ising model

    Get PDF
    In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.Comment: 45 pages, 9 figure

    Topological Defect Lines and Renormalization Group Flows in Two Dimensions

    Get PDF
    We consider topological defect lines (TDLs) in two-dimensional conformal field theories. Generalizing and encompassing both global symmetries and Verlinde lines, TDLs together with their attached defect operators provide models of fusion categories without braiding. We study the crossing relations of TDLs, discuss their relation to the 't Hooft anomaly, and use them to constrain renormalization group flows to either conformal critical points or topological quantum field theories (TQFTs). We show that if certain non-invertible TDLs are preserved along a RG flow, then the vacuum cannot be a non-degenerate gapped state. For various massive flows, we determine the infrared TQFTs completely from the consideration of TDLs together with modular invariance.Comment: 101 pages, 63 figures, 2 tables; v3: minor changes, added footnotes and references, published versio

    The Hilbert space of Chern-Simons theory on the cylinder. A Loop Quantum Gravity approach

    Full text link
    As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.Comment: Minor changes and some references added. Latex, 16 pages, 1 figur

    Topological Lattice Models in Four Dimensions

    Get PDF
    We define a lattice statistical model on a triangulated manifold in four dimensions associated to a group GG. When G=SU(2)G=SU(2), the statistical weight is constructed from the 15j15j-symbol as well as the 6j6j-symbol for recombination of angular momenta, and the model may be regarded as the four-dimensional version of the Ponzano-Regge model. We show that the partition function of the model is invariant under the Alexander moves of the simplicial complex, thus it depends only on the piecewise linear topology of the manifold. For an orientable manifold, the model is related to the so-called BFBF model. The qq-analogue of the model is also constructed, and it is argued that its partition function is invariant under the Alexander moves. It is discussed how to realize the 't Hooft operator in these models associated to a closed surface in four dimensions as well as the Wilson operator associated to a closed loop. Correlation functions of these operators in the qq-deformed version of the model would define a new type of invariants of knots and links in four dimensions.Comment: 14 page
    • …
    corecore