162 research outputs found

    SoK : Remote Power Analysis

    Get PDF
    In recent years, numerous attacks have appeared that aim to steal secret information from their victim using the power side-channel vector, yet without direct physical access. These attacks are called Remote Power Attacks or Remote Power Analysis, utilizing resources that are natively present inside the victim environment. However, there is no unified definition about the limitations that a power attack requires to be defined as remote. This paper aims to propose a unified definition and concrete threat models to clearly differentiate remote power attacks from non-remote ones. Additionally, we collect the main remote power attacks performed so far from the literature, and the principal proposed countermeasures to avoid them. The search of such countermeasures denoted a clear gap in preventing remote power attacks at the technical level. Thus, the academic community must face an important challenge to avoid this emerging threat, given the clear room for improvement that should be addressed in terms of defense and security of devices that work with private information.acceptedVersionPeer reviewe

    Set It and Forget It! Turnkey ECC for Instant Integration

    Get PDF
    Historically, Elliptic Curve Cryptography (ECC) is an active field of applied cryptography where recent focus is on high speed, constant time, and formally verified implementations. While there are a handful of outliers where all these concepts join and land in real-world deployments, these are generally on a case-by-case basis: e.g.\ a library may feature such X25519 or P-256 code, but not for all curves. In this work, we propose and implement a methodology that fully automates the implementation, testing, and integration of ECC stacks with the above properties. We demonstrate the flexibility and applicability of our methodology by seamlessly integrating into three real-world projects: OpenSSL, Mozilla's NSS, and the GOST OpenSSL Engine, achieving roughly 9.5x, 4.5x, 13.3x, and 3.7x speedup on any given curve for key generation, key agreement, signing, and verifying, respectively. Furthermore, we showcase the efficacy of our testing methodology by uncovering flaws and vulnerabilities in OpenSSL, and a specification-level vulnerability in a Russian standard. Our work bridges the gap between significant applied cryptography research results and deployed software, fully automating the process

    A Systematic Appraisal of Side Channel Evaluation Strategies

    Get PDF
    In this paper we examine the central question that is how well do side channel evaluation regimes capture the true security level of a product. Concretely, answering this question requires considering the optimality of the attack/evaluation strategy selected by the evaluator, and the various steps to instantiate it. We draw on a number of published works and discuss whether state-of-the-art solutions for the different steps of a side-channel security evaluation offer bounds or guarantees of optimality, or if they are inherently heuristic. We use this discussion to provide an informal rating of the steps\u27 optimality and to put forward where risks of overstated security levels remain

    SoK: Privacy-Preserving Signatures

    Get PDF
    Modern security systems depend fundamentally on the ability of users to authenticate their communications to other parties in a network. Unfortunately, cryptographic authentication can substantially undermine the privacy of users. One possible solution to this problem is to use privacy-preserving cryptographic authentication. These protocols allow users to authenticate their communications without revealing their identity to the verifier. In the non-interactive setting, the most common protocols include blind, ring, and group signatures, each of which has been the subject of enormous research in the security and cryptography literature. These primitives are now being deployed at scale in major applications, including Intel\u27s SGX software attestation framework. The depth of the research literature and the prospect of large-scale deployment motivate us to systematize our understanding of the research in this area. This work provides an overview of these techniques, focusing on applications and efficiency

    Size, Speed, and Security: An Ed25519 Case Study

    Get PDF
    Ed25519 has significant performance benefits compared to ECDSA using Weierstrass curves such as NIST P-256, therefore it is considered a good digital signature algorithm, specially for low performance IoT devices. However, such devices often have very limited resources and thus, implementations for these devices need to be as small and as performant as possible while being secure. In this paper we describe a scenario in which an obvious strategy to aggressively optimize an Ed25519 implementation for code size leads to a small memory footprint that is functionally correct but vulnerable to side-channel attacks. This strategy serves as an example of aggressive optimizations that might be considered by cryptography engineers, developers, and practitioners unfamiliar with the power of Side-Channel Analysis (SCA). As a solution to the flawed implementation example, we use a computer-aided cryptography tool generating formally verified finite field arithmetic to generate two secure Ed25519 implementations fulfilling different size requirements. After benchmarking and comparing these implementations to other widely used implementations our results show that computer-aided cryptography is capable of generating competitive code in terms of security, speed, and size

    The Superlinearity Problem in Post-Quantum Blockchains

    Get PDF
    The proof of work mechanism by which many blockchain-based protocols achieve consensus may be undermined by the use of quantum computing in mining—even when all cryptographic primitives are replaced with post-quantum secure alternatives. First, we offer an impossibility result: we prove that quantum (Grover) speedups in solving a large, natural class of proof-of-work puzzles cause an inevitable incentive incompatibility in mining, by distorting the reward structure of mining in proof-of-work-based protocols such as Bitcoin. We refer to such distortion as the Superlinearity Problem. Our impossibility result suggests that for robust post-quantum proof-of-work-based consensus, we may need to look beyond standard cryptographic models. We thus propose a proof-of-work design in a random-beacon model, which is tailored to bypass the earlier impossibility. We conclude with a discussion of open problems, and of the challenges of integrating our new proof-of-work scheme into decentralised consensus protocols under realistic conditions

    Security Guidelines for Implementing Homomorphic Encryption

    Get PDF
    Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it was considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning with Errors (LWE). Besides its academic appeal, in recent years FHE has also attracted significant attention from industry, thanks to its applicability to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the main challenges that standards bodies, developers, and end users usually encounter is establishing parameters. This is particularly hard in the case of FHE because the parameters are not only related to the security level of the system, but also to the type of operations that the system is able to handle. In this paper, we provide examples of parameter sets for LWE targeting particular security levels that can be used in the context of FHE constructions. We also give examples of complete FHE parameter sets, including the parameters relevant for correctness and performance, alongside those relevant for security. As an additional contribution, we survey the parameter selection support offered in open-source FHE libraries

    A New Perspective on Key Switching for BGV-like Schemes

    Get PDF
    Fully homomorphic encryption is a promising solution for privacy-preserving computation. For BFV, BGV, and CKKS, three state-of-the-art fully homomorphic encryption schemes, the so-called key switching is one of the primary bottlenecks when evaluating homomorphic circuits. While a large body of work explores optimal selection for scheme parameters such as the polynomial degree or the ciphertext modulus, the realm of key switching parameters is relatively unexplored. This work closes this gap, formally exploring the parameter space for BGV-like key switching. We introduce a new asymptotic bound for key switching complexity, thereby providing a new perspective on this crucial operation. We also explore the parameter space for the recently proposed double-decomposition technique by Kim et al. [24], which outperforms current state-of-the-art only in very specific circumstances. Furthermore, we revisit an idea by Gentry, Halevi, and Smart [19] switching primes in and out of the ciphertext and find novel opportunities for constant folding, speeding up key switching by up to 50% and up to 11.6%, respectively

    Side-Channel Analysis and Cryptography Engineering : Getting OpenSSL Closer to Constant-Time

    Get PDF
    As side-channel attacks reached general purpose PCs and started to be more practical for attackers to exploit, OpenSSL adopted in 2005 a flagging mechanism to protect against SCA. The opt-in mechanism allows to flag secret values, such as keys, with the BN_FLG_CONSTTIME flag. Whenever a flag is checked and detected, the library changes its execution flow to SCA-secure functions that are slower but safer, protecting these secret values from being leaked. This mechanism favors performance over security, it is error-prone, and is obscure for most library developers, increasing the potential for side-channel vulnerabilities. This dissertation presents an extensive side-channel analysis of OpenSSL and criticizes its fragile flagging mechanism. This analysis reveals several flaws affecting the library resulting in multiple side-channel attacks, improved cache-timing attack techniques, and a new side channel vector. The first part of this dissertation introduces the main topic and the necessary related work, including the microarchitecture, the cache hierarchy, and attack techniques; then it presents a brief troubled history of side-channel attacks and defenses in OpenSSL, setting the stage for the related publications. This dissertation includes seven original publications contributing to the area of side-channel analysis, microarchitecture timing attacks, and applied cryptography. From an SCA perspective, the results identify several vulnerabilities and flaws enabling protocol-level attacks on RSA, DSA, and ECDSA, in addition to full SCA of the SM2 cryptosystem. With respect to microarchitecture timing attacks, the dissertation presents a new side-channel vector due to port contention in the CPU execution units. And finally, on the applied cryptography front, OpenSSL now enjoys a revamped code base securing several cryptosystems against SCA, favoring a secure-by-default protection against side-channel attacks, instead of the insecure opt-in flagging mechanism provided by the fragile BN_FLG_CONSTTIME flag
    corecore