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Introduction
Section 1

In recent years, the research community has made great progress toward
making privacy-preserving computation a more realistic opportunity in
everyday use. One approach is fully homomorphic encryption (FHE), in
which a client encrypts its data and outsources the computation to a pow-
erful server.

State-of-the-art schemes base security on the Learning with Errors
over Rings (RLWE) assumption [28, 25], where a ciphertext has an as-
sociated error that grows during homomorphic evaluation. Once an error
reaches a pre-determined threshold, it can be refreshed with bootstrap-
ping, a process corresponding to an encrypted homomorphic decryption.

Currently, there are two strains of schemes differing in the type of
underlying plaintext data: Boolean-based schemes encrypt single bits or
small bit groups (FHEW[16], TFHE [11]), and arithmetic-based schemes
encrypt word-sized data (BFV [5, 17], BGV [6], CKKS [10]). While the
former enjoys fast bootstrapping and high computational flexibility due
to the Boolean-based nature of the underlying data, the latter is more ef-
ficient for highly parallelizable arithmetic using a multi-level approach
with slower bootstrapping.

Three arithmetic-based schemes are considered state-of-the-art: BFV
and BGV for integer arithmetic and CKKS for approximate arithmetic.
Due to their similarities, we will refer to these schemes and related con-
cepts as BGV-like. The ringRq = Zq[X]/

(
XN + 1

)
builds the foundation

of their ciphertext space, and the ciphertext modulus q is chosen large
enough to accommodate the growing error of multiple homomorphic op-
erations. These operations are split into levels, and scheme-specific error
management techniques at a level boundary slow down error growth to
delay the expensive bootstrapping process.

Usually, BGV-like schemes encrypt and operate on vectors of plain-
text data with slot-wise additions and multiplications, additionally sup-
porting rotations over the encrypted vectors. They provide two inter-
nal housekeeping facilities, one for error management differing in each
scheme, and another called key switching. Key switching is very simi-
lar in all three schemes and requires two additional parameters: the key
switching modulus P and the decomposition number ω.

BGV-like operations and housekeeping facilities are commonly im-
plemented using two different Chinese Remainder Theorem (CRT) de-
compositions, also referred to as double CRT (DCRT) representation: the
residue number system (RNS) decomposes the ciphertext modulus into
` co-prime primes qi with q =

∏
qi enabling word-sized arithmetic over

each modulus qi, and, for fast polynomial multiplication, the forward
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and inverse number theoretic transform (NTT) are used. We also use the
RNS representation for the key switchingmodulusP, decomposing it into
k primes Pj.

The security level λ depends on the size of the modulus qP and the
polynomial degree N. For a fixed degree N, increasing q (and thus qP) in-
creases the available space for the error to grow, allowing for more com-
putations before a bootstrapping becomes necessary, simultaneously de-
creasing the security level λ. For a fixed modulus qP, increasing N in-
creases the security level λ, significantly increasing computation time
and memory requirements.

Although there exists a relatively large body of work exploring pa-
rameter selection for the security level λ, polynomial degree N, and the
ciphertext modulus q [2, 12, 1, 13, 27], the same cannot be said for the
key switching parameters P and ω. While Kim, Polyakov, and Zucca [23]
explore different methods of key switching and their complexity, they do
not provide further exploration of the parameter space for key switching.

The lack of work on key switching parameters is even more surpris-
ing considering its heavy impact on performance; it currently is consid-
ered one of the main bottlenecks for BGV-like schemes [8, 18].1 One ex-
ception is a recently published work at Crypto 2023 by Kim et al. [24],
which proposes a new double-decomposition technique for state-of-the-
art key switching. Though their work considers key switching complex-
ity in general, they also do not explore the parameter space, drawing in-
correct conclusions about the asymptotic complexity of key switching
and the effectiveness of their approach.

In this work, we aim to close the current gap in analyzing key switch-
ing parameters and, more generally, improve the current state-of-the-art
on key switching. More specifically, we make the following contribu-
tions:

We provide the first formal analysis of the key switching pa-
rameters P and ω and show how to choose these parame-
ters optimally. In the process, we generalize the analysis to
arbitrary combinations of input and output domains (Sub-
section 3.1) and provide a new perspective on key switching
with the boundO(ω`) (Subsection 3.2).

Using integer linear programming (ILP) techniques, we ex-
plore the parameter space for the newly proposed double-
decomposition approach to key switching (Subsection 3.2).
We implement the new approach with state-of-the-art tech-
niques and show that the double-decomposition approach

1 For example, in a publicly available implementation of homomorphic matrix
multiplication [26], profiling data shows that key switching is responsible for
more than 50% of execution time.
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only outperforms the single-decomposition approach to key
switching in specific circumstances (Subsection 4.4).

We revisit an idea by Gentry, Halevi, and Smart [19] for
mainly choosing large RNS primes, integrating the process
of switching in smaller primes into key switching with low
overhead (Subsection 3.3), speeding up key switching by up
to 50% (Subsection 4.1).

We highlight new opportunities for constant folding in key
switching, reducing the number of constant multiplications
by up to 6`N + 4kN multiplications (Subsection 3.4) and
speeding up key switching by up to 11.6 % (Subsection 4.2).

Preliminaries
Section 2

The following provides the necessary background to our work. We start
by defining the notation used throughout the paper. Then, we introduce
a shared context for the BGV-like schemes BFV, BGV, and CKKS and
follow with short definitions for scheme-specific operations. Afterward,
we describe theDCRT representation commonly used in BGV-like imple-
mentations and finalize the preliminaries with a unified view of modulus
switching and key switching.

2.1 Notation

Let q =
∏`

i=1 qi be a product of primeswith each qi co-prime. For a subset
of primes qi, we write qa,b =

∏b
i=a qi for a ≤ b and a, b ∈ {1, . . . , `}.

For a power-of-two N, a ciphertext consists of polynomials ci in the ring
Rq = Zq[X]/

(
XN + 1

)
.

With [·]q, we denote the centered modular reduction to [−q/2, q/2),
and, for polynomials, apply the operation for each coefficient. We some-
times omit explicit modular reduction if no ambiguity exists. We denote
a generalized rounding operation over the integers by dact, that is, round-
ing to the closest integer such that [a]t = 0. If not explicitly noted, we
assume t = 1.

We denotewith s,u← χs and e← χe sampling from the secret and er-
ror distributions, respectively, and, with a slight abuse of notation, write
a ← Rq for a uniformly random sample from Rq. Table 1 summarizes
frequently used notation in the remainder of this work.

Polynomial norms

The infinity norm ‖a‖∞ of a polynomial a ∈ R is the maximum absolute
value of all its coefficients. The canonical embedding norm is defined as
‖a‖can = maxj∈Z∗

2N
‖a
(
ξj
)
‖∞ for all primitive 2N-th roots of unity ξj with
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λ security level

N polynomial degree

p plaintext modulus

t error scaling factor

q1,` ciphertext modulus

P1,k key switching modulus

ω key switching decomposition number

b, β bit size of qi and Pj, respectively

B upper bound on b and β

ci ciphertext polynomial

Table 1: Frequently used notation.

‖a · b‖can = ‖a‖can · ‖b‖can for any a, b ∈ R. For a power-of-two degree,
‖a‖∞ ≤ ‖a‖can [15].

The canonical norm is bounded by ‖a‖can ≤ D
√

NVa for some D and
the variance Va. For a random polynomial a ∈ Rq, Va ≈ q2/12. Note
that Va+b = Va + Vb, Vab = NVaVb, and, for a constant γ, Vγa = γ2Va.
For D, a common choice is D = 6 [12].

2.2 BGV-like schemes

Wedefine a unified public key using the scheme-specific error scaling fac-
tor t as

pk = ([as + te]q, [−a]q)

for a←Rq, s← χs, and e← χe. Using this public key, the individual en-
cryption routines of the BGV-like schemes BFV, BGV, and CKKS output
a ciphertext (c0, c1) ∈ R2

q .
A helpful perspective on a ciphertext is as polynomial c(s) = c0 + c1s

in the secret key, and evaluating the ciphertext in the secret key results
in c(s) = m + te, where m is a (possibly encoded) message and te is an
(initially small) error that grows during homomorphic computation. The
process of removing the error and decoding the message depends on the
combination of encoding and error scaling, and we describe it in more
detail in the respective scheme-specific sections.

Arithmetic operations nicely map to our polynomial representation:
Addition on the underlying plaintext data of messages m and m′, with
corresponding ciphertexts c = (c0, c1) and c′ = (c′0, c

′
1), respectively, re-

quires a polynomial addition

c(s) + c′(s) = c0 + c′0 + (c1 + c′1)s = m + m′ + teadd,
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constant multiplication with a constant scalar or polynomial γ results in

γc(s) = γc0 + γc1s = γm + teconst,

and multiplication outputs the quadratic polynomial

c(s) · c′(s) = c0c′0 + (c0c′1 + c1c′0)s + c1c′1s
2 = mm′ + temul.

Usally, BGV-like schemes operate on multiple integers simultane-
ously; we encode up to N integers or approximate numbers in one mes-
sage polynomial, depending on the specific parameters. Polynomial ad-
dition or multiplication corresponds to element-wise operations on the
encoded plaintext data, which has a hypercube structure; applying a pa-
rameter- and dimension-specific permutation π on each ciphertext poly-
nomial ci rotates the hypercube along the chosen dimension.

After a rotation, the ciphertext is now encrypted under the permu-
tation of the secret key π(s), and we use a key switching to transform
c(s) = c0+ c1π(s) to c̃(s) = c0+ c̃0+ c̃1s, encrypting the samemessage for
a known permutation π under the original secret key. For a multiplica-
tion, key switching enables transforming the output c(s) = c0+ c1s+ c2s2

to a new polynomial c̃(s) = c0+ c̃0+(c1+ c̃1)s, encrypting the same mes-
sage. We define a unified approach to key switching in Subsection 2.8.

Choosing parameters

Security for BGV-like schemes is based on the RLWE assumption. It de-
pends on the distributions χs and χe, the polynomial degree N, and the
product qP of the ciphertext modulus with the key switching modulus. A
great tool to estimate security is the Lattice Estimator [2], which, given
the parameters above, estimates the time and memory costs of the best-
known lattice attacks.

Common distribution choices are a uniform ternary distribution χs

and a centered Gaussian distribution χe with variance σ = 3.19 [1]. In
this work, we sometimes refer to a simplified perspective on secure pa-
rameter selection, in which only N and qP determine security, implicitly
assuming fixed distributions χs and χe.

Choosing the remaining parameters for a given use case is an exten-
sive research area [2, 12, 1, 13, 27]. The following is a simplified (and
slightly inaccurrate) description; however, it suffices for our purposes:
An upper bound on the error is defined for each homomorphic operation
for a given input bound. After multiplication, a scheme-specific error
management technique slows down error growth to delay the necessity
for bootstrapping. We retrieve an upper bound on q by composing the up-
per bounds of each operation according to a circuit model of a target use
case.

We then choose the smallest power-of-two degreeN such that the se-
curity estimate for N and q is greater than λ. In most cases, the security
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estimate will exceed λ; we use this security margin for the key switching
modulus P, choosing ω accordingly, such that a security estimate on N
and qP is still larger than λ. The above essentially delivers a power-of-
two degree N and ciphertext modulus q for a given use case and security
level, selecting key switching parameters afterward. Choosing optimal
parameters can significantly reduce execution time and memory require-
ments.

2.3 The BFV scheme

The BFV scheme [5, 17, 23] is a state-of-the-art FHE scheme for integer
arithmetic. Given a plaintextmodulusp, themessage polynomialm ∈ Rp

is stored in the most significant bits of the ciphertext modulus encoded
as
⌈ q

pm
⌋
, while the error is stored in the least significant bits of the ci-

phertext modulus, that is, t = 1.

Encryption and decryption

Using the unified public key pk, we encrypt a message as

(c0, c1) =

([
pk0u + e0 +

⌈
q
p
m
⌋]

q
, [pk1u + e1]q

)

with u← χs, e0, e1 ← χe, and decrypt with

m =

[⌈
p
q
[c0 + c1s]q

⌋]
p

which is correct as long as the error is small enough. For a thorough anal-
ysis of error growth and security, we refer to the relevant works on the
BFV scheme [5, 17, 23].

Error management

In BFV, the error management technique requires a slight modification
to the unified perspective on multiplication in Subsection 2.2. Instead
of operating on c and c′ modulo q, we switch the modulus of the latter to
another co-prime q′ of approximately the same size. Then, after multi-
plication over the integers, a scaling and rounding

[⌈ p
q′ cc′

⌋]
q corrects the

encoding factor [23].
In contrast to BGV and CKKS, we usually use the entire ciphertext

modulus q throughout the complete circuit (temporarily operating mod-
ulo q′ or qP); hence, BFV is also called scale-invariant, and the specific
size of each qi has negligible impact on error growth.

2.4 The BGV scheme

The BGV scheme [6, 23] is another state-of-the-art scheme for integer
arithmetic. Contrary to BFV, the message polynomial m ∈ Rp is stored
in the least significant bits of the ciphertext modulus, and the error sits
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above the message, that is, t = p. BFV and BGV are, in fact, so similar
that we can convert between ciphertexts with a simple scalar multiplica-
tion [3].

Encryption and decryption

We encrypt a message in BGV as

(c0, c1) =
(
[pk0u + pe0 + m]q , [pk1u + pe1]q

)
with random samples u← χs, e0, e1 ← χe, and decryption computes as

m =
[
[c0 + c1s]q

]
p
.

As in BFV, the error needs to be small enough for correctness, and we
refer to the relevant literature on the BGV scheme for details on error
growth and security [6, 23, 27].

Error management

In BGV, the error aftermultiplication is reduced by scaling the ciphertext
with a part of the ciphertext modulus itself, consuming RNS primes qi

in the process. This process, modulus switching, scales the ciphertext,
including the associated error, by qi, while keeping themessage the same.

For example, consuming the ciphertext modulus prime q` scales the
error by 1/q`, and afterward, ciphertexts live in the spaceRq1,`−1 . There-
fore, the size of the individual qi significantly impacts error growth dur-
ing homomorphic evaluation and is highly relevant during parameter se-
lection.

2.5 The CKKS scheme

Although aCKKSmessagem ∈ R consists of integers, we assume that an
approximate result is good enough, such as with fixed-point arithmetic.
Hence, we can consider the homomorphic error as part of the message
itself, and both are stored in the least significant bits of the ciphertext
modulus (t = 1). We refer to the relevant works on CKKS investigating
security, error growth, and approximation error [10, 9, 22].

Encryption and decryption

A CKKS encryption is the tuple

(c0, c1) =
(
[pk0u + e0 + m]q , [pk1u + e1]q

)
with u← χs, e0, e1 ← χe, and, for decryption, we compute

m′ = [c0 + c1s]q

recovering the approximate message m′.
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Error management

In CKKS, we use a conceptually similar approach as in BGV, serving a
different purpose on the underlying plaintext data. As in BGV, we scale
by the individual qi, operating on ciphertext polynomials inRq1,i−1 after-
ward.

There are twomajor differences: First, a small approximation error is
acceptable as we are only interested in an approximate decryption. Sec-
ond, the encrypted message moves to the more significant bits of the ci-
phertext modulus during multiplication, and instead of scaling the error,
wemove themessage back to the least significant bits. As in BGV, choos-
ing appropriate qi is crucial to ensure correctness and a small approxima-
tion error.

2.6 The DCRT representation

The most common approach for implementing BGV-like schemes is us-
ing the double CRT (DCRT) representation. We apply two Chinese Re-
mainder Theorem (CRT) decompositions on a polynomial: the RNS for
word-sized arithmetic modulo q and the NTT for fast polynomial multi-
plication.

Residue number system

The RNS decomposes a number in Zq toward each prime qi. Instead of
using one polynomial in Rq, we use ` polynomials with ai = [a]qi ∈ Rqi

for a ∈ Rq. We also use the RNS for P1,k. The CRT then reconstructs the
original polynomial a based on the individual ai.

In the RNS, we can perform additions and (constant) multiplications
as before. However, a limitation is that division and the modulo operator
do not natively map to the RNS space, requiring other approaches. For
division, there is a notable exception: If a constant γ ∈ Z divides each
coefficient of a ∈ Rq, division by γ overR corresponds to multiplication
with the inverse γ−1 mod q.

We can convert a polynomial ai ∈ REi between two arbitrary RNS
bases E1,n and E′

1,n′ with a fast base extension, only using word-sized
arithmetic. The fast base extension is defined as

BaseExt(a,E,E′) =

(
n∑

i=0

[
a

Ei

E1,n

]
Ei

E1,n

Ei
mod E′

j

)n′

j=1

and outputs a + εE in the base E′
1,n′ for a small ε. Under certain circum-

stances, we can consider εE as part of the homomorphic error. Other-
wise, we remove it using an error correction method such as BEHZ [4] or
HPS [20].
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Number theoretic transform

The forward and inverse NTT are variants of the Fast Fourier Transform
over a finite field evaluating a polynomial in the 2N-th roots of unity ξj in
timeO(N logN). ForRqi , we require qi = 1 (mod 2N), and the NTT cor-
responds to the factorization

∏
(X−ξj) mod qi into linear terms; another

perspective on the factorization is as generalized CRT, hence the name
DCRT representation.

For two polynomials in the NTT domain, we compute their product
in time O(N) using coefficient-wise multiplication. Overall, NTT-based
polynomial multiplication has an asymptotic complexity ofO(N logN).

Due to the linearity of the NTT, polynomial addition and constant
multiplication can be performed in either domain. However, when in-
teracting with polynomials of other primes, such as during the fast base
extension, we require a polynomial to be in the coefficient domain, re-
quiring costly inverse and forward NTT operations.

2.7 Modulus switching

We define a unified version of modulus switching for a ∈ Rq to a′ ∈ Rq′

for all BGV-like schemes based on the generalized rounding as

a′ =
[⌈

q′

q
a
⌋

t

]
q′

=

[
q′a + δ

q

]
q′

=

[
q′a− t

[
t−1q′a

]
q

q

]
q′

.

The above is RNS-friendly since, by definition, q |
(
q′a+δ), andmultiply-

ing with the multiplicative inverse corresponds to the required division.
For t = 1, this scales the encrypted data in the least significant bits by

roughly q′/q (the error for BFV and the approximate message for CKKS),
and, for BGV with t = p, we have −t

[
t−1q′a

]
q = 0 mod p, only scaling

the error by q′/q and keeping the encrypted message intact.

2.8 Key switching

Key switching transforms a single BGV-like ciphertext monomial cis′ to
a polynomial

cis′ = c̃0 + c̃1s + te

for a small error e. The following summarizes the current state-of-the-art
on key switching [23, 24].

We need to generate key switching keys, and each distinct s′ requires
a key switching key. For example, key switching after a multiplications
needs one key switching key with s′ = s2, while a fixed permutation π

requires another key switching key with s′ = π(s).
A BGV-like key switching key is the tuple

ksw =
([

as + te + s′
]
q , [−a]q

)
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for a←Rq, e← χe. For naïve key switching, we compute

ciksw(s) = ciksw0 + ciksw1s (mod q)

= cis′ + tcie (mod q)

Note, however, that the error tcie is, in fact, not small as initially claimed.
Hence, we need to modify key switching to reduce this error term.

Single-decomposition technique

Current state-of-the-art, which we also refer to as the single-decomp-
osition technique, employs two different approaches to control the error:
decomposing the ciphertext with respect to the RNS primes qi, reducing
the bound to the decomposition [7] and temporarily operating on an ex-
tendedmodulus qP, scaling the error byP afterward [19]. Kim, Polyakov,
and Zucca provide an excellent summary of both approaches in the ex-
tended version of their work, which we recommend for a more in-depth
description [23].

For a decomposition D(·) and its inverse D−1(·) and a, b ∈ RqP, we
require ab = 〈D(a),D−1(b)〉. In DCRT-based implementations, we de-
compose towards the RNS basis, dividing the primes into ω groups qDj

with up to d`/ωe primes in each group and use the CRT as D−1(·). Com-
putingD(a) corresponds to [a]qi for qi ∈ qDj and is free [20].

We define a BGV-like key switching key as

ksw =

([
ajs + tej + PD−1

j (s′)
]
qP
, [−a]qP

)ω

j=1

where a ← Rω
qP, e ← χω

e , and D−1
j (·) is the jth entry of D−1(·). Slightly

abusing notation, we switch keys with⌈
[〈D(ci), ksw〉( s)]qP

P

⌋
t
= cis′ +

⌈
[t 〈D(ci), e〉]qP

P

⌋
t
.

In practice, the resulting error is negligible for k = d`/ωe [23].
Kim, Polyakov, and Zucca [23] analyze the complexity of key switch-

ing for the number of NTT operations (the most costly building block of
key switching), the number of multiplications, and the memory require-
ments for a key switching key in bits. However, they do not further ex-
plore the parameter space or discuss further implications for parameter
selection. We summarize their results in Table 2.

For a correct implementation, we also have to consider the fast base
extension as well as forward and inverse NTT operations. For complete-
ness, we also take into account thatwe add the output of key switching to
(parts of) an existing ciphertext. For example, consider BFV (input and
output in the coefficient domain).
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Metric Scheme Cost

ntt BFV/BGV (ω + 2)(`+ k)
mul BFV `(`+ 2ω + 2k + 5) + 2k
mul BGV `(`+ 2ω + 2k + 7) + 4k

bit size BFV/BGV 2ωN log qP

Table 2: Single-decomposition key switching complexity according to
the analysis of Kim, Polyakov, and Zucca [23] in terms of forward and
inverse NTT (ntt) as well as modular (constant) multiplications (mul)
with input and output in the same domain, coefficient for BFV and NTT
for BGV. ComplexityO(N logN) for ntt andO(N) for mul are implicit.

1 Ciphertext extension: Perform a fast base extension on the
ω ciphertext decompositions modulo qDj as

cext = BaseExt(Dj(ci), qDj , qP).

2 Dot product: With a key switching key in the NTT domain,
perform the dot product as

c′i = 〈NTTfwd(cext), kswi〉 (mod qP).

3 Delta computation: Compute δ for scaling by P as

δi = −tBaseExt
(
NTTinv

([
t−1c′i

]
P

)
,P, q

)
(mod q).

4 Modulus switching: Scale down c′i + δi and add the result to
the input as(

c0 +
NTTinv(c′0) + δ0

P
, c1 +

NTTinv(c′1) + δ1
P

)
.

When we switch for c1, for example, after a rotation, we set
c1 = 0 in this final step.

Double-decomposition technique

Kim et al. recently proposed a double-decomposition technique build-
ing upon single-decomposition key switching [24]. The technique only
changes the algorithmic approach to key switching and does not influ-
ence the error.

Their idea is as follows: In the second step, instead of computing the
dot product 〈D(ci), ksw〉 in RqP, we add a second decomposition over qP
into ω̃ groups such that each group has up to d(` + k)/ω̃e primes. Then,
switching to a shared RNS basis E = {E1, . . . ,Er} and computing the dot
product inRE can improve execution time. For more details, we refer to
the original publication [24].
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Metric Cost

ntt (ω + 2ω̃)r
mul (3`+ 2ωω̃ + 2k + 2)r + `(2k + 7) + 6k

bit size 2ωω̃N logE

Table 3: Double-decomposition key switching complexity, including
modulus switching costs, in terms of forward and inverse NTT (ntt) as
well as modular (constant) multiplications (mul) for input and output in
the coefficient domain.

In their evaluation, the authors assume CKKS with input and output
in the coefficient domain and without the modulus switching costs for
scaling down by P. We list their results, including modulus switching
costs, in Table 3 to keep consistencywithKim, Polyakov, andZucca [23].

For an implementation, again considering input and output in the co-
efficient domain, we compute

1 Ciphertext extension:

cext = BaseExt(Dj(ci), qDj ,E).

2 Dot product:

c′′i = [〈NTTfwd(cext), kswi〉]E
c′i = BaseExt(NTTinv(c′′i ),E, qP).

3 Delta computation:

δi = −tBaseExt
([

t−1c′i
]
P ,P, q

)
(mod q).

4 Modulus switching:(
c0 +

c′0 + δ0
P

, c1 +
c′1 + δ1

P

)
.

As for the single-decomposition technique, when switching
c1, we set c1 = 0 in this final step.

In contrast to the single-decomposition technique, where we can always
consider the error as part of the ciphertext error [27], the fast base ex-
tension in step two of the double-decomposition technique requires error
correction.

Contributions
Section 3

We describe our main contributions in the following, generalizing key
switching complexity to arbitrary input and output domains. Afterward,
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we formulate our new perspective on key switching, show how to use
primarily large primes with small overhead, and introduce our new ideas
for multiplication folding. We conclude with a short analysis of memory
costs for key switching.

3.1 Generalizing key switching complexity to input and output do-
mains

One limitation of current analyses is the coupling with a specific scheme
such as BFV or BGV. Instead, we can analyze key switching for a given
input and a target output domain, generalizing analysis to all BGV-like
schemes.

For example, in BFV, the modulus switching before a multiplication
requires input in the coefficient domain, and the scaling and rounding af-
terward results in output in the coefficient domain. Therefore, the most
common input and output domain in BFV is the coefficient domain; how-
ever, depending on use-case-specific circumstances, onemight also want
to work with input or produce output in the NTT domain.

In contrast, in BGV and CKKS, multiplication requires input in the
NTT domain and produces output in the NTT domain, and thus, themost
common input and output domain for key switching is the NTT domain.
The curious readermightwonder about rotations: ForBGV-like schemes,
efficient variants exist for permuting the ciphertext polynomials in ei-
ther domain, and homomorphic rotations do not influence the common
domain for a specific scheme.

Single-decomposition technique

Kim, Polyakov, and Zucca [23] show that ciphertext extension, dot prod-
uct, and delta computation require ω(` + k) + 2k NTT operations inde-
pendent of the input domain. Then, for modulus switching, we compute(

c0 +
c′0 + δ0

P
, c1 +

c′1 + δ1
P

)
,

where ci is the ciphertext input, c′i the output of the dot product in the
NTT domain, and δi the output of the delta computation in the coefficient
domain. For rotations, we set c1 = 0.

For a matching input and output domain, it is relatively straightfor-
ward to get the desired result with 2` additional NTT operations and an
overall complexity of (ω + 2)(`+ k): For ci in the coefficient domain, we
apply ` inverse NTTs on each c′i, one for each ciphertext prime, while for
ci in the NTT domain, we apply ` forward NTTs on each δi.

For a non-matching input and output domain, we can achieve the
same complexity concerning NTT operations with(

Pc0 + c′0 + δ0
P

,
Pc1 + c′1 + δ1

P

)
,
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Operation Domain Cost

Rotation

coef coef (ω + 2ω̃)r
coef ntt (ω + 2ω̃)r + 2`
ntt coef (ω + 2ω̃)r + 2`
ntt ntt (ω + 2ω̃)r + 3`

Multiplication

coef coef (ω + 2ω̃)r
coef ntt (ω + 2ω̃)r + 2`
ntt coef (ω + 2ω̃)r + 3`
ntt ntt (ω + 2ω̃)r + 3`

Table 4: Double-decomposition key switching complexity regardingNTT
operations generalized to arbitrary input and output domains.

scaling ci by P. Depending on the input domain, we add Pci to c′i or δi,
afterward applying 2` forward or inverse NTT operations as required for
the desired output domain. While this increases the number of multipli-
cations for now, we show in Subsection 3.4 how to avoid these additional
costs.

Double-decomposition technique

The double-decomposition technique assumes input and output in the co-
efficient domain. For an input in the NTT domain, we need ` initial in-
verse NTTs for c1 (after a rotation) or c2 (after a multiplication) before
ciphertext extension.2

Modulus switching also computes as(
c0 +

c′0 + δ0
P

, c1 +
c′1 + δ1

P

)
;

however, in contrast to before, c′i and δi are both in the coefficient domain.
For output in theNTT domain, we thus require 2` forwardNTTs for c′i+δi

(possibly adding Pci for input in the coefficient domain).
For input in the NTT domain and output in the coefficient domain,

we apply ` inverse NTTs for c0 and, for multiplications, another ` inverse
NTTs for c1. We summarize the generalized complexity of the double-
decomposition technique in Table 4.

3.2 A new perspective on key switching

In their recent work, Kim et al. [24] claim an asymptotic key switching
complexity of O

(
`2
)
for the single-decomposition technique and of O(`)

2 These additional inverse NTT operations can be avoided in the single-decom-
position technique; for the precise details, we refer to the in-depth description
of Kim, Polyakov, and Zucca [23] and our accompanying key switching imple-
mentation.
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for their technique. Their reasoning is as follows: By choosing the pa-
rameters k, r ∈ O(1), thus ω, ω̃ ∈ O(`), the bounds follow accordingly.
However, this implicitly limits the parameter space for k and r, which
results in a skewed perspective on key switching.

Single-decomposition technique

In this work, we choose a different perspective on key switching. We
consider ω ≤ ` as a parameter in the security level, which can be set
individually. Assuming b ≈ β ≈ B and, for simplicity, ω | `, the number
of primes in the key switching modulus follows as k = `/ω (see also Sub-
section 2.8).

Then, the number of NTT operations is

(ω + 2)(`+ k) = ω`+ 3`+
2`
ω
.

For ω2 = 2, ω1 = 1,

ω2`+ 3`+
2`
ω2

= ω1`+ 3`+
2`
ω1

,

and for ω2 > ω1 > 1,

ω2`+ 3`+
2`
ω2

> ω1`+ 3`+
2`
ω1

.

A simple fact follows: Increasing ω increases the computational com-
plexity of key switching, and for better performance, we want to choose
k ∈ O(`/ω). This results in an asymptotic key switching complexity of

ω`+ 3`+
2`
ω

= O(ω`).

While the above assumes a fixed polynomial degree, we can set ω as
we please, choosing N securely for qP afterward; however, we then have
to consider the complexity of the NTT operation itself. Although using
the bound O(N logN) at face value does not quite match reality due to
the hidden factors, it is sufficient for the following argument.

An optimal choice of ω = 2 results in 6` NTT operations for key
switching. If N has to be increased to the next power-of-two degree to
match a given security level, the count of NTT operations increases to
12`N log(N + 1) ≈ 12`N logN. Therefore, increasing the polynomial de-
gree to reduce key switching costs is approximately worth it once(

ω`+ 3`+
2`
ω

)
N logN > 12`N logN

and thus ω2 − 9ω + 2 > 0, and ω > 8.77 follows.
However, increasing the polynomial degree does increase the compu-

tational complexity of all other homomorphic computations, as these do
not depend on the key switching parameters. We evaluate the above in
Subsection 4.3 and discuss the implications for implementations holisti-
cally in Subsection 5.2.

Page 16



Double-decomposition technique

Extending the new perspective to the double-decomposition technique
requires estimating the number of primes r in E. In the original work,
the authors use the infinity norm; we use the canonical norm for a better
estimate.

Assuming b ≈ β ≈ B, E needs to be large enough to hold a product
ab ∈ R with Va ≈ 2`/ωb and Vb ≈ 2(`+k)/ω̃b. Then, for N = 2n, we can
roughly upper bound logE as

log
(
D
√

NVab

)
= (n− 1) + (`/ω + `/ω̃ + `/(ωω̃))b.

With n/b negligible in practice, a reasonable estimate for the number of
primes in E is

r =
ω`+ ω̃`+ `

ωω̃
,

and we want to minimize the term (ω + 2ω̃)r for minimum complexity
regarding the number of NTT operations.

However, minimizing this term for ω and ω̃ over R results in values
outside the desired target range, and we use integer linear programming
(ILP) to find optimal parameters. For ` ≤ 200, a generous bound on the
number of ciphertext primes, ω = `, and hence ω̃ =

√
`(`+ 1)/2, results

in the minimum number of NTT operations.

3.3 Choosing (mostly) large RNS primes

So far, our analysis assumes b ≈ β ≈ B, that is, RNS primes for q and
P (and E) close to the maximum size B. In general, choosing the RNS
primes as large as possible is beneficial for two apparent reasons:

Each additional prime increases the number of polynomial
operations during homomorphic evaluation. The larger each
prime, the fewer primesweneed, reducing computation time
and memory costs.

Assuming a maximum prime size of B bit, using fewer bits
usually wastes computational and memory resources as op-
erations are still performed over B-sized numbers.

Given a bound log q (the same idea extends to P and E, respectively), we
would like to choose primes as follows: Compute ` = dlog q/Be, choose
b such that log q ≈ ` · b, and generate ` primes close to 2b. However,
for BGV and CKKS, the size of qi significantly impacts the error growth,
and scaling by roughly 2b during modulus switching is not necessarily
the optimal choice. Note that no such limitations exist for P and E, and
the above approach always works.

To introduce the desired flexibility, we revisit an idea by Gentry, Ha-
levi, and Smart and add a few small primes, which we constantly switch
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in and out of the modulus during homomorphic evaluation [19]. Since
their work only describes the high-level idea, we introduce some addi-
tional notation for the RNS setting, integrate their idea with key switch-
ing, and analyze its complexity.

Switching primes in and out

We choose ` − κ primes close to 2b and κ > µ smaller primes with their
product close to 2µb, such that log q ≈ (` + µ)b. During homomorphic
evaluation, we use a small prime for modulus switching. After κ modu-
lus switchings, we replace any µ large primes with the κ small primes,
restoring our capabilities for scaling with small primes.

If we want to replace the primes {q`−µ, . . . , q`} with {q1, . . . , qκ}, we
can switch the modulus of a ∈ Rqκ+1,` as⌈

q1,`−µ

qκ+1,`
a
⌋

t
=

q1,`−µa− t[t−1q1,`−µa]qκ+1,`

qκ+1,`
(mod q1,`−µ)

=
q1,κa− t[t−1q1,κa]q`−µ,`

q`−µ,`
(mod q1,`−µ).

Integrating prime switching with key switching

We can integrate prime switching during the modulus switching step of
key switching by simply switching out the large primes {q`−µ, . . . , q`} in
addition to the primes {P1, . . .Pk}. Switching for c′i ∈ Rqκ+1,`P1,k trans-
forms the above to

q1,κc′i − t[t−1q1,κc′i]q`−µ,`P1,k

q`−µ,`P1,k
(mod q1,`−µ).

Compared to switching out only P1,k and switching in no primes, the
number of inverse NTT operations increases from 2k to 2(µ+ k) for base
extending δi = −t[t−1q1,κc′i]q`−µ,`P1,k . However, we also save 2µ NTT op-
erations on either c′i or δi since we reduce the number of primes for the
modulus switching output from ` to `− µ.

For output in the coefficient domain, switching primes in and out re-
quires no additional NTT operations. For output in the NTT domain, we
need to perform 2κ additional forward NTT operations (κ operations per
δi). The former is free regarding the number of NTT operations, and, with
κ ∈ O(1), the latter has only a small overhead.

Choosing the primes

Based on this more generic setup, we adjust the process for choosing the
primes qi as follows: Compute the number of RNS primes `′ = dlog q/Be,
and choose b such that log q ≈ `′ ·b. Then, we generate `′−µ primes close
to 2b and κ primes close to 2µb/κ. Overall, this results in ` = `′ − µ + κ

ciphertext primes.
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Compared to the more naïve approach, that is choosing all primes of
size µb/κ, we reduce ` as long as⌈

log q
µb/κ

⌉
≈
⌈

`′

µ/κ

⌉
> ` ⇔ κ`′ − µ` ≥ µ ⇔ ` ≥ κ+

µ

κ− µ
.

For example, with B = 60, we consider a use-case scaling each level
with 36-bit primes; then, choosing µ = 2 and κ = 3 results in b = 54,
which reduces the overall number of primes as soon as ` ≥ 5 (equivalent
to log q > 144). Evaluating the above idea generically for all parameter
settings is rather difficult due to the use-case-specific nature of parame-
ters for BGV-like schemes; however, choosing primes as large as possible
with a small number of additional scaling factors can also be adapted to
more complex scenarios.

3.4 Folding multiplications in key switching

We split multiplication types in key switching into four context-based
groups: (1) coefficient-wise multiplication with the key switching key
during the dot product, (2) multiplications with a constant such as P−1

duringmodulus switching, (3)multiplicationwithEi/E1,n moduloEi dur-
ing base extension, for example, for E = P, and (4) multiplication with
E1,n/Ei modulo E′

j during base extension. Note that, for group (1), we
can only fold fixed values such as t or P since the ciphertext modulus can
change as in BGV or CKKS.

For brevity, we only outline our optimizations for the single-decom-
position techniquewith input and output in the coefficient domain. How-
ever, these ideas also apply to other combinations of input and output
domain, the double-decomposition technique, and key switching when
replacing primes; we refer the interested reader to our implementation,
where all folded variants are implemented and tested.

Our crucial observation is the following: After the dot product, we
use c′ = (c′0, c

′
1) mod P only to compute δ = (δ0, δ1) and use c′ mod q only

for switching the modulus. Thus, we can merge known multiplications
(group 2–4) for c′ mod q with the key switching key ksw mod q and with
ksw mod P separately (group 1). Additionally, for the delta computation,
we can merge the multiplication by −t over qi (group 2) with the second
part of the base extension from P to q (group 4).

Below, we list our algorithmic modifications to the key switching al-
gorithm starting at the dot product. We exclude the required NTT opera-
tions, as constant multiplications can be performed in either domain:
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[·]q [·]P

c′fold =
〈
cext,P−1ksw

〉
δ′fold =

〈
cext, (tP/Pj)

−1ksw
〉

δfold = P−1tP/Pj δ
′
fold

c + c′fold + δfold

For the single-decomposition technique, this reduces the number of con-
stant multiplications in key switching down to a unified bound of

`

(
`+ 2ω + 2

`

ω
+ 3
)

for any t and any combination of input and output domain, each multipli-
cation with complexityO(N).

For a given N and `, finding the minimal number of multiplications
depends only on 2ω+2`/ω, which is minimal for ω =

√
`. Due to the im-

plicit scaling by P−1, we can add c without additional multiplications to
either c′fold in the NTT domain or to δfold in the coefficient domain. During
precomputation, we trivially simplify P−1tP/Pj = t/Pj.

Our folding ideas also apply to the fast base extension when correct-
ing the error with the HPS method, which we use for implementation.
Thus, we also optimize the double-decomposition technique in a similar
fashion; for more details, we refer to our implementation.

Overall, the folded variant of the double-decomposition technique re-
quires (`+2ωω̃)r+ `(2k+3)multiplications, which, using the estimates
on k and r, transforms to

`

(
2ω + 2ω̃ +

3`
ω

+
`

ω̃
+

`

ωω̃
+ 5
)
.

As with NTT complexity, we use ILP techniques tominimize this expres-
sion for ` ≤ 200, resulting in optimal choices for ω and ω̃ close to

√
` to

minimize multiplication complexity.

3.5 Analyzing memory costs for key switching

In the single-decomposition technique, each key switching key requires
ω polynomial pairs for the modulus qP. Thus, assuming B bits of storage
for each prime, the size of one key switching key requires

2ω (`+ k)NB = 2(ω`+ `)NB

bits of memory. Trivially, increasing ω increases storage requirements.
Considering ω = 2, which usually is the better-performing choice than
ω = 1 (see also Section 4), increasing the polynomial degree to 2N re-
duces thememory requirements for each key once 2(ω`+`)NB > 12`NB,
hence ω > 5.
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For the double-decomposition technique, one key switching key re-
quires

2ωω̃rNB = 2(ω`+ ω̃`+ `)NB

bits, and increasing ω or ω̃ increases the size of the key switching key. In
contrast to the single-decomposition technique, where reducing ω bene-
fits NTT andmemory complexity, we now have a trade-off betweenmem-
ory size and NTT performance. However, larger keys also have a perfor-
mance penalty, as performing the dot product during key switching can
be memory-bound [8].

Evaluation
Section 4

We evaluate our contributions using a comprehensive set of benchmarks.
For the polynomial degrees N ∈ {214, . . .217}, the closed formula by
Mono et al. [27] outputs the upper bounds {433,867, 1735,3470} for
log qP, respectively3. Our implementation4 uses the open-source BGV
library fhelib [14] with a HEXL-based polynomial layer [21].

We run all benchmarks on Ubuntu 20.04.5. The Central Processing
Unit (CPU) is an Intel Core i9-7900X CPU at 3.3 GHz with 20 cores,
and the system features 64 GiB of available memory. We disable Intel
turbo boost, pin the benchmarking execution to a single CPU core. For a
given degree, we generate three different types of parameter sets, which
we describe below.

Type (1) parameter sets. Targeting single-decomposition key switch-
ing, we set the ciphertext modulus to 50 %, 65 %, 75 %, 80 %, 85 %, 90 %,
and 95% of the available modulus space, using the remaining space for P,
choosing ω minimal. If ω = 1, we generate an additional set with ω = 2,
as the latter reduces multiplication complexity. If ω ≥ 9, we generate an
additional set with 2N and ω = 2. We skip a parameter set if it requires
ω > ` for correctness, listing the results in Table 5.

Type (2) parameter sets. For the double-decomposition technique, we
use the same percentages of the modulus space as for the type (1) param-
eter sets; however, choosing logP = b, ω = `, and ω̃ =

√
`(`+ 1)/2. As

before, we skip a parameter set if it requires ω > ` for correctness and

3 These bounds are slightly tighter than in the Homomorphic Encryption Stan-
dard [1], which only provides bounds for N ∈ {210, . . . ,215}. Since the stan-
dard’s initial release, many publications require N > 215, which we account for
in our evaluation by moving to larger degrees.

4 https://github.com/Chair-for-Security-Engineering/owl
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measure execution time with the entire ciphertext modulus. We list the
results in Table 6.

Type (3) parameter sets. Finally, we generate sets using 1/2, 2/3, and
3/4 of the availablemodulus space, divided into 36-bit chunks, targeting
the single-decomposition technique. We choose ω as small as possible
(including ω = 1) and generate a matching parameter set in which we
replace κ = 3 primes of size 36 bit with µ = 2 primes of size 54 bit. In
contrast to type (1) and type (2) sets, we remove κ primes before measur-
ing execution time for key switching for folded implementations without
and with replacing primes, listing the results in Table 7.

4.1 Small versus large primes

We use the results for type (3) parameter sets in Table 7 to evaluate the
performance gain for choosing mostly large primes and make several in-
teresting observations:

Switching in primes using the folded variant performs equal-
ly or better than only using small primes in all evaluated
parameter sets, even in the smallest setting. The results
also match our expectations from the example in Subsec-
tion 3.3, where key switching is faster for parameter sets
with log q > 144.

In absolute terms, the overhead is, as expected, roughly con-
stant for a given polynomial degree (for logN = 14, for ex-
ample, the overhead is 0.7ms). In relative terms, the over-
head will be more noticeable for a small number of primes,
no matter the degree. Note that we have to replace primes
during key switching only every κ levels and can even wait
until the last key switching on a given level to work with
fewer primes until then.

Overall, using fewer primes speeds up key switching significantly by up
to 50%.

4.2 Folding optimizations

We evaluate our folding optimizations with the type (1) parameter sets in
Table 5. We improve execution time across the board by up to 11.6 %. For
small ω, the speed-ups in execution time are more significant compared
to parameter sets with large ω.

4.3 Increased polynomial degree

For type (1) parameter sets in Table 5, we include alternative sets with
increased polynomial degree and ω = 2. For example, for logN = 15
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and log q = 780, increasing the polynomial degree leads to a speed-up of
1.2×. We receive the same speed-up for logN = 16 and log q = 1624,
while for logN = 17 and log q = 3300, we only speed up key switching
by a factor of 1.02×.

However, not all parameter sets crossing our theoretical threshold
outperform the parameter sets with a smaller degree. For example, key
switching with logN = 16, log q = 1560, and ω = 10 performs better
than the matching set with increased logN = 17 and ω = 2.

4.4 Comparison of decomposition techniques

By combining the results for the parameter sets of type (1) in Table 5 and
type (2) in Table 6, we can compare the single- and double-decomposition
techniques, each with optimally chosen parameters regarding the NTT
complexity for a given degree and ciphertext modulus. The latter outper-
forms the former only for logN = 16 and log q = 1624.

We believe the reasons for this to be two-fold:

For the double-decomposition technique, only considering
NTT complexity results in huge key switching keys, and re-
trieving these keys during the dot product of key switching
has large performance costs.

While the fast base extension itself is relatively fast, we re-
quire an error correction when extending from the shared
base E to the extended modulus qP. The error correction
has noticeable costs, slowing down key switching for the
double-decomposition technique.

Most likely, due to the above reasons, there is room for further improve-
ment when choosing parameters in the double-decomposition technique,
which we discuss in more detail in Subsection 5.3.

Our results significantly differ compared to the original results by
Kim et al. [24], mainly becausewe choose key switching parameters con-
sidering each approach in isolation for a given degree and ciphertextmod-
ulus (matching the approach to parameter selection for actual use cases),
instead of using a shared set of key switching parameters.

Discussion
Section 5

In the following, we discuss multiple aspects of our work, starting with
the relevance of key switching for homomorphic use cases. We also dis-
cuss the implications of increasing the polynomial degree holistically,
highlight some limitations of our work, and explore opportunities for fu-
ture work.

Page 23



5.1 Performance impact of key switching in homomorphic encryption

In the FHE community, it is common knowledge that key switching is
one of the most expensive parts of homomorphic evaluation for BGV-like
schemes. First, for most use cases, we perform many key switchings, as
performing a desired computation often involvesmany rotations, even for
low-level circuits with only a handful of modulus switching. One such
example is homomorphic matrix multiplication [26], where a profiling
run on our benchmarking setup shows that more than 50% of execution
time is spent in key switching.

Second, on the server side, key switching and modulus switching are
the only homomorphic operations requiring forward and inverse NTT op-
erations, the main computational bottleneck for homomorphic encryp-
tion, with respective asymptotic complexities of O(ω`) and O(`). For
modulus switching, however, we often can minimize the costs by merg-
ing it with key switching.

Third, key switching requires reading large keys frommemory, which
are only used for a single modular multiplication. This is especially rel-
evant in hardware accelerators, as once the computational bottlenecks
are accelerated, memory becomes the main problem even for custom-
designed memory architectures [8, 18].

Thus, improving key switching boosts performance significantly in
most homomorphic use cases. When optimizing use cases, another re-
sult of our work comes in handy: Sometimes, a use case benefits from
key switching output with mixed output domains (output for some RNS
primes in the NTT domain and some in the coefficient domain), whichwe
show how to achieve for free using our folding optimizations.

5.2 Increasing the polynomial degree

Contrary to current folklore, increasing the polynomial degree can in-
crease performance, namely for otherwise very large ω. However, al-
though execution time decreases for key switching, the computational
complexity of other operations increases with larger N.

The same holds for memory: we only reduce costs for key switching
(such as the key switching keys or the temporary storage for the extended
polynomials during key switching), increasing all other ciphertext stor-
age, permanent or temporary.

We believe that, in addition to a large ω, the following conditions
should be fulfilled before considering an increase of the polynomial de-
gree: (1) the main bottleneck of the use case is the key switching oper-
ation; (2) the use case requires a multitude of rotations, each with their
own unique key switching key; and (3) the key switching operation is
memory-bound such as in hardware.

The double-decomposition technique can also perform better than in-
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creasing the polynomial degree for large ω. However, key switching keys
for the double-decomposition technique are by default larger than for the
single-decomposition technique with the same parameters or require ad-
ditional computations for every use [24]; therefore, an increased polyno-
mial degree with a more straightforward key switching implementation
and smaller keys might be more beneficial, especially for hardware im-
plementations.

5.3 Limitations and future work

One limitation of our work is the somewhat simplified approach for se-
lecting key switching parameters ω and ω̃ for the double-decomposition
technique. In the single-decomposition technique, choosing ω ≥ 2 as
small as possible is beneficial regarding NTT and memory complexity.
In contrast, the double-decomposition technique requires a trade-off be-
tweenNTT complexity (ω = `) andmemory requirements (ω = 1), which
also has performance implications.

For optimal parameters, the double-decomposition approach proba-
bly requires hyper-parameter optimization using platform-specific infor-
mation such as memory bandwidth, execution time for a forward and in-
verse NTT, as well as execution time for constant and polynomial multi-
plication; this is an excellent opportunity for futurework. Doing so could
include finding closed formulas for multiplication complexity instead of
a rough estimate.

We also did not explore whether our folding optimizations positively
impact the error correction after a fast base extension with the BEHZ
method. Selecting the best correction method for a given platform could
also be part of the previously mentioned hyper-parameter optimization
for the double-decomposition technique.

Conclusion
Section 6

This work provides the first formal analysis of key switching parame-
ters for BGV-like schemes. We consider the single-decomposition tech-
nique, that is, current state-of-the-art, and the recently proposed double-
decomposition technique, providing improved theoretical complexities,
generalized to arbitrary input and output domains.

In the process, we provide a newperspective on key switching, result-
ing in a new asymptotic bound on key switching complexity, and show
that for parameters with minimal computational complexity, the single-
decomposition technique mostly outperforms the double-decomposition
technique.

Additionally, we formalize the process of switching primes in and out
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of a ciphertext, integrate it with key switching, and analyze the resulting
complexity; we also highlight novel opportunities for folding constants
during key switching. These improvements speed up key switching by up
to 50% and 11.6 %, respectively.
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Parameters Time (ms)

logN log q ω naïve folded speedup

14 216 1 3.9 3.5 11.6 %
14 216 2 3.8 3.6 7.6 %
14 280 2 5.3 4.9 8.3 %
14 324 3 6.8 6.4 6.6 %
14 342 5 9.3 9.0 3.5 %
14 364 6 12.5 12.0 4.3 %

15 432 1 20.9 19.2 8.8 %
15 432 2 20.0 19.1 4.9 %
15 560 2 26.6 24.8 7.4 %
15 649 3 33.0 31.5 4.8 %
15 684 5 45.2 43.1 4.8 %
15 728 6 54.5 53.2 2.5 %
15 780 10 100.4 98.6 1.9 %
16 780 2 84.9 80.7 5.2 %

16 855 1 125.5 118.0 6.3 %
16 855 2 117.6 113.3 3.8 %
16 1121 2 159.2 152.3 4.5 %
16 1298 3 227.0 220.1 3.1 %
16 1380 5 275.6 269.0 2.4 %
16 1475 6 335.6 330.1 1.7 %
16 1560 10 465.6 457.9 1.7 %
17 1560 2 584.6 564.6 3.5 %
16 1624 19 793.0 785.3 1.0 %
17 1624 2 650.3 626.5 3.8 %

17 1711 1 801.5 762.1 5.2 %
17 1711 2 690.5 671.0 2.9 %
17 2242 2 996.4 970.5 2.7 %
17 2580 3 1207.5 1176.4 2.7 %
17 2760 5 1444.6 1411.2 2.4 %
17 2940 6 1665.0 1647.7 1.0 %
17 3120 9 2099.9 2072.6 1.3 %
18 3120 2 3299.0 3172.6 4.0 %
17 3300 19 3566.8 3532.2 1.0 %
18 3300 2 3592.8 3462.4 3.8 %

Table 5: Results for parameter sets of type (1), measuring execution
times of a naïve implementation without and with folding optimizations
for the single-decomposition technique. For each parameter set, we also
list the speed-up of the folded compared to the naïve implementation.
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Parameters Time (ms)

logN log q ω ω̃

14 216 4 3 12.5
14 280 5 4 16.9
14 324 6 5 19.6
14 342 6 5 19.6
14 364 7 5 21.5

15 432 8 6 54.1
15 560 10 7 71.6
15 649 11 8 85.4
15 684 12 9 93.1
15 728 13 10 92.7
15 780 13 10 104.8

16 855 15 11 285.2
16 1121 19 14 410.2
16 1298 22 16 535.3
16 1380 23 17 564.9
16 1475 25 18 622.8
16 1560 26 19 663.5
16 1624 28 20 734.5

17 1711 29 21 1768.6
17 2242 38 27 2745.9
17 2580 43 31 3649.8
17 2760 46 33 3933.2
17 2940 49 35 4220.1
17 3120 52 37 4658.4
17 3300 55 39 5140.2

Table 6: Results for parameter sets of type (2), measuring execution time
for the folded double-decomposition implementation.
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logN log q log qi Time (ms)

36 54 folded switch overhead

14 252
7 4.7
4 2 4.0 4.7 18.0 %

14 288
8 5.9
5 2 5.0 5.7 14.5 %

15 396
11 18.8
5 4 15.9 18.1 14.1 %

15 540
15 29.3
3 8 21.9 24.3 10.7 %

15 612
17 38.3
5 8 29.4 32.1 9.1 %

16 828
23 156.4
5 12 95.7 104.9 9.6 %

16 1116
31 241.1
4 18 170.1 178.2 4.7 %

16 1260
35 301.9
5 20 209.8 216.5 3.2 %

17 1692
47 1065.6
5 28 783.0 818.0 4.5 %

17 2268
63 1529.5
3 40 1013.1 1046.0 3.2 %

17 2556
71 1917.1
5 44 1262.1 1302.6 3.2 %

Table 7: Results for parameter sets of type (3), measuring execution time
for the folded implementation without replacing primes, and for a folded
implementation replacing µ = 2 54-bit primes with κ = 3 36-bit primes.
For the relevant parameter sets, we also list the relative overhead for
switching in and out primes compared to the folded implementationwith-
out switching primes.
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