
Tampere University Dissertations 550

Side-Channel Analysis
and Cryptography

Engineering
Getting OpenSSL Closer to Constant-Time

CESAR PEREIDA GARCÍA

Tampere University Dissertations 550

CESAR PEREIDA GARCÍA

Side-Channel Analysis
and Cryptography Engineering

Getting OpenSSL Closer to Constant-Time

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion at Tampere University,
on 11 February 2022, at 12 o’clock.

Table

ACADEMIC DISSERTATION
Tampere University,
Faculty of Information Technology and Communication Sciences
Finland

Responsible
supervisor

Associate Professor
Billy Bob Brumley

and Custos Tampere University
Finland

Pre-examiners Senior Lecturer Daniel Page Dr. Clémentine Maurice
University of Bristol
United Kingdom

French National Centre for
Scientific Research (CNRS)
France

Opponent Associate Professor Yuval Yarom
University of Adelaide
Australia

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2022 author

Cover design: Roihu Inc.

ISBN 978-952-03-2288-5 (print)
ISBN 978-952-03-2289-2 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-2289-2

PunaMusta Oy – Yliopistopaino
Joensuu 2022

http://urn.fi/URN:ISBN:978-952-03-2289-2

Dedicado a mi Amá y a mi Apá.

iii

iv

PREFACE

This dissertation and the related research work was possible thanks to the
support provided by many people.

First and foremost, I am indebted to Prof. Billy Bob Brumley, the finest
mentor and supervisor I could have asked for. This dissertation would not be
possible without your support inside and outside of the office, your patience
while I was slowly learning the ropes of the trade, the motivation and resilience
you instill in the research group, the expertise you provide on several topics
beyond academy—you have my deepest respect, please accept my sincerest
thanks.

I wish to extend my gratitude to Prof. Daniel Page and Dr. Clémentine
Maurice for evaluating this dissertation, and providing me with suggestions to
further improve it. Furthermore, my gratitude goes to Prof. Yuval Yarom for
agreeing on being my opponent during the public defense.

I want to express my gratitude to the following organizations that gener-
ously supported my research work over the years: The Doctoral School at
Tampere University of Technology, Academy of Finland (grant #303814), the
European Cooperation in Science and Technology (COST) Actions IC1306 and
IC1403, the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 804476),
the Nokia Foundation, the Industrial Research Fund at Tampere University of
Technology, and Huawei Technologies Oy.

I would like to thank my co-authors with whom I’ve had the joy of collabo-
rating.

I also would like to thank my fellow colleagues in the NISEC research group
at Tampere University. In addition to the research work we did, you taught me
how to navigate in a new university, and in a new city.

Special thanks go to Nicola, Ale, and Sohaib, with whom I’ve shared many

v

lunches, discussed ideas, shared the long nights of Finland, travelled to confer-
ences and research visits, played board games and videogames, watched movies,
and experienced many other adventures.

In the same vein, I am grateful to all the people that took me in, and
supported me during this journey from one way or another, including those
that shared their time, their knowledge, a laugh, and a dance with me.

None of this would be possible without the support, love, and patience from
my wife, my parents, my siblings, and my extended family in Finland—thanks
for everything.

Tampere, January 10, 2022,

Cesar Pereida García

vi

ABSTRACT

As side-channel attacks reached general purpose PCs and started to be more
practical for attackers to exploit, OpenSSL adopted in 2005 a flagging mecha-
nism to protect against SCA. The opt-in mechanism allows to flag secret values,
such as keys, with the BN_FLG_CONSTTIME flag. Whenever a flag is checked and
detected, the library changes its execution flow to SCA-secure functions that
are slower but safer, protecting these secret values from being leaked. This
mechanism favors performance over security, it is error-prone, and is obscure
for most library developers, increasing the potential for side-channel vulnerabil-
ities. This dissertation presents an extensive side-channel analysis of OpenSSL
and criticizes its fragile flagging mechanism. This analysis reveals several flaws
affecting the library resulting in multiple side-channel attacks, improved cache-
timing attack techniques, and a new side channel vector. The first part of
this dissertation introduces the main topic and the necessary related work,
including the microarchitecture, the cache hierarchy, and attack techniques;
then it presents a brief troubled history of side-channel attacks and defenses
in OpenSSL, setting the stage for the related publications. This dissertation
includes seven original publications contributing to the area of side-channel
analysis, microarchitecture timing attacks, and applied cryptography. From an
SCA perspective, the results identify several vulnerabilities and flaws enabling
protocol-level attacks on RSA, DSA, and ECDSA, in addition to full SCA of the
SM2 cryptosystem. With respect to microarchitecture timing attacks, the dis-
sertation presents a new side-channel vector due to port contention in the CPU
execution units. And finally, on the applied cryptography front, OpenSSL now
enjoys a revamped code base securing several cryptosystems against SCA, favor-
ing a secure-by-default protection against side-channel attacks, instead of the
insecure opt-in flagging mechanism provided by the fragile BN_FLG_CONSTTIME

flag.

vii

viii

CONTENTS

Preface . v

Abstract . vii

Abbreviations . xii

Original publications . xvii

Author’s contribution . xix

1 Introduction . 21

1.1 Main Contributions . 23

1.2 Scope . 27

1.3 Outline . 30

2 Background . 31

2.1 The Microarchitecture . 31

2.1.1 Pipelining . 33

2.1.2 The Cache Hierarchy . 36

2.2 Cache-Timing Attacks and Techniques 41

2.3 A Brief History of SCA against OpenSSL 49

3 Results . 61

3.1 Make Sure DSA Signatures are closer to Constant-Time 61

3.2 A Cache-Timing Attack on Constant-Time NIST P-256 63

3.3 Single-Trace Cache-Timing Attack on RSA Key Generation . . 65

3.4 A Game of Whack-A-Mole . 67

3.5 Towards an SCA-secure OpenSSL 69

ix

3.6 Port Contention Side-Channel Attack 72

3.7 Side-Channel Attacks Enabled by Cryptographic Key Formats . 75

3.8 Summary of Mitigations on OpenSSL 78

4 Conclusions . 83

References . 91

Publication I . 119

Publication II . 133

Publication III . 153

Publication IV . 185

Publication V . 209

Publication VI . 225

Publication VII . 245

List of Figures

2.1 Simplified microarchitecture containing a variety of components. 32

2.2 Example of a simple pipeline with stalls. 34

2.3 Memory hierarchy showing different memory levels color coded

according to their access speed. Blue to the left is the fastest,

and red to the right is the slowest. 36

2.4 Top: 64-byte cache line structure; Bottom: memory address

structure. 37

2.5 An m-way set-associative cache: the index selects the cache set,

the tag uniquely identifies the data within the cache set, and the

offset determines the data location in the data block. 39

x

2.6 The Evict+Time technique: (a) attacker times operation to

obtain a baseline; (b) attacker partially evicts the cache, e.g., a

cache-set; (c) attacker times and compares. 43

2.7 The Prime+Probe technique: (a) attacker primes some cache-

sets by loading its own data; (b) attacker waits for the victim

to evict its data; (c) attacker probes own data by loading and

timing it; (d) example trace probing 32 cache sets during DSA

modular exponentiation revealing multiplier look-ups. 44

2.8 The Flush+Reload technique: (a) attacker flushes a memory

address shared with the victim out of the cache; (b) attacker

waits for some time; (c) attacker reloads memory address and

times it; (d) example trace probing 2 cache-lines accessed by the

victim revealing a sequence of operations. 45

2.9 Timeline of (mostly) microarchitectural side-channel attacks and

countermeasures on asymmetric primitives in OpenSSL. 49

3.1 The PortSmash technique: (a) attacker issues instructions sat-

urating a set of ports; (b) attacker times the instruction exe-

cution completion; (c) attacker continues timing and observes

variations due to victim; (d) example trace of attacker spying on

the wNAF scalar multiplication revealing add operations (peaks). 73

3.2 Updated timeline including attacks and countermeasures from

Publications I–VII. 81

List of Tables

1.1 Relationship between research questions and publications. . . . 24

xi

xii

ABBREVIATIONS

AES Advanced Encryption Standard

ANSI American National Standards Institute

ASLR Address Space Layout Randomization

AVX2 Advance Vector Extensions 2

BEEA Binary Extended Euclidean Algorithm

BN BIGNUM structure in OpenSSL

BPU Branch Prediction Unit

CISC Complex Instruction Set Computer

CPU Central Processor Unit

CRT Chinese Reminder Theorem

CVE Common Vulnerability and Exposures

dcache data cache

DH Diffie-Hellman key exchange

DoS Denial-of-Service

DPA Differential Power Analysis

DRAM Dynamic Random-Access Memory

DSA Digital Signature Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman key exchange

ECDSA Elliptic Curve Digital Signature Algorithm

xiii

ECIES Elliptic Curve Integrated Encryption Scheme

EM Electro Magnetic

EOL End of Life

FLT Fermat’s Little Theorem

FOSS Free and Open-Source Software

GCD Greate common divisor

GOST Soviet and Russian government cryptographic standards

HSM Hardware Security Module

HT Hyper-Threading

icache instruction cache

ISA Instruction Set Architecture

L1 first-level cache

L2 second-level cache

LLC last-level cache

lru Least Recently Used

LSB Least Significant Bits

LSD Least Significant Digit

LTS Long Term Support

MSBLOB Microsoft’s Private Key BLOB format

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

OID Object Identifier

OS Operating System

PC Personal Computer

PEM Privacy-Enhanced Mail

PKCS Public Key Cryptography Standards

PVK Private Key format

xiv

RISC Reduced Instruction Set Computer

RSA Rivest-Shamir-Adleman public-key cryptosystem

SBPA Simple Branch Prediction Analysis

SCA Side-Channel Analysis

SECG Standards for Efficient Cryptography Group

SGX Software Guard Extensions

SM2 Chinese government elliptic curve cryptographic standards

SMT Simultaneous Multithreading

SSE2 Streaming SIMD Extensions 2

SSH Secure Shell Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

TSX Transactional Synchronization Extensions

wNAF windowed Non-Adjacent Form

xv

xvi

ORIGINAL PUBLICATIONS

This dissertation is based on the following original publications.

Publication I C. Pereida García, B. B. Brumley and Y. Yarom. “Make Sure
DSA Signing Exponentiations Really are Constant-Time”.
Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, Octo-
ber 24-28, 2016. Ed. by E. R. Weippl, S. Katzenbeisser, C.
Kruegel, A. C. Myers and S. Halevi. ACM, 2016, 1639–1650.
doi: 10.1145/2976749.2978420.

Publication II C. Pereida García and B. B. Brumley. Constant-Time
Callees with Variable-Time Callers. 26th USENIX Secu-
rity Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. Ed. by E. Kirda and T.
Ristenpart. USENIX Association, 2017, 83–98. isbn: 978-1-
931971-40-9. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/

garcia.

Publication III A. C. Aldaya, C. Pereida García, L. M. Alvarez Tapia and
B. B. Brumley. Cache-Timing Attacks on RSA Key Gener-
ation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.4
(2019), 213–242. doi: 10.13154/tches.v2019.i4.213-242.

Publication IV I. Gridin, C. Pereida García, N. Tuveri and B. B. Brum-
ley. Triggerflow: Regression Testing by Advanced Execution
Path Inspection. Detection of Intrusions and Malware, and
Vulnerability Assessment - 16th International Conference,
DIMVA 2019, Gothenburg, Sweden, June 19-20, 2019, Pro-

xvii

https://doi.org/10.1145/2976749.2978420
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://doi.org/10.13154/tches.v2019.i4.213-242

ceedings. Ed. by R. Perdisci, C. Maurice, G. Giacinto and M.
Almgren. Vol. 11543. Lecture Notes in Computer Science.
Springer, 2019, 330–350. doi: 10.1007/978-3-030-22038-
9_16.

Publication V N. Tuveri, S. ul Hassan, C. Pereida García and B. B. Brum-
ley. Side-Channel Analysis of SM2: A Late-Stage Featuriza-
tion Case Study. Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan,
PR, USA, December 03-07, 2018. ACM, 2018, 147–160. doi:
10.1145/3274694.3274725.

Publication VI A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García
and N. Tuveri. Port Contention for Fun and Profit. 2019
IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, 870–
887. doi: 10.1109/SP.2019.00066.

Publication VII C. Pereida García, S. ul Hassan, N. Tuveri, I. Gridin,
A. C. Aldaya and B. B. Brumley. Certified Side Chan-
nels. 29th USENIX Security Symposium, USENIX Security
2020, August 12-14,2020. Ed. by S. Capkun and F. Roes-
ner. USENIX Association, 2020, 2021–2038. url: https :

/ / www . usenix . org / conference / usenixsecurity20 /

presentation/garcia.

xviii

https://doi.org/10.1007/978-3-030-22038-9_16
https://doi.org/10.1007/978-3-030-22038-9_16
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1109/SP.2019.00066
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia

AUTHOR’S CONTRIBUTION

Publication I The current author is reponsible for implementing the cache-
timing attack, implementing the performance degradation
attack, adapting the tools to attack at the protocol level,
implementing the countermeasures, and the related writing.

Publication II The current author is responsible for implementing the cache-
timing attack, implementing the improved performance degra-
dation attack, adapting the tooling to attack at the protocol
level, implementing the countermeasures, and the related
writing.

Publication III The current author is responsible for implementing the cache-
timing attack, developing signal processing techniques, test-
ing the new methodology, implementing countermeasures,
and the related writing.

Publication IV The current author is responsible for testing and validating
the new tool with respect to existing cache-timing attacks
in the literature, as well as the related writing.

Publication V The current author is responsible for the cache-timing attack
portion of the work, implementing some of the countermea-
sures, and the related writing.

Publication VI The current author is partially responsible for discovering
the new side-channel vector, for the procurement portion of
the new side-channel attack, and the related writing.

Publication VII The current author is partially responsible for discovering
and analyzing the vulnerabilities, implementing the cache-

xix

timing attack, implementing some of the countermeasures,
and the related writing.

xx

1 INTRODUCTION

In the current digital world where people and devices are always connected,
the confidentiality, integrity, and privacy of data among users and devices is
of utmost importance, especially as the generation, storage, and transporta-
tion of personal identifiable information and confidential information increases.
Cryptography engineering is an essential building block necessary to achieve
these security goals in both software and hardware, however, often these goals
are in conflict with other requirements such as size and performance, result-
ing in the complex task of implementing secure and fast cryptosystems with a
reasonable code size. Moreover, it is common to find a disconnection between
cryptography and software engineering, causing problems when cryptosystems
are converted from the mathematical model in paper to the practical imple-
mentation in hardware and software. These problems arise since the security
models from theoretical constructions do not translate to the practical imple-
mentations, where attackers have more power and thus additional threats must
be considered to achieve full security.

It is not difficult to find examples of theoretically secure cryptosystems and
protocols that fail to provide security guarantees when implemented in a system.
Perhaps the most infamous example of this is the HeartBleed vulnerability
affecting OpenSSL, the most widely used cryptographic library on the Internet.
RFC 6520 [120] describes the Heartbeat extension as a keep-alive mechanism for
TLS and DTLS, however, the implementation in OpenSSL failed to check the
payload request and response memory bounds, thus a server using this library
responded to any client with as much data as requested, potentially including
the server’s own private keys if they happened to be in memory. In addition to
the severity of HeartBleed affecting millions of servers running OpenSSL, this
issue unearthed a bigger problem affecting open-source security software such as
OpenSSL. The industry and research communities realized that a considerable

21

https://tools.ietf.org/html/rfc6520

part of the world infrastructure is secured by a handful of open-source software
projects that are maintained by few researchers and developers during their
free time. At the time of HeartBleed , many of these security-critical projects,
including OpenSSL, were running with little to no funding, and worryingly
under-staffed, making clear why this and other serious security vulnerabilities
slipped under the radar for such a long time. Soon after the HeartBleed disaster,
OpenSSL received much needed funding, leading to a better code base, and an
improved testing infrastructure.

Fast-forward to 2016, this dissertation uses a post-HeartBleed OpenSSL as a
research tool to investigate more subtle but equally important software defects
affecting the security of an otherwise functionally correct cryptographic library.
These software defects are well beyond the considerations of the mathematical
models for many protocols and cryptosystems, however this dissertation demon-
strates that they are present in OpenSSL, and leak confidential information to
an experienced attacker. The discovery, analysis, exploitation, and remediation
of these data leaks in practical implementations of cryptosystems are part of
the research field called Side-Channel Analysis (SCA). Several branches exist
within SCA based on the channel from which the information is being leaked,
e.g., EM radiation, power consumption, execution time, microarchitecture, etc.
The majority of this work focuses on cache-timing attacks, whose goal is to ex-
ploit the cache behavior to leak confidential information during the execution
of a variety of cryptographic algorithms—in this case applied to OpenSSL—to
ultimately recover secret keys.

OpenSSL uses a flagging mechanism to try to protect not only from cache-
timing attacks but from SCA in general. The mechanism allows to flag variables
holding secret values so that only SCA-secure functions operate on them, thus
avoiding information leakage. The flagging mechanism was introduced more
than a decade ago [105] with some level of success—only a handful of attacks
were published during the decade after its initial introduction [3, 4, 5, 23, 30, 32,
144]. However, no proper testing infrastructure was added to this mechanism,
thus its effectiveness was implicit but not certain. This dissertation takes a
closer look at this mechanism and its effectiveness to protect against cache-
timing attacks, uncovering several flaws and software defects enabling SCA,
in addition to an increased technical debt as a result of a security mechanism

22

focused on performance instead of security.

1.1 Main Contributions

OpenSSL is arguably the most widely used cryptographic library in the world,
and it has influenced several newer implementations. The impact of this re-
search work goes beyond academic results as it affects and improves the practi-
cal security of real-world deployments using OpenSSL, enjoying a more robust
security against SCA and cache-timing attacks.

The bulk of research work leading to this dissertation contributes to the
field of SCA and cache-timing attacks on both fronts, offense and defense. On
the offense, the work discovers and exploits new vulnerabilities, improves the
exploitation techniques, and finds new attack vectors. On the defense side,
the work improves the code quality of OpenSSL, and applies much needed
countermeasures not only to OpenSSL, but also to other cryptographic libraries
such as LibreSSL and BoringSSL against side-channel attacks.

This dissertation consists of seven novel and original scientific publications
published across several highly ranked system security and applied cryptogra-
phy venues. The publications offer new contributions and new results advancing
both SCA research and the practical security of OpenSSL. Table 1.1 shows the
relationship between the publications and the research questions they answer
to. As can be seen, all of the publications relate to multiple research questions
since the publications complement each other, in other words, the publications
are tightly connected to each other. This demonstrates this work is the re-
sult of a continuous and iterative process, a common approach followed in this
research field.

In general, this dissertation answers the following research questions:

Research Question 1. How secure are public-key cryptographic primitives
against Side-Channel Analysis as implemented in OpenSSL?

Research Question 2. How can side-channel vulnerabilities be prevented
in OpenSSL?

Research Question 3. How can side-channel vulnerabilities be efficiently
detected in OpenSSL?

Research Question 4. In addition to the caches, do other microarchitec-

23

RQ1 RQ2 RQ3 RQ4

Publication I ! !

Publication II ! !

Publication III ! !

Publication IV ! !

Publication V ! !

Publication VI ! ! !

Publication VII ! ! !

Table 1.1 Relationship between research questions and publications.

ture components leak confidential information during cryptographic operations?
The next paragraphs offer a summary for each publication.

Publication I. In the realm of SCA, cache-timing attacks have seen impor-
tant improvements in terms of methodology and results, however, many of these
cache-timing attacks are not completely practical. Most of the previous works
demonstrate attacks on any of the following scenarios: 1) own implementation
of the target cryptosystem; 2) well-established implementation but executed
in isolation; or 3) well-established implementation where the attacker’s code is
embedded into the target cryptosystem. While relevant, these scenarios allow
an attacker to benefit from increased signal-to-noise ratio, thus improving the
quality of the signal, allowing them to better observe and process the data
leakage. Unfortunately, these scenarios do not represent the typical obstacles
that an attacker would encounter in a practical scenario. As the distance—in
the software stack—between the attacker and the target increases, so does the
difficulty of performing a cache-timing attack, as the attacker has less control
of the environment. Publication I answers RQ1 by presenting the first end-to-
end practical cache-timing attack against a cryptographic primitive executing
as part of a protocol— DSA signature generation as part of TLS and OpenSSH
protocols. The cache-timing attack is paired with a performance degradation
attack in order to slowdown the overall execution of DSA. This allows to target
the TLS and SSH protocols linked against OpenSSL during DSA digital signa-
ture generation, ultimately enabling full key recovery. The root-cause analysis
reveals that the BN_FLG_CONSTTIME flag is the culprit, as it is not correctly set,

24

leading to the execution of an SCA-vulnerable modular exponentiation function
during DSA computation. Additionally, this work is relevant as it reflects on
the possibility to prevent SCA of OpenSSL, thus leading to RQ2. Moreover,
this work represents the first instance (of many to come) of a side-channel at-
tack attributed to the error-prone and insecure-by-default approach supported
by the BN_FLG_CONSTTIME flag mechanism in OpenSSL.

Publication II. The fixed-point scalar multiplication operation is a com-
mon SCA target due to the complexity of implementing it in a constant-time
manner. However, even if this is achieved, it is not the only operation that can
potentially leak secret information during signature generation. Publication II
answers RQ1 by demonstrating the first practical cache-timing attack against
the modular inversion operation used during ECDSA computation on the popu-
lar NIST P-256 curve featuring a specialized constant-time scalar multiplication
implementation. This work improves the performance degradation attack used
in Publication I, and combines it with an LLC cache-timing attack against a
highly input-dependent modular inversion operation in OpenSSL. Similar to
the previous case, the root-cause analysis reveals the vulnerability is enabled
by yet another software defect in the fragile BN_FLG_CONSTTIME flag. This work
continues the discussion of the failing flag mechanism to protect against SCA.

Publication III. Key generation is a cryptographic operation commonly
neglected outside of power and EM analysis since, historically, keys have been
generated and procured in secure and controlled environments such as Hard-
ware Security Modules (HSM). Moreover, key generation is a one-time oper-
ation, therefore SCA with a single trace was not deemed feasible, especially
on software. Publication III answers RQ1 by challenging this assumption and
demonstrating the first single-trace cache-timing attack on RSA key generation
with a modest success rate. The attack targets the input-dependent binary
GCD algorithm used during a coprimality test, leaking partial information of
the secret prime values p and q. This work answers RQ3 by proposing a new
methodology to identify the usage of input-dependent functions with secret
inputs—an undesirable but recurring situation in OpenSSL and other crypto-
graphic libraries.

25

Publication IV. SCA not only requires a deep understanding of cryptog-
raphy but also requires wide set of skills such as microarchitecture, operating
systems, algorithms, implementation details, and good cryptography engineer-
ing practices. This allows to analyze, detect, and remediate flaws leaking se-
cret information on a given implementation. Conveying all this knowledge to
a tool in order to automatically detect side-channel leakage is a challenging
task, hence automatic discovery of side-channel leakage with little to no input
from the user is unfeasible. Publications I–III and VII suggest that many side-
channel attacks can be attributed to a small set of implementation flaws, thus
by identifying these flaws it is possible to detect similar leakage in other sce-
narios and cryptographic libraries, as well as detect regressions reintroducing
side-channel vulnerabilities previously fixed. Publication IV answers RQ3 by
expanding and implementing the methodology proposed in Publication III as a
stand-alone dynamic analysis tool capable of selectively tracking function calls
by using small code annotations. The tool serves not as an automated side-
channel detection tool, but as a supporting tool for developers with access to
the cryptographic source code. The tool can be integrated to the development
pipeline using Continuous Integration (CI) to identify new flaws and detect
code regressions.

Publication V. SM2 is a suite of elliptic curve cryptosystems originating
from Chinese standards, equivalent and similar to those proposed by NIST.
Given the similarity to existing elliptic curve primitives in OpenSSL, one could
think that their implementation would be as secure as existing primitives in
the library—unfortunately this is not the case. Publication V shows that SCA-
secure implementation of modern cryptography is a complex task requiring
in-depth analysis to avoid common pitfalls found in software engineering, in
addition to advanced flaws leaking secret information. This work presents a
security evaluation of SM2, with respect to SCA, as implemented in OpenSSL
just before the release of version 1.1.1. This evaluation uncovers several soft-
ware flaws in the code, enabling a variety of side-channel attacks including
power, timing, and cache-timing attacks. This work answers RQ1, and it takes
a strong stance against the repetitive and common issues with the BN_FLG_

CONSTTIME and provides several countermeasures, answering RQ2.

26

Publication VI. Up to this point, previous works exploit software flaws
in OpenSSL using the cache as a side-channel, however, caches are not the
only microarchitecture component leaking confidential information due to time
variation during execution. In fact, caches are only some of the many mi-
croarchitecture components known to leak information. This rapidly increasing
field within SCA is termed microarchitecture attacks. Publication VI answers
RQ1 and RQ4 by introducing a new microarchitecture side-channel attack ex-
ploiting port contention inside the execution units within the microprocessor.
This attack is possible on microarchitectures supporting simultaneous multi-
threading (SMT). Additionally, this work demonstrates that the state-of-the-
art Intel SGX technology is still vulnerable to the new side-channel attack since
the source of leakage is oblivious to this security feature.

Publication VII. Previous Publications I–VI demonstrate side-channel at-
tacks against OpenSSL low-level SCA-vulnerable functions from a higher level
protocol such as TLS and SSH. Unsurprisingly, this is arguably the most com-
mon use case for the affected cryptosystems, therefore resulting in the deepest
research impact. However, side-channel attacks can also be exploited from other
protocols in less known scenarios. Publication VII answers RQ1, RQ2, and
RQ3 by using the tool developed in Publication IV to analyze the execution
flow followed by OpenSSL and mbedTLS during private key parsing and pri-
vate key conversion for diverse key formats containing valid but uncommon key
parameters. The analysis finds multiple software flaws and weaknesses affecting
RSA, DSA, and ECDSA keys, and demonstrate different side-channel attacks.
Similar to Publication V, this work receives a full SCA treatment, resulting in
traditional timing, cache-timing, and EM attacks.

1.2 Scope

The previous description in Section 1.1 gives a high-level overview of the topics
relevant to this dissertation. However, SCA is a vast and rapidly expanding
research field, and this dissertation does not aim at covering every single topic
and aspect related to this field. To that end, the following paragraphs delimit
the scope of this work by describing related topics that are not covered in this

27

dissertation but that the reader may find interesting.

Other Cryptographic Libraries. Several cryptographic libraries exist on
the Internet, each of them developed with a different use case in mind. While
some of them try to be general purpose libraries, other cover very specific use
cases. This dissertation focuses on OpenSSL due to its widespread usage on the
Internet, the impact it has had on other libraries, and its continuous support
and (mis)use of the BN_FLG_CONSTTIME flag. Although Chapter 3 briefly men-
tions vulnerabilities impacting other cryptographic libraries such as BoringSSL
and LibreSSL, their security analysis is out of the scope of this dissertation.

SCA of Symmetric Key Cryptosystems. This dissertation and related
publications focus on cache-timing attacks performed on asymmetric key cryp-
tosystems such as DSA, RSA, and ECDSA. However, symmetric key cryptosys-
tems are also prone to implementation flaws leading to leakage of confidential
information. The best and most common example of this is the Advanced En-
cryption Standard (AES) cryptosystem in its T-table implementation. Bern-
stein [24] demonstrated that this particular AES implementation, introduced
more than two decades ago, is vulnerable against cache-timing attacks. Since
then it is commonly used as a target benchmark to introduce new side-channel
attacks and vectors [54, 59, 71, 103, 126]. Moreover, state-of-the-art cache-
timing attack techniques discussed in Section 2.2 started as techniques against
symmetric key cryptosystems, and later found their application as techniques
to attack asymmetric key cryptosystems—such as the ones presented in Publi-
cations I–VII. Nowadays, AES has a greatly reduced side-channel attack surface
due to the adoption of hardware accelerated AES instructions, such as Intel’s
Advanced Encryption Standard New Instructions (AES-NI) [56], and ARMv8
Cryptographic Extension [20]. In both cases, symmetric and asymmetric key
cryptosystems, protection against SCA is a mandatory requirement for a prim-
itive to be deemed secure.

Lattices. Lattices are mathematical structures used in cryptography and
cryptanalysis, and among their many uses, they allow to find secret keys by
finding a small solution to undetermined systems of equations. Lattices are a
recurring theme in Publications I–III, V–VII, where these mathematical struc-
tures are used during the last part of the attacks to fully recover secret keys

28

by combining public information with the information leaked through the side-
channel. These structured are complex and the related publications use lattices
as black boxes—i.e., they find a solution (private keys) when given many small
partial solutions to the problem (leaked information) and a generous amount
of time. For this reason, this dissertation does not discuss the theory behind
lattices neither their application to cryptanalysis nor post-quantum cryptosys-
tems. For interested readers, Howgrave-Graham and Smart [65] present the
first, and perhaps most reader-friendly, work on lattices as a cryptanalysis tool
applied to DSA, which later Nguyen and Shparlinski [101] adapted to ECDSA.

Automated Detection of Side-Channel Leakage. Cryptography does
not exist in a vacuum, it is typically used as part of a bigger and more elab-
orated security protocol. Nevertheless, it can be implemented in practically
any programming language, leading to a situation where the security of the
implementation not only depends on the implementation itself, but also on
the underlying hardware and software stacks. In other words, the success of
SCA depends on a wide variety of software and hardware details and factors
including the target cryptosystem, the implementation, the programming lan-
guage used to implement the cryptographic primitive, the protocol using the
implementation, the compilation options used to compile the code, the micro-
processor executing the code, and the side-channel being exploited, just to name
a few. Convoluted function hierarchies leading to deep stack of function calls in
cryptographic libraries make automated identification, analysis, and quantifi-
cation of side-channel leakage points and vulnerabilities an incredibly complex
task. Publication IV describes a tool that supports the development process of
cryptography engineers to find repeating instances of known side-channel vul-
nerabilities and general security vulnerabilities in their projects. This tool does
not try to find new side-channel leakage points nor quantifies leakage, instead, it
helps developers to find code paths and functions that should or should not be
reached, thus it has a more general applicability beyond SCA. For this reason,
this dissertation does not discuss the theory and practice behind automated
detection and quantification of side-channel leakage, but instead, interested
readers may find useful the following references using different approaches to
achieve these goals, e.g., programming languages [21, 27, 36, 124], black box
testing [111], static program analysis [15, 113, 142], and dynamic program anal-

29

ysis [84, 138, 141].

Trusted Execution Environments (TEEs). TEEs are secure areas of
execution within the main processor commonly implemented on hardware, but
can also be implemented solely on software. Their main goal is to protect the
data being processed by only allowing trusted applications to operate in this
data, thus effectively isolating the data in the secure world from the insecure
world. It is inevitable to talk about SCA without mentioning TEEs and their
effect on the field of microarchitectural attacks. In fact, recent work [116] argues
that TEEs fuel research on microarchitectural attacks, and this is somewhat
reflected on Publication VI. Despite this close relationship between SCA, cache-
timing attacks, microarchitecture attacks, and TEEs, this topic is not covered
in this dissertation. The following references are recommended as they provide
an overview of TEEs from different perspectives [37, 116, 148].

1.3 Outline

This compilation-based dissertation is divided in two parts. In the first part,
Chapter 1 introduces the topic, gives an overview of the main contributions,
defines the scope, and the outline. Chapter 2 presents background information
on the microarchitecture, the caches, the cache-timing attack techniques, and a
brief history of side-channel attacks on OpenSSL. Chapter 3 presents the results
from Publications I–VII, discusses the vulnerabilities found, the microarchitec-
ture attack techniques used, and the countermeasures developed to improve
the security of OpenSSL. Chapter 4 discusses the practical implications of the
research work, the real-world impact, the future of microarchitectural attacks
and OpenSSL, as well as summarizes the results and concludes the disserta-
tion. The second part includes a compilation of original Publications I–VII as
published in the respective journals and conference proceedings.

30

2 BACKGROUND

This chapter presents a brief introduction to several topics revolving around
the central theme of the dissertation. Section 2.1 introduces the microarchitec-
ture and further describes the most relevant components for this dissertation,
namely, the pipeline and the cache hierarchy. Section 2.2 offers an overview
of cache-timing attacks and the most widely used techniques to perform them.
Section 2.3 recapitulates the history of side-channel attacks against OpenSSL
to set the scene leading to Publications I–VII and the results in Chapter 3.

2.1 The Microarchitecture

An instruction set architecture (ISA), commonly known as architecture, is an
abstract model of a CPU. This model specifies the functionality of the pro-
gramming interface of a CPU, e.g., instruction set, supported data types, mem-
ory management, registers, etc. The ISA effectively abstracts away irrelevant
details of the microarchitecture with respect to functionality. Architectures
are commonly classified based on the complexity of their instruction set, be-
ing Complex Instruction Set Computer (CISC) and Reduced Instruction Set
Computer (RISC) the two most prominent architecture families due to the
widespread usage of x86 and ARM processors, respectively.

On the other hand, a microarchitecture is an actual implementation of a
particular ISA in a processor. The microarchitecture description contains all the
implementation details of said microarchitecture, however, often many details
are not documented or they are not publicly available, thus demanding reverse
engineering efforts from the research community [1, 67, 72, 93, 146]. Generally
speaking, different microarchitectures can implement the same ISA, however,
the performance observed within a CPU family implementing the same ISA can
vary significantly due to differences in microarchitecture components, features,

31

Scheduler

Port
0

Execution Units

Bit
Scan

LEA

Store
Data

Branch
Predictor
Unit

Decoder

Instruction Queue

Instruction Fetch

Re-order Buffer

L1 icache

Branch

AES

Branch

AGU AGU AGU

µop µop µop µop µop

µop µop µop µop µop µop µop µop

µop µop µop µop µop µop µop µop

MOP

MOP

MOP

Load
Data

INT
ALU

INT
DIV

Vect
ALU

FP
FMA

Vect
MUL

Vect
ALU

INT
DIV

INT
ALU

FP
DIV

Vec
String

FP
FMA

Vect
MUL

Vect
ALU

L2 Cache

Load
Data

INT
DIV

INT
ALU

Port
7

Port
4

Port
3

Port
2

Port
6

Port
5

Port
1

Load
Buffer

Store
Buffer
& For-
warding

L1 dcache

LLC Cache

Figure 2.1 Simplified microarchitecture containing a variety of components.

and optimizations.

The microarchitecture is composed of several microarchitecture components
implementing a wide range of techniques such as pipelining and out-of-order
execution, to increase the overall performance of the microprocessor. Figure 2.1
shows a simplified diagram of Intel Skylake and newer microarchitectures con-
taining components such as execution units, caches, buffers, predictors, fetchers,
decoders, and schedulers.

32

A typical programmer does not care and does not directly interact with
these low level microarchitecture components, as they are abstracted away by
the ISA, which guarantees functionality as long as the programmer adheres
to it. In other words, a program is potentially portable if it adheres to the
ISA and it does not depend on any specific microarchitecture components or
features. Moreover, by combining increasingly complex microarchitectures and
smart compilers, microprocessors achieve an incredible level of optimization
without the programmers even knowing about it.

2.1.1 Pipelining

In contrast to specific designs, modern general purpose microprocessors use
pipelining to process instructions in a more efficient way. Pipelining means to
break down instruction processing into multiple stages, thus, allowing multiple
stages to complete at the same time, increasing the overall performance of the
microprocessor. As effective as pipelining is, it does not solve all the perfor-
mance problems in the processor. Pipelining suffers from scalability issues, that
is, it cannot increase indefinitely. As in any other system, the pipeline overall
performance is dictated by the slowest of its stages, and a common cause for
slow down in the pipeline are waiting periods—also known as stalls—caused
by a variety of reasons, including: memory delays, data dependencies, control
dependencies, and resource contention.

• Memory delays occur when data is not readily available in the current
stage, causing the pipeline to stall until data arrives. Retrieving memory
can take up to several hundred CPU cycles depending on where the data
is first available in the memory subsystem.

• Data dependencies happen when the current pipeline stage has to wait
for the result of the previous stage in order to proceed.

• Control dependencies are due to changes in the control flow, caused for
example by a branch misprediction. The pipeline must stall until the
branch is resolved and the address of the next instruction is known.

• Resource contention occurs when an instruction tries to use a microarchi-
tecture component that is currently in use by another instruction, there-

33

F

F

0 1 2 3 4 5 6 7 8 9 10 11Cycle

Memory Delay

Data Dependency

Resource contention Control Dependency

F: fetch

D: decode

E: execute

W: write back

WED

stall stall stall WE stallDF

WEstallDF

WEstallDF

WEDF

WED

Figure 2.2 Example of a simple pipeline with stalls.

fore having to wait until the resource is freed.

Figure 2.2 shows a simplified four-stage pipeline breaking the process into
fetch, decode, execute, and write back stages. Generally speaking, the stages
operate in parallel but depend on each other, i.e., the output of a stage is the
input for the following stage. This allows instructions to proceed to the next
stage as soon as the current stage is done, however as mentioned previously,
stalls occur from time to time. This simplified example hides complexity intro-
duced by additional microarchitecture techniques and components that further
increase performance. Relevant techniques that aim to improve the perfor-
mance by better utilizing the resources and reducing the number and length of
pipeline stalls include: out-of-order execution, branch prediction, simultaneous
multithreading [69], and caching.

Out-of-order execution. In contrast to Figure 2.2 where it is assumed
that instructions are executed in-order, i.e., instructions are executed in the
order of the program, modern microprocessors perform out-of-order execution.
Out-of-order execution operates based on data flow, allowing a program to
execute instructions if the data and operands are available, even if previously
issued instructions are still waiting for a resource. As long as each executing
instructions depends on previous results, this technique permits to continue
program execution while some of the instructions are waiting for stalls to be
resolved, thus increasing overall program execution performance.

34

Branch prediction. Another common technique improving the CPU per-
formance is branch prediction. Branch prediction allows a microprocessor to
combine local and global history information to speculate the path that will
be followed in a conditional branch, thus preemptively executing future in-
structions based on this prediction. Over the years, branch predictors have
been implemented as static branch predictors [47], hybrid branch predictors
[38], one-level branch predictors [115], two-level branch predictors [114], and
recently more complex branch predictors using machine learning techniques
[75, 76, 149]. State-of-the-art branch predictors are accurate. During a typical
workflow, the steady-state accuracy, i.e., the peak performance of the branch
predictor when is warm, is measured as less than 5 mispredictions per kilo-
instruction [121, 134]. However, in the case of a misprediction, the pipeline is
penalized with a longer stall, as the pipeline must be partly or fully flushed
and the correct instructions must be fetched and executed from the resolved
branch.

Simultaneous Multithreading. To greatly improve resource utilization,
some microprocessors support simultaneous multithreading (SMT)—known as
Hyper-Threading (HT) on Intel microprocessors—as part of their microarchi-
tecture. As the name indicates, SMT allows to execute multiple threads be-
longing to different processes at the same time. SMT makes a single physical
processor core to appear as multiple cores by copying the architecture state
for each logical core [91]. In reality only a single set of physical resources ex-
ist, but the logical partition is transparent to user programs, thus different
programs execute simultaneously by sharing and competing for execution re-
sources. Chapter 3 describes a new technique that exploits resource contention
as a side channel in processors supporting SMT.

Caching. Exploiting the locality of reference by either a single program
or multiple programs, caching allows the microprocessor to store data and in-
structions that are frequently used in a small memory component that is quickly
accessible. Compared to main memory, caches are physically closer to the CPU,
hence they are faster to access, making them an excellent place to store data
and instructions that are used throughout the execution of a program. This
dissertation focuses on the caching mechanism as a side channel, enabling cache-

35

L1 icache

L2 cache

Last-Level Cache (LLC)

Disk Storage

Reg Reg

CPU core 0

L1 dcache

Reg Reg

L1 icache

L2 cache

Reg Reg

CPU core 1

L1 dcache

Reg Reg

RAM

Figure 2.3 Memory hierarchy showing different memory levels color coded accord-
ing to their access speed. Blue to the left is the fastest, and red to the right is the
slowest.

timing attacks, therefore the rest of this chapter provides a detailed description
of the caches and how they work.

2.1.2 The Cache Hierarchy

Microprocessors contain a set of registers capable of holding data during execu-
tion. These registers are able to match the microprocessor’s processing speed,
however, due to the limited size and number of registers, combined with a
slow data retrieving speed from the main memory, an intermediate hierarchy
of caches was introduced to the memory subsystem in the microprocessor to
alleviate this bottleneck.

Caches are fast memory components with an increasing speed, and inversely
a decreasing size, as they get physically closer to the CPU. Figure 2.3 shows
the typical memory hierarchy from fastest to slowest memory components: the
CPU registers, L1 instruction and data caches, L2 cache, LLC, main memory,
and disk storage. The first-level cache, also known as L1 cache, is comprised of
two separate small caches with the fastest speed in the cache: an L1 data cache

36

Tag Data Block Flag bits

64 bytes 1-2 bitsT bits

Tag Index Offset

S bits O bitsT bits

Figure 2.4 Top: 64-byte cache line structure; Bottom: memory address structure.

(dcache) and an L1 instruction cache (icache). The L1 cache is followed by a
second-level cache (L2) of intermediate speed, which contains both data and
instructions. Finally, the last-level cache (LLC) also contains both data and
instructions, and it is slower but bigger than the previous levels. A set of L1
and L2 caches is commonly found per each CPU core, while the LLC is shared
among all the CPU cores.

During program execution, caches exploit the locality of reference to improve
the performance. At a high level, the locality of reference is divided in two: (i)
temporal locality dictates that the same set of data and resources will be used
within a short time interval; and (ii) spatial locality dictates that data stored
relatively close to recently used data, will also be used. Thus, based on these
observations, caches not only store recently accessed data, but also data close
to it.

Typically, a cache is divided into cache lines of 64 bytes each. Each cache
line holds an aligned block of adjacent bytes from memory, and when the CPU
needs data from main memory, it first looks for it in the cache. If the CPU
finds the data in the cache, it is said to be a cache hit. On the other hand, if
the data is not found in the cache, it is said to be a cache miss and the search
continues to the next level of memory hierarchy.

Caches read and write data from and to main memory using memory ad-
dresses, therefore each cache line is tagged based on the data address where it
resides in main memory. Figure 2.4 shows the structures of a cache line (top)
and a memory address (bottom). The cache line is composed of the tag, the

37

data block, and the flag bits. The tag allows to efficiently search for data when
reading or writing in the cache, by simply finding for a matching tag instead of
having to compare data blocks. The data block contains the actual data read
or to be written to main memory, while the flag bits are bits allowing to mark
cache lines as invalid or dirty—this last one used to indicate that the content
of a cache line has changed since it was read from main memory, thus it needs
to be written back to memory. Note that the cache line size is equivalent to
the data block, and is the amount of useful data it holds, i.e., the size does not
include the bits used for the tag, and the flags.

On the other hand, the memory address includes a tag, an index, and an
offset. For a cache with 64-byte cache lines and 2S cache sets, the low log2(64) =

6 = O bits determine the offset within the cache line where the data resides.
The next S bits in the memory address determine the cache set index in which
the data can be found, leaving the top T = 64 − S − O bits to form the tag,
uniquely identifying a cache line within a cache set.

Cache Associativity. Caches can be commonly implemented in three dif-
ferent ways: direct mapped caches, fully associative caches, and set-associative
caches. Most modern microprocessors implement set-associative caches since
they offer a good balance between cache complexity and CPU performance.
Set-associative caches are often referred to as m-way set-associative caches, as
each data block can be stored in only one out of m cache lines in a given cache
set. Depending on the implementation, caches use either virtual addresses,
physical addresses, or a combination of both to compute the index and the tag.
Figure 2.5 shows the typical workflow of an m-way set-associative cache using
physical addresses. Given a memory address, the cache controller checks the
existence of that data in the cache by taking the cache set index bits. Then,
once the cache set has been located, the tag portion is checked simultaneously
against all m-ways. If the data exists in the cache, the tag matches exactly one
entry, and a cache hit is recorded. The data is obtained from the data block
at the specific offset. If no tag is matched, a cache miss is reported and the
data search continues to the next levels in the memory hierarchy. Eventually,
the cache will be full, requiring data to be removed from the cache in order
to make space for new entries. The processor determines the cache lines to be
removed and kept using a cache replacement policy.

38

TagIndex Offset

Memory Address

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Data blockTag

Way 1

Way 2

Way m

Set 1

Set 2

Set 3

Set S

Set 1

Set 2

Set 3

Set S

Set 1

Set 2

Set 3

Set S

≡

≡

≡

Data

Figure 2.5 An m-way set-associative cache: the index selects the cache set, the
tag uniquely identifies the data within the cache set, and the offset determines the
data location in the data block.

Cache Replacement Policies. Whenever the cache is full and a new data
block needs to be loaded, e.g., due to a cache miss, a cache replacement policy
helps the processor determine which cache line to evict in order to make room
for the new data block. Historically, the most common cache replacement policy
used in Intel CPUs is an approximation to the Least Recently Used (LRU). In
the LRU policy, each cache line has an associated age field used to select and
evict the oldest cache line. This policy works particularly well for workloads
where data blocks are often reused within a time period, however, a downside of

39

this policy is the need for extra metadata such as the aging field, in addition to
increased implementation complexity. An alternative policy commonly used by
the ARM Cortex-A processor family [85, 125, 126, 127] is the pseudo-random
policy which does not make any assumptions about access patterns, and instead
it evicts a random cache line when needed, hence requiring a simpler logic during
implementation. Over the years many other policies have been proposed [74,
110], however the actual implementations are not disclosed by CPU vendors as
they are considered intellectual property, thus leaving researchers with the task
of understanding and reverse engineering them [1, 132, 133].

Inclusiveness. The cache hierarchy in modern Intel CPUs is inclusive, that
is, all data stored in the smaller caches (L1 and L2) is also stored in the LLC.
Similarly, if a cache line is evicted out of a cache, coherency must be enforced
by evicting data out of all cache levels. As mentioned previously, the LLC is
shared among all the CPU cores. This is done by splitting the LLC into smaller
cache slices that are interconnected [70], allowing all the CPU cores to access
all the slices.

In contrast to inclusive caches, modern AMD CPUs can be either exclusive
or non-inclusive. While an exclusive cache hierarchy allows data to be stored
in exactly one cache at a given time, the non-inclusive cache hierarchy permits
data to exist in one or several cache levels at a given time, without strictly
enforcing data coherency.

40

2.2 Cache-Timing Attacks and Techniques

In addition to being transparent to the programmer, the microarchitecture hides
information in its internal state, which can be observed through the execution
time of a program utilizing its resources. Attacks exploiting the hidden state
of the microarchitecture to leak confidential information are termed microar-
chitectural attacks. Cache-timing attacks are a subset of microarchitectural
attacks abusing cache contention in different cache levels to exfiltrate confi-
dential information exposed by the cache internal state during the execution
of cryptographic operations. Historically, cryptography has been the preferred
target since it is the most cost-effective—recovering a single key gives, poten-
tially, access to past, present, and future secrets.

In contrast to traditional EM and power side-channel attacks, requiring spe-
cialized hardware tools and close proximity, cache-timing attacks are exploited
remotely from software, thus these do not require physical access to the tar-
get. Typically, the threat scenario for cache-timing attacks—and many other
microarchitectural attacks—is an attacker with unprivileged code execution on
the target machine while being co-located with the victim. Co-location with the
victim can be either in the same physical CPU core, i.e., cross-thread attacks in
systems supporting SMT, or in a different CPU core within the microprocessor,
i.e., cross-core attacks.

In order to successfully perform a cache-timing attack on a given crypto-
graphic implementation, an attacker not only requires detailed knowledge of
the inner workings of the cryptosystem, but it also must carefully choose the
cache-timing attack technique to use. Choosing the correct technique makes
the difference between a successful and a failed attack, therefore declaring an
implementation secure or vulnerable with respect to cache-timing attacks.

Cache-timing attack techniques are a variety of software techniques exploit-
ing the cache internal state exposed through timing differences introduced by
the cache hierarchy, and they are a building block for cache-timing attacks.
These techniques cleverly execute unprivileged system instructions, abusing
the cache replacement policies and other cache features to break the isolation
mechanisms preventing unrelated programs and processes from communicating
with each other, thus creating a covert channel. A natural extension to covert

41

channels is to use this communication channel by a malicious process to spy or
exfiltrate information from a victim process, i.e., the victim process unknow-
ingly communicates confidential information through its cache footprint, while
the malicious process actively listens for this communication.

Cache-timing attack techniques rely on the spy process modifying and mon-
itoring the cache state during the execution of a cryptographic operation by
the victim process. If the cache footprint of the victim’s cryptographic pro-
cess is dependent on confidential information such as the private key, the spy
process can potentially recover the key. The following paragraphs present a
non-exhaustive list of the most notable, state-of-the-art, cache-timing attack
techniques developed over the past decades. These techniques enable a variety
of cache-timing attacks at different cache levels in the cache hierarchy.

Evict+Time. First described by Osvik, Shamir and Tromer [103] in 2006,
the authors used this technique to demonstrate a successful attack against the
commonly used AES T-table as implemented in OpenSSL 0.9.8. The goal of
an attacker using this technique is to modify the cache state prior to a crypto-
graphic operation by evicting specific cache-sets, then the attacker measures the
execution time of said operation to detect differences in execution time caused
by cache-set evictions. After repeating the process several times, an attacker is
able to recover private key bits by using algebraic methods on the timing infor-
mation. The timing difference is due to cache-hits and cache-misses, induced
by successfully evicting content from cache-sets which are mapped to cache-
sets used by the cryptographic operation. Figure 2.6 illustrates the attack flow
of this technique. The authors note that this technique assumes the attacker
has the ability to distinguish the beginning and the end of an encryption, as
well as the ability to trigger operations at will. Evict+Time has a cache-set
granularity, and greatly suffers from noise caused by other processes running in
parallel, as well as cache thrashing.

Related work using Evict+Time includes attacks against OpenSSL AES
implementation executing in ARM microprocessors [85, 126], as well as defeat-
ing address space layout randomization (ASLR) [49, 66].

Prime+Probe. In the same previous work, Osvik, Shamir and Tromer [103]
propose a second attack technique. The goal of an attacker using this technique

42

Cache

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

9

6

3

12

(a) Time
Cache

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

(b) Evict

Cache

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e12

3

6

9

(c) Time

Figure 2.6 The EVICT+TIME technique: (a) attacker times operation to obtain a
baseline; (b) attacker partially evicts the cache, e.g., a cache-set; (c) attacker times
and compares.

is to continuously bring the cache to a known state by filling it with its own data
(prime), then timing the loading of its own data (probe) while the cryptographic
operation takes place. Similar to the previous technique, both processes will
likely share some cache sets, thus the attacker will obtain information about
the cryptographic operation being executed due to timing differences during the
loading of its own data. In this technique the time measurement is done per
cache set, thus produces several measurements for a number of cache sets during
a single cryptographic operation, i.e., the attacker gets continuous snapshots of
several cache sets during the execution of a cryptographic operation. Figure 2.7
shows the typical attack flow and an example trace. The example trace shows
the victim accesses contiguous cache sets corresponding to table look-ups during
the cryptographic operation.

While still requiring a shared and an inclusive cache, Prime+Probe is a
generic and powerful technique that is ISA-independent and adapts to different
replacement policies. It can be used to attack several cryptographic primi-

43

Cache

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

(a) Prime
Cache

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

(b) Wait

Cache

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

Fast

Slow

Fast

(c) Probe

f_in matrix

Time

 0

 5

 10

 15

 20

 25

 30

C
ac

h
e

se
t

 50

 100

 150

 200

L
at

en
cy

(d) Example

Figure 2.7 The PRIME+PROBE technique: (a) attacker primes some cache-sets by
loading its own data; (b) attacker waits for the victim to evict its data; (c) attacker
probes own data by loading and timing it; (d) example trace probing 32 cache sets
during DSA modular exponentiation revealing multiplier look-ups.

tives in a wide variety of attack scenarios, thus making it, arguably, the most
versatile of the cache-timing attack techniques. Prime+Probe has been ap-
plied to a wide range of cryptosystems in different scenarios, well beyond the
original attack against the AES T-table implementation in OpenSSL. Some of
these include attacks against different cryptographic primitives, targeting the
L1 icache and dcache [3, 4, 30, 103], and the LLC [89, 92, 93], on scenarios
such as the browser [102], cloud [68, 71, 112, 150], SGX [117], and ARM-based
mobile devices [85].

Flush+Reload. First described by [59] and later popularized by [145],
this technique targets the LLC and can detect memory access at a cache line
level, thus giving a finer granularity, higher accuracy, and higher signal-to-
noise ratio when compared to the previous techniques. As the name implies, to
accurately achieve data eviction from the cache, this technique uses the clflush
instruction introduced by Intel with the Streaming SIMD Extensions 2 (SSE2).

44

Cache

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

(a) Flush
Cache

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

9

6

3

12

(b) Wait

Cache

V
ic
ti
m
’s
A
d
d
re
ss

S
p
ac
e

A
tt
ac
ke
r’
s
A
d
d
re
ss

S
p
ac
e

(c) Reload

 100

 200

 10 20 30 40 50 60

L
at

en
cy

Time

Mem Addr 1
Mem Addr 2

(d) Example

Figure 2.8 The FLUSH+RELOAD technique: (a) attacker flushes a memory address
shared with the victim out of the cache; (b) attacker waits for some time; (c) attacker
reloads memory address and times it; (d) example trace probing 2 cache-lines ac-
cessed by the victim revealing a sequence of operations.

Due to the inclusive caches in Intel CPUs, this means that the target data gets
evicted from all the cache levels, including the LLC.

The goal of an attacker using the Flush+Reload technique is to continu-
ously evict data out of a specific cache line using the clflush command, then
measuring the time it takes to reload that same data after a small waiting time.
The attacker can identify if the victim process accessed the shared data during
the time between the flush and the reload operations just by looking at the
timing information. If the victim process accessed the data, it will be available
in the cache, resulting in a cache hit on the next reload operation, taking a
short amount of time. On the other hand, if the victim process did not access
the shared data, then it is not available in the cache, resulting in a cache miss
on the next reload operation, therefore taking a longer time as the data must
be brought to the cache from a more distant memory, i.e., RAM, or main mem-
ory. Figure 2.8 illustrates the attack flow for the Flush+Reload technique,
as well as an example trace obtained after probing two memory addresses.

45

The authors describe three requirements when using the Flush+Reload

technique:

• Access to the clflush instruction. In Intel CPUs, clflush is an unpriv-
ileged instruction, thus an attacker does not require special permission
to execute this instruction while applying this technique. However, other
vendor CPUs such as ARM may require special permissions to execute
an instruction equivalent to clflush, although some results suggest that
this instruction is widely used by developers and therefore some micro-
processors used in mobile devices do not strictly enforce the permission
[85].

• Shared data. The attacker and victim processes must share the data that
is evicted out and reloaded into the cache. This is typically achieved
through the use of shared libraries or page de-duplication [18, 135].

• Inclusive caches. The microprocessor’s cache must be inclusive, as this
ensures the LLC contains copies of the data located in lower levels of
cache and they must be synchronized. This has the added benefit that
it allows to easily differentiate between a cache miss and a cache hit
as the timing difference is longer. As mentioned previously, most of Intel
CPUs have inclusive caches, making them vulnerable to Flush+Reload

and other cross-core cache-timing attack techniques. Despite newer In-
tel CPUs shipping with non-inclusive caches, research suggest that their
microprocessors are still vulnerable to these attack techniques [143]. On
the other hand, AMD CPUs have non-inclusive caches, and it is widely
accepted that they are not vulnerable to Flush+Reload, as originally
reported in [145], however, [73, 86] demonstrated similar attack tech-
niques for cross-processor attacks and cross-thread attacks, respectively.

Other Techniques. The power of Prime+Probe and Flush+Reload

has led to the development of attack technique variants adapted to different
technologies, constraints, and attack scenarios. Some relevant variants are the
following.

In situations where the microarchitecture does not expose a clflush in-
struction, or the clflush equivalent instruction supported by the CPU requires

46

special privileges to execute, Evict+Reload [55] can be used. This technique
replaces the clflush (or equivalent) instruction with other efficient and accu-
rate methods to evict the cache—similar to the Prime+Probe technique.

Similarly, in Intel CPUs supporting the Transactional Synchronization Ex-
tension (TSX) instructions the Prime+Abort technique [43, 52] can be used
for noiseless traces without the need for a high-resolution timer. With this
technique, an attacker loads cache-lines as TSX transactions, thus accurately
detecting when the victim accesses these cache-lines due to the abortion alerts
generated by the TSX mechanism.

Finally, the Flush+Flush technique based on Flush+Reload is par-
ticularly useful in scenarios where speed and stealthiness are required. This
technique does not perform the reload step of the classic Flush+Reload,
but instead, it exploits the timing difference of the clflush. The execution
time of clflush depends on data availability in the cache, completely avoiding
memory accesses, and therefore, this technique can bypass detection techniques
relying on cache-hit and cache-miss counters reported by the CPU to privileged
processes [54].

Cache Eviction. Typically, an attacker using Evict+Time, Prime+Pro-

be, or any other cache-timing attack technique requiring memory eviction from
the cache, faces two main obstacles: (i) finding eviction sets, i.e., memory ad-
dresses that map to the same cache sets used by the victim process during the
cryptographic operation; and (ii) finding the correct eviction strategy, i.e., the
access sequence for the eviction sets resulting in the successful eviction of the
victim’s cryptographic data out of the cache. Data is stored in a given cache set
based on a combination of physical memory address bits. In L1 caches, physical
and virtual addresses share the same LSBs used to determine the cache set in
which data is stored. Given the small size of L1 caches, it is feasible to access
all cache sets to achieve eviction without requiring a particular eviction set or
eviction strategy. However, targeting the bigger LLC complicates eviction as
additional factors must be taken into consideration. First of all, in some cases
physical and virtual memory addresses do not completely share the bits deter-
mining the cache set where data is stored, therefore creating an eviction set is a
non-trivial problem. Additionally, starting with the Sandy Bridge architecture,
Intel introduced cache slices to the LLC, obscuring the mapping of physical ad-

47

dresses into cache sets in cache slices. As mentioned in Section 2.1.2, to defeat
this issue, recent work focuses on reverse-engineering this undocumented fea-
ture using timing measurements [89] and performance counters [72, 93]. Finally,
also briefly mentioned in Section 2.1.2, CPU vendors have improved their cache
replacement policies, complicating the task of evicting data reliably out of the
cache. Nevertheless, finding new eviction strategies and methods to optimize
these strategies is an ongoing research work [29, 53, 132, 133].

Performance Degradation. An additional challenge when performing a
cache-timing attack is to convert the leakage signal into usable information, e.g.,
a bit pattern, a sequence of operations, a sequence of table look-ups, etc. An
attacker must try to acquire the best possible signal before applying any signal
processing methods in order to reduce the number of errors, and consequently
reduce the total computational load necessary to fully recover keys. To that
end, performance degradation techniques were developed as a set of techniques
used to slow down the execution of a process. Unlike physical side-channel
attacks where the attacker can control the oscilloscope to increase or decrease
the probing frequency according to its specifications, in cache-timing attacks
the attacker has less control of the probing frequency, as it depends on several
microarchitecture features, and the maximum probing frequency is bound by
the CPU frequency.

Historically, performance degradation attacks were categorized as denial-of-
service (DOS) attacks, where the goal was to annoy the victim process by reduc-
ing the quantity or quality of the process [51, 61], but with no real benefit for
the attacker. However, Allan et al. [14] demonstrated that performance degra-
dation attacks can be used to amplify the side-channel leakage, thus greatly
improving the success rate of cache-timing attacks.

In the context of cache-timing attacks, a performance degradation attack
is typically paired with a cache-timing attack technique such as Flush+Re-

load, both targeting the same cryptographic operation but different memory
addresses. While the cache-timing attack technique probes data or instructions
in memory, the performance degradation attack slows down the execution of
the cryptographic operation enough to successfully probe data or instructions
in memory that otherwise would be missed due to a rapid execution.

48

OpenSSL
2003 2005 2007 2008 2009 2010 2011 2012 2014 2015 2016

-
R

em
ot

e
ti

m
in

g
at

ta
ck

-
R

S
A

b
li

n
d
in

g

-
L

1
d
ca

ch
e

at
ta

ck
-

BN
FL

G
EX

P
CO

NS
TT

IM
E

-
BN

mo
d

ex
p

mo
nt

co
ns

tt
im

e

-
S
B

P
A

-
BN

FL
G

CO
NS

TT
IM

E
-

BN
mo

d
in

v
no

br
an

ch
-

BN
di

v
no

br
an

ch

-
L

1
ic

ac
h
e

at
ta

ck
-

F
ix

M
on

t
m

u
lt

ip
li

ca
ti

on

-
L

1
d
ca

ch
e

at
ta

ck
-

N
o

fi
x
es

-
L

1
ca

ch
e

at
ta

ck
-

BN
mo

d
ex

p
mo

nt
co

ns
tt

im
e

-
R

em
ot

e
ti

m
in

g
at

ta
ck

-
A

d
d

n
on

ce
p
ad

d
in

g

-
EC

GF
p

ni
st

p2
24

me
th

od
-

EC
GF

p
ni

st
p2

56
me

th
od

-
EC

GF
p

ni
st

p5
21

me
th

od

-
L

L
C

ca
ch

e
at

ta
ck

-
M

on
tg

om
er

y
la

d
d
er

fi
x

on
B

in
ar

y
E

C

-
EC

GF
p

ni
st

z2
56

me
th

od
-

M
o
d
u
la

r
in

ve
rs

io
n

u
si

n
g

F
L
T

-
L

L
C

ca
ch

e
at

ta
ck

-
P

er
fo

rm
an

ce
d
eg

.
at

ta
ck

-
C

ac
h
e-

b
an

k
co

ll
is

io
n

at
ta

ck
-

F
ix

BN
mo

d
ex

p
mo

nt
co

ns
tt

im
e

EC

RSA

DSA

Figure 2.9 Timeline of (mostly) microarchitectural side-channel attacks and coun-
termeasures on asymmetric primitives in OpenSSL.

2.3 A Brief History of SCA against OpenSSL

As described in the project’s web page1, “OpenSSL is a robust, commercial-
grade, and full-featured toolkit for the Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) protocols. It is also a general-purpose cryptography
library.” OpenSSL is a widely-deployed cryptography library that secures, at
least on the server side, a considerable amount of the Internet infrastructure,
and is commonly used (and dreaded) by security practitioners, developers, and
researchers alike. OpenSSL is considered the Swiss Army knife of cryptography,
as it can be used to achieve almost any required task, and since it is open source,
it can be modified and extended to include new features and cryptographic
primitives as needed.

From a research perspective, OpenSSL is a perfect experimentation and

1https://www.openssl.org/

49

https://www.openssl.org/

attack target as its widely used. Any research resulting in new features or vul-
nerabilities represent a deep real-world impact. This is especially true for SCA
and side-channel attacks targeting actual implementations of several different
cryptographic primitives—of which OpenSSL has plenty.

The rest of this section recapitulates part of the troubled history of OpenSSL
with respect to SCA, applied to asymmetric cryptography, namely RSA, DSA,
and ECC. Figure 2.9 shows a timeline of the most relevant SCA attacks and
countermeasures adopted in OpenSSL throughout the years. The list of events
is non-exhaustive and it includes only those related to the BN_FLG_CONSTTIME

flag, one of the main themes of this dissertation. The following summary is
essential to understand the research work presented on Chapter 3. It includes
events starting in 2003, and stretches all the way to the start of the research
work leading to this dissertation in 2016.

2003. The theory and practice of side-channel attacks reached a new level
when a timing attack was successfully demonstrated against general purpose
PCs and servers instead of the smaller and specialized smart cards—a more
common target at that time. Against common belief, D. Brumley and Boneh
[33] showed that remote timing attacks are practical by demonstrating an attack
against an Apache server powered by OpenSSL. This attack targeted timing
variations in RSA decryption during TLS handshakes, thus effectively attacking
from the protocol level.

Through this work, the authors demonstrated that SCA represented a real
threat to the security of a growing number of web servers, and they not only
proved that it was possible to recover secret keys from a general purpose server
but also that it was possible to do it in a completely remote scenario and without
specialized equipment. The authors noted that RSA decryption followed the
CRT method, a method that supposedly prevented side-channel attacks. The
CRT method itself used the sliding window modular exponentiation function,
which in turn used two distinct algorithms, i.e., textbook vs. Karatsuba, to
compute a multi-precision multiplication. The choice of algorithm depended on
the size of the input values, and each algorithm had a different running time,
thus leaking input size information. Additionally, the Montgomery reduction
function used for BIGNUM modular reduction also performed an extra reduction
step based on the size of the input value. By combining these observations, the

50

authors managed to recover enough bits of the RSA prime factors, ultimately
leading to full key recovery. The authors concluded that RSA blinding is an
effective countermeasure against this vulnerability. In fact, this countermeasure
was already implemented in OpenSSL but not active by default due to the
performance impact on RSA. As a result of this work RSA blinding was set
by default2 in OpenSSL with the option to turn this off by using the new flag
RSA_FLAG_NO_BLINDING.

As a side-note, despite not being a cache-timing attack, this work is rele-
vant to this dissertation since it represents the first published instance where
a side-channel attack is enabled by following a performance-first and insecure-
by-default approach in OpenSSL, a recurring issue and central theme of this
dissertation.

2005. Percival [105] not only described a new cache-timing attack technique,
but also showed its power by using this technique against OpenSSL RSA digital
signing to steal private keys. As part of this work, the author describes the cache
behavior and its possible use as a covert channel, then demonstrates the impact
of the cache-timing attack by targeting OpenSSL. Interestingly, the target is
the same sliding window modular exponentiation function previously exploited
by [33]. However, this time the cache footprint difference between the square
(BN_sqr) and multiplication (BN_mul) functions is what reveals enough bits
of information to ultimately factor the RSA modulus and recover the private
key. To respond to this work, OpenSSL introduced two important changes to
its code base3: a brand new BN_FLG_EXP_CONSTTIME flag, and a fixed window
modular exponentiation function secure against cache-timing attacks named
BN_mod_exp_mont_consttime. On the one hand, the newly created BN_mod_

exp_mont_consttime function combined fixed windows and a special memory
layout for the pre-computation table to prevent data-dependent accesses, thus
avoiding leaking confidential information. On the other hand, the BN_FLG_

EXP_CONSTTIME allowed to mark security sensitive integer values, e.g., private
keys, secret exponents, and nonce values, as secrets. By flagging the secret
values OpenSSL changes its execution flow, therefore, instead of executing the
vulnerable sliding window function, the execution flow changes to the new,

2Commit: 96c15b8aad15e0cb3d107ac281be215ce04241d8
3Commit: ecb1445ce2df51e5310bb58c67c57f7f83ed6a52

51

https://github.com/openssl/openssl/commit/96c15b8aad15e0cb3d107ac281be215ce04241d8
https://github.com/openssl/openssl/commit/ecb1445ce2df51e5310bb58c67c57f7f83ed6a52

secure, and data-independent fixed window modular exponentiation function.
In addition to RSA, the OpenSSL team made the necessary changes in DH
and DSA to provide the same level of protection as to RSA for the modular
exponentiation operation.

2007. Continuing the previous trend, Acıiçmez, Gueron and Seifert [5] fo-
cused on the RSA implementation in OpenSSL highlighting new SCA issues
by exploiting a microarchitecture component not targeted before, the Branch
Prediction Unit (BPU). Using Simple Branch Prediction Analysis (SBPA), the
authors uncovered an implementation flaw leaking information from the pre-
vious fixed window modular exponentiation function—theoretically immune to
SCA. The flaw was present during the construction of the window value, which
was done by scanning the exponent bit by bit, thus using SBPA, a malicious
attacker could easily retrieve the complete exponent value. Additionally, this
work highlighted for the first time the insecurity of using the Binary Extended
Euclidean Algorithm (BEEA) function BN_mod_inverse for modular inversion
of secret inputs. CRT-RSA used this function to compute four secret values:
(i) the private exponent d = e−1 mod (p − 1)(q − 1); (ii) the CRT parameter
q−1 mod p; (iii) the Montgomery constant −p−1 mod m; (iv) and the blinding
pair (x, y = x−e mod N). OpenSSL introduced more changes to its code base
based on these results4: (1) a new and branch-free modular inversion function
(BN_mod_inverse_no_branch) immune against SBPA; (2) a new and (almost)
branch-free multi-precision division function (BN_div_no_branch) function; (3)
the vulnerable fixed window modular exponentiation function was fixed; and (4)
the BN_FLG_EXP_CONSTTIME flag was replaced by a newer BN_FLG_CONSTTIME

flag. The flag update reflected the increasing need to support more SCA-secure
operations within the library, i.e., modular exponentiations and modular in-
versions. Following a similar approach as before, a flag check was introduced
at the top of the BN_mod_inverse function to determine which execution flow
to follow. If the input values are marked with the new flag the execution flow
jumps to the new BN_mod_inverse_no_branch function, otherwise, it continues
with the old SCA-vulnerable BN_mod_inverse function.

Unfortunately, these changes strengthened the architecture decision to con-
tinue with performant but SCA-vulnerable functions by default, thinking that

4Commit: 7cdb81582cafdddce891f1da8d85ca372e5dabbc

52

https://github.com/openssl/openssl/commit/7cdb81582cafdddce891f1da8d85ca372e5dabbc

only a handful of places in the code would require an SCA-secure execution
flow.

2008. Five years after being first mentioned in [33], Aciiçmez and Schindler
[3] noticed that OpenSSL Montgomery multiplication function was never fixed,
and it was still leaking information due to the extra reduction step happening
based on the input values. The authors mounted an L1 instruction cache-timing
attack by embedding a spy process into OpenSSL. This was done to reduce
the cache noise produced by other processes, but successfully exploiting the in-
struction cache against RSA. Previous to this attack, cache-timing attacks were
(mostly) performed by exploiting the L1 data cache, but the authors demon-
strated the feasibility against the L1 instruction cache. The OpenSSL team
adopted the proposed changes5 to finally remove the extra reduction operation
in the Montgomery multiplication function.

2009. Up to this point, previous SCA was mostly focused on attacking
RSA because, arguably, it was the most common and widely used cryptosys-
tem for data encryption and digital signing. Moreover, given that RSA shares
many low level operations with other cryptosystems, many of the side-channel
countermeasures previously applied to RSA cascaded down to DH and DSA,
allowing them to enjoy some level of protection against SCA. However, ECC
and especially ECDSA, used a different set of algorithms to implement EC op-
erations, thus requiring a separate analysis. ECC already was widely used by
security applications relying on OpenSSL as the cryptography provider, thus
the arena was set for practical SCA of OpenSSL ECC implementations. [30]
demonstrated a practical cache-timing attack against ECDSA using the Pri-

me+Probe technique on the L1 data cache. The vulnerable function was the
multi-scalar multiplication algorithm falling back to the textbook scalar mul-
tiplication with a modified wNAF scalar encoding. This function is the ECC
equivalent to the sliding window modular exponentiation, thus the leaked infor-
mation was similar to that previously obtained by [105], but this time applied
to ECDSA. Another novelty of this work was the usage of a standalone spy pro-
cess, instead of the more common spy process embedded in the library code.
The standalone spy process ran in parallel to the ECDSA computation in a PC

5Commit: 1a56614af2b015fdb79fa1b6df56820d08110523

53

https://github.com/openssl/openssl/commit/1a56614af2b015fdb79fa1b6df56820d08110523

supporting SMT. While the victim process computed ECDSA, the spy process
was able to take snapshots of the L1 dcache state, effectively extracting the
sequence of double and add operations used to compute the scalar multiplica-
tion. By having a standalone spy process, the noise captured by the spy process
increased considerably compared to the embedded approach, thus the authors
used statistical methods to reduce the noise.

A benefit of attacking ECDSA over RSA is that the former benefits from
lattice methods [65], allowing an attacker to fully recover a private key by ob-
serving a small leakage equivalent to only a few bits over several signatures
signed with the same private key. Among the proposed countermeasures to
mitigate this attack was the scalar blinding approach, similar to the exponent
blinding technique proposed and deployed earlier to protect the RSA cryp-
tosystem. However no changes were introduced to OpenSSL as a result of this
work.

2010. Acıiçmez, B. B. Brumley and Grabher [4] followed similar methods as
in the previous attack with two main differences: (i) the target cryptosystem
was DSA; and the target cache was the L1 instruction cache. The authors
use a standalone spy process running in parallel to DSA taking snapshots of
the L1 instruction cache using the Prime+Probe cache-timing attack tech-
nique. An interesting observation from this work is that DSA used the sliding
window exponentiation function to compute modular exponentiation instead of
the more secure BN_mod_exp_mont_consttime function previously introduced
to the code base and already in use by RSA [105]. This exponentiation function
revealed the sequence of square and multiply operations performed during DSA
signature generation. The sequence partially leaked secret nonce bits over sev-
eral signatures through the L1 instruction cache. Same as in [32], the authors
collected the leakage over several signatures, then later applying lattice meth-
ods in order to fully recover the private key. In addition to the successful attack
on DSA, the authors analyzed multiple countermeasures, focusing on system
level countermeasures. The analysis included cache flushing, cache disabling,
and turning off SMT support. While the source of the leakage was clearly un-
derstood, no additional analysis was performed to understand the reason why
DSA was still using the SCA-vulnerable sliding window exponentiation function
with secret exponents despite the BN_mod_exp_mont_consttime function being

54

introduced 5 years previous to this work. Clearly, the SCA countermeasures
were not uniformly applied to all the cryptosystems, and the complexity (and
technical debt) of the BN_FLG_CONSTTIME flag was starting to show. OpenSSL
did not introduce any new changes to its code base following this work.

2011. Analogous to [33], B. B. Brumley and Tuveri [32] demonstrated that
remote timing attacks were still possible, but this time against ECC using
curves over binary fields. Binary curves in OpenSSL used the faster and SCA-
secure Montgomery ladder algorithm6 for scalar multiplication instead of the
common wNAF method used by prime curves. The most interesting aspect of
this attack is the feasibility of performing a timing attack even if the efficient
and SCA-secure Montgomery ladder algorithm was used to compute the scalar
multiplication operation. The authors noted that the bit length of the secret
nonce was being leaked by the loop bounding the iteration count during scalar
multiplication, i.e., the number of loop iterations was directly related to the bit
length of the secret nonce, thus, by timing the signature generation computation
the authors were able to distinguish bit length information for several secret
nonces. Interestingly, the regularity of the Montgomery ladder implementation
considerably improved the timing leakage, resulting in a clear signal, allowing
a protocol level attack on TLS. The authors repeatedly captured timing signals
generated during TLS connection establishment, ultimately allowing them to
fully recover the server’s private key after applying lattice methods to the partial
bit leakage collected over many TLS connections. As a countermeasure to this
issue, the authors proposed7 to fix the nonce bit length to match the bit length
of the order of the group in which the ECDSA curve operates, thus fixing the
number of iterations performed during scalar multiplication and closing the
source of leakage.

2012. As ECC became mainstream and more widely deployed on the Internet,
new research results started to permeate into OpenSSL. Käsper [78] presented
faster implementations of multiple elliptic curves8. These fast implementations
also performed scalar multiplication in an SCA-secure manner by combining

6Commit: 7793f30e09c104b209206608a20f2088b1b635fd
7Commit: 992bdde62d2eea57bb85935a0c1a0ef0ca59b3da
8Commit: 3e00b4c9db42818c621f609e70569c7d9ae85717

55

https://github.com/openssl/openssl/commit/7793f30e09c104b209206608a20f2088b1b635fd
https://github.com/openssl/openssl/commit/992bdde62d2eea57bb85935a0c1a0ef0ca59b3da
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717

fixed window combing and secure cache table look-ups using software masking.
These results were applied not only to NIST P-224, but also to NIST P-256,
and NIST P-521, thus increasing considerably their performance and security
in OpenSSL. However, not all of the elliptic curves enjoyed the improvements
resulting from this work, therefore the academic research switched to attack the
secp256k1 curve as it still used the generic and SCA-vulnerable wNAF scalar
multiplication function.

2014. Although the Montgomery ladder is considered an SCA-secure scalar
multiplication function due to its regular behavior and balanced sequence of
operations, Yarom and Benger [144] demonstrated that small details can make
or break the practical security of a Montgomery ladder implementation. Using
the new Flush+Reload cache-timing attack technique, the authors demon-
strated that an implementation that was considered secure against SCA, was no
longer secure, as previous threat models failed to considered new state-of-the-
art techniques. The Flush+Reload technique opened new opportunities for
SCA research, as it offers a finer granularity to the spy process when compared
to the previous Prime+Probe technique, i.e., Flush+Reload offers a cache-
line size (64 byte) granularity allowing to pinpoint executing, and thus cached,
instructions by the victim process. This impressive level of granularity allowed
them to detect the branch taken inside the main loop of the Montgomery ladder
scalar multiplication function, thus revealing each bit of the secret scalar value
in an otherwise balanced algorithm. The authors demonstrated the Flush+

Reload attack against ECDSA over the binary curve NIST B-571, arguably
due to bigger key sizes facilitating the probing of the spy process, and the at-
tack overall. In contrast to previous ECDSA attacks, the full key recovery is
achieved without the use of lattice methods, and instead, the computationally
friendlier Baby-Step-Giant-Step (BSGS) algorithm [122] is used to recover the
secret nonce and ultimately the private key. As part of their work, the au-
thors disclosed these results to OpenSSL and provided a patch9 to improve the
Montgomery ladder implemented for binary curves.

Following the previous work, Benger et al. [23] combined the Flush+Re-

load technique with lattice methods and applied it to ECDSA to recover pri-
vate keys of the secp256k1 curve. As mentioned previously, this curve became

9Commit: 2198be3483259de374f91e57d247d0fc667aef29

56

https://github.com/openssl/openssl/commit/2198be3483259de374f91e57d247d0fc667aef29

the new target for research as it used the SCA-vulnerable wNAF scalar multi-
plication function. The main contribution of this work is the improved usage
of leaked information during the lattice phase, allowing an attacker to recover
private keys after observing only 200 signatures, the lowest number so far. The
work highlighted yet again the insecurity of the wNAF function, but due to
limited practical usage of the secp256k1 curve, no fixes were proposed nor
adopted to improve this particular curve.

2015. Gueron and Krasnov [57] studied and implemented software optimiza-
tions for ECC using 256-bit primes, e.g., NIST P-256. This work prompted
two important changes to OpenSSL for ECDSA: a brand new EC_GFp_nistz256

_method implementation for the NIST P-256 curve taking advantage of the per-
formance gain offered by Intel AVX2 instructions; and a modular inversion via
BN_mod_exp_mont_consttime and Fermat’s Little Theorem (FLT)10. The new
changes pushed the NIST P-256 implementation to a new level in terms of speed
and SCA-security with an overall speedup factor of 2.0x compared to the previ-
ous fastest implementation [78]. This new implementation had the unintended
consequence of fragmenting the ECDSA implementations for different elliptic
curves. On the one hand, NIST P-256 enjoyed the fastest specialized implemen-
tation in OpenSSL, the NIST P-224 and NIST P-521 curves still benefited from
[78], and P-384 did not enjoy any optimizations. On the other hand, the intro-
duction of FLT to compute the modular inversion meant that modular inver-
sion was possible through the SCA-vulnerable function BN_mod_inverse, and
the SCA-secure functions BN_mod_inverse_no_branch and BN_mod_exp_mont

_consttime. The flexibility offered by OpenSSL with its diverse implementa-
tions and configurations started to become equally demanding for users and
developers, increasing even more the maintenance complexity, and with more
SCA-vulnerable options by default.

2016. The Flush+Reload technique proved to be useful for new cache-
timing attacks as it provided finer granularity to accurately probe instructions
used by the victim process, allowing to attack implementations that were previ-
ously considered secure such as in [144]. Based on the same concept as Flush+

Reload, Allan et al. [14] developed a new side-channel amplification technique
10Commit: 8aed2a7548362e88e84a7feb795a3a97e8395008

57

https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008

using a performance degradation approach. This technique allowed them to
slow down the execution of the victim process, thus giving more time to the spy
process to accurately detect cache hits and misses when probing the instruc-
tions of interest. The slowdown permitted the authors to collect bit leakage
from the ECC point inversion operation during wNAF scalar multiplication for
the secp256k1 curve. The wNAF method was known to be vulnerable, however
this work improved the side-channel information leaked from the implementa-
tion, leading to full key recovery after observing only 6 signatures.

Continuing the work on cache-timing attack techniques, Yarom, Genkin and
Heninger [147] developed a new technique giving a finer granularity than the
Flush+Reload technique. The fixed window modular exponentiation func-
tion introduced 10 years before as a result of [105] was not completely secure
against side-channel attacks, it was intended to avoid secret-dependent memory
accesses detectable at a cache line level, thus leaving a very small and subtle
timing leakage. Prior to this work, for 2048-bit and 4096-bit keys in OpenSSL,
the fixed window exponentiation function used a window size of 5, using 32
multipliers. Each multiplier was divided in 8-byte fragments, each fragment
scattered across groups of four cache lines, therefore, during a multiplication,
all the cache lines containing the multipliers were accessed and a mask was used
to correctly select the fragments of the required multiplier. The leakage was due
to timing variations introduced by cache-bank collisions when accessing mul-
tiplier fragments located at the same offset in each group of four cache lines.
The timing variations leaked the multiplier accessed, which was dependent on
the private exponent, potentially revealing the private key. Yarom, Genkin and
Heninger [147] demonstrated that this minor timing leakage believed to be im-
possible to exploit was exploitable with their newly developed CacheBleed

technique. They applied this technique to the fixed window exponentiation
function in the context of RSA, and they managed to recover 3 bits for most of
the 5-bit windows, leading to full private key recovery after applying a branch-
and-prune algorithm based on work by [64, 67]. To alleviate this issue, the
OpenSSL team changed the size of the memory accesses to 16 bytes (instead
of 8 bytes), in combination with access to a variable offset for each group of
four cache lines11. The authors noted that this countermeasure is a band-aid to

11Commit: d6482a82bc2228327aa4ba98aeeecd9979542a31

58

https://github.com/openssl/openssl/commit/d6482a82bc2228327aa4ba98aeeecd9979542a31

the algorithm implementation, as more granular and powerful attacks could be
developed in the future, rendering the solution useless. Their recommendation
is a new constant-time modular exponentiation function which is still yet to be
implemented.

59

60

3 RESULTS

This chapter describes the work and results derived from Publications I–VII,
and discusses the defects enabling the side-channel attacks performed for each
publication by tracing back the history of OpenSSL introduced in Section 2.3
and the insecure-by-default BN_FLG_CONSTTIME flag. This dissertation criticizes
the BN_FLG_CONSTTIME flag as an architecture decision taken by the OpenSSL
team defaulting to an insecure behavior, and instead favoring performance over
security. In hindsight this poor choice is obvious now, but the criticism is done
in an attempt to ultimately lead OpenSSL to a secure-by-default approach
across the library due to the importance of OpenSSL as a research tool and as
a cryptography library powering a large portion of the Internet. Finally, despite
the criticism, big parts of this dissertation would not be possible without the
existence of the BN_FLG_CONSTTIME flag.

3.1 Make Sure DSA Signatures are closer to
Constant-Time

Publication I [107] brings attention to the fragile flagging mechanism used as
an SCA countermeasure. Looking in retrospective, the first warning signs of
the costly architecture decision of maintaining the new BN_FLG_CONSTTIME flag
go back to 2007 just after it was introduced1. The flag maintenance involved
correctly tracking all the places in the code base dealing with secret inputs
where the flag needed to be set, and correctly setting the flag in any of the
secret inputs before calling any of the functions supporting the flag check.

Publication I discovers that two independent and seemingly unrelated changes
meant to mitigate two different side-channel attacks in OpenSSL instead intro-

1Commit: 2ac061e487e402a1d5abde866322c47550fc9186

61

https://github.com/openssl/openssl/commit/2ac061e487e402a1d5abde866322c47550fc9186

duced a software defect. The software defect resulted in the improper setting
of the BN_FLG_CONSTTIME flag in secret nonce values prior to the execution of
modular exponentiation operations. Recall that as a result of [105], the BN_mod_
exp_mont_consttime function was introduced as an SCA-secure operation dur-
ing signature generation for RSA. This change permeated into other cryptosys-
tems, including DSA, which now enjoyed side-channel protection against timing
attacks and cache-timing attacks. However, this protection was only tempo-
rary due to the attack and the countermeasure adopted as a result of [32].
The DSA execution flow was slightly modified by the nonce padding fix—an
essential change to avoid leaking the bit length of the nonce in order to pre-
vent timing attacks on DSA. Yet, this countermeasure caused the flag to be
lost since the padded nonce was created as a copy of the original nonce using
the BN_copy function, which failed to propagate the flags set in the BIGNUM

structure from source to destination. This flaw resulted in signatures being
generated using the SCA-vulnerable sliding window modular exponentiation
function2. The BN_copy function completely ignores the flags set in the source
BIGNUM value, and in fact, OpenSSL instead recommends using BN_with_flags

as this function does propagate previously set flags from source to destination.

From an SCA perspective, Publication I combines the Flush+Reload

technique [144] with a performance degradation attack [14], slowing down the
execution of the sliding window modular exponentiation function enough to
accurately trace the sequence of square and multiply operations performed by
the algorithm with a spy process running in parallel to the DSA operation.
This sequence of operations is then converted into partial bit knowledge of the
nonce value, which is finally converted into the private key after applying lattice
methods [65]. In terms of novelty, Publication I presents the first cache-timing
attack at the protocol level, i.e., the attack recovers private keys used during
DSA signature generation as part of the TLS and SSH protocols, both using
OpenSSL as the cryptography provider. Prior to this work, cache-timing at-
tacks were performed by either embedding the spy process directly in OpenSSL
or targeting directly the cryptographic primitive running in isolation. These
approaches reduce considerably the cache noise, translating into fewer errors
captured by the spy process, requiring less signal post-processing and overall

2Commit: 44a287747f8594c0ab517526190c7d8af6f8572b

62

https://github.com/openssl/openssl/commit/44a287747f8594c0ab517526190c7d8af6f8572b

less signatures and traces to recover private keys. Despite the increased cache
noise generated by the TLS and SSH protocols during the trace capture by the
spy process, Publication I demonstrates that it is feasible to perform cache-
timing attacks at the protocol level, and moreover, it shows that the accuracy
and complexity of the cache-timing attack depends on the target protocol, i.e.,
results vary between TLS and OpenSSH even if the target function is identical.
As a fix for this specific software defect, the flag is checked in the BIGNUM struc-
ture holding the padded nonce value prior to modular exponentiation, and is
set if it is not present3, forcing DSA to use the constant-time modular exponen-
tiation function. In addition to OpenSSL, BoringSSL and LibreSSL libraries
suffered from the same software defect, as this issue was already present by the
time these libraries were created as forks from OpenSSL.

This side-channel attack is the first of many subsequent works exploiting
software defects and programming errors involving the BN_FLG_CONSTTIME flag,
however using the experience gained from this first analysis, it was evident
that the architectural decision of using the flag as an opt-in mechanism instead
of adopting a secure-by-default approach was not optimal to protect against
side-channel attacks. In fact, the initial fix for this issue in LibreSSL shortly
introduced another side-channel vulnerability during nonce inversion in DSA4,
which was quickly fixed. This transient defect supported and highlighted the
issues with the flagging mechanism, i.e., it is extremely error-prone and easy to
misuse. This observation sparked the idea leading to the next research work.

3.2 A Cache-Timing Attack on Constant-Time
NIST P-256

After the work by Acıiçmez, Gueron and Seifert [5], the old BN_FLG_EXP_

CONSTTIME was substituted by the current BN_FLG_CONSTTIME which was appli-
cable not only to the modular exponentiation function but also other functions
such as modular inversion and division, therefore impacting other cryptosys-
tems using these operations. The change was done by replacing all the instances
of the old BN_FLG_EXP_CONSTTIME flag with the new BN_FLG_CONSTTIME flag,

3Commit: 399944622df7bd81af62e67ea967c470534090e2
4https://github.com/libressl-portable/openbsd/pull/61

63

https://github.com/openssl/openssl/commit/399944622df7bd81af62e67ea967c470534090e2
https://github.com/libressl-portable/openbsd/pull/61

in addition to setting the flag in several new places calling the BN_div and
BN_mod_inverse functions across multiple cryptosystems. Unfortunately these
changes were not equally applied to ECC-based cryptosystems such as ECDH
and ECDSA, consequently leaving a gap with respect to side-channel protec-
tion, and enabling a new cache-timing attack. Publication II [106] exploits
this gap in OpenSSL in the context of ECDSA instantiated with the widely
used NIST P-256 curve using the SCA-secure fixed window scalar multiplica-
tion function implemented by Käsper [78]. The offending function this time
was the input-dependent BEEA function, previously shown to be vulnerable
against SBPA [5, 11, 17]. The secure-by-default approach introduced by the
changes in [78] clashed with the insecure-by-default approach used by the flag-
ging mechanism, resulting, yet again, in a flag not set in the nonce value. It
made sense, since the execution flow followed by default the SCA-secure fixed
window scalar multiplication function during the computation of the signa-
ture’s first half, however, protection of the second half was forgotten. In other
words, the flag was not set in the nonce prior to modular inversion compu-
tation, leading to the SCA-vulnerable BN_mod_inverse function. In order to
exploit this vulnerability, Publication II improves the performance degradation
attack described in [14] by using the performance counters exposed through the
perf command in Linux. In simple terms, the new approach flushes memory
lines from the target code out of the cache in a tight loop, and uses the perf

command to count the number of cache-misses. This is done for each memory
line used by both, the target caller function and the lower level callees, hence
providing a quantitative picture of highly utilized memory lines during a normal
execution. This resulted in a list of candidate memory lines to degrade that,
potentially, provide the most degrading effect. The performance degradation
experiments demonstrate that CPU slow down is not enough to successfully
degrade a process, and instead, other metrics such as cache-misses and branch
mispredictions are better indicators of a successful degradation attack.

Publication II combines the improved performance degradation attack with
the well-known Flush+Reload technique to trace the sequence of opera-
tions performed during the modular inversion operation of the nonce value,
obtaining a sequence of right-shifts and subtraction operations. Aldaya, Cabr-
era Sarmiento and Sánchez-Solano [11] used an algebraic algorithm to extract

64

bits of the nonce based on the sequence of right-shifts and subtraction opera-
tions, reducing the side-channel leakage requirements initially given in [5] for
the BEEA. The approach followed in Publication II also uses this sequence
of operations, but in contrast to [11], it empirically determines the number of
bits leaked for every possible valid sequence of a given length, i.e., it performs
226 BEEA computations, extracting tuples of sequence, bit length, and value
for each computation. The results show that sequences of length 5 and 7 leak
at least 3 bits of information with the lowest error rate, a desired goal as all
sequences, and consequently all signatures, can be used in the lattice stage to
recover the private key. Moreover, this work demonstrates this attack at the
protocol level by attacking OpenSSL NIST P-256 ECDSA featuring constant-
time scalar multiplication when used inside the TLS and SSH protocols.

To mitigate this attack, two solutions were adopted: (i) properly setting
the flag before nonce inversion during ECDSA computation5, and (ii) use of
FLT and the BN_mod_exp_mont_consttime function to compute the modular
inversion operation6. Since the targeted OpenSSL version (1.0.1u and previous)
reached end of life before this work was published, the mitigation proposed—
setting the BN_FLG_CONSTTIME—was not accepted by OpenSSL. Hence, it was
up to the affected vendors to choose the countermeasure to adopt.

3.3 Single-Trace Cache-Timing Attack on RSA
Key Generation

Up to this point, the cache-timing attacks discussed in Publication I and Pub-
lication II focus on digital signature algorithms such as DSA and ECDSA due
to two main reasons. On the one hand, the offending vulnerable algorithms
are well-known to be used in DSA and ECDSA, with a troubled history of
attacks and failed countermeasures in OpenSSL, suggesting that more vulner-
abilities could potentially exist in the code. On the other hand, cryptosystems
like RSA have been heavily scrutinized and analyzed by researchers working
on SCA, resulting in few successful side-channel attacks on software. How-
ever, previously exploited algorithms such as BN_mod_exp_mont_consttime and

5https://securitytracker.com/id/1037575
6Commit: 8aed2a7548362e88e84a7feb795a3a97e8395008

65

https://securitytracker.com/id/1037575
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008

BN_mod_inverse are a pillar for public-key cryptography, thus they found use
in several algorithms across different cryptosystems throughout OpenSSL. Us-
ing a new and simple, but rather effective methodology, Publication III finds
more instances of function calls to SCA-vulnerable functions leading to the first
cache-timing attack against the RSA key generation procedure. The method-
ology and the newly developed tool follow these simple steps:

• The tool takes as input a list of known side-channel vulnerable functions,
in this case the focus is in OpenSSL, thus includes functions such as
BN_mod_inverse, BN_gcd, and BN_mod_exp_mont.

• The tool uses a debugger, such as gdb, and sets break points at multiple
lines of code based on the previous functions. Note that these functions
are SCA-vulnerable, therefore they should not be reached with secret
inputs.

• Finally, the tool produces a report if any break point is reached during
execution.

The tool reported several hits to SCA-vulnerable break points when it was
applied to the RSA key generation procedure, with BN_gcd being the most
relevant function as it leaks information from the secret values p− 1 and q− 1.
More specifically, during RSA key generation several prime value candidates are
generated, and the function BN_gcd is used to check the coprimality between
each candidate value and the public exponent e, thus effectively computing
BN_gcd(e, p − 1). This ensures that the public exponent e is invertible, thus
d ≡ e−1 mod (p− 1)(q − 1).

Although being a similar leak as in Publication II, this cache-timing attack
requires a quite different approach since private key recovery from small bit
leakage is not possible in RSA. Moreover, the fact that key generation is a
one-time operation further complicates the attack, as it requires nearly perfect
traces. From an attacker’s perspective, a favorable factor from the leakage is
that the trace collected by the spy process contains a big portion of the BN_gcd

execution exclusively from the secret values p − 1 and q − 1, this is due to
the large bit length difference—more than 1000 bits—between e and the secret
values. During a typical BN_gcd execution, p− 1 (and similarly q− 1) must be
reduced to the size of e before the execution is interleaved between e and the

66

secret values, this means that the algorithm operates and modifies the secret
value state for almost all of the algorithm execution. Despite this, the trace
still contains several errors, but combining an error correction algorithm [63],
and a lattice attack [100], Publication III successfully recovers the secret prime
values generated during RSA key generation.

As a side note, simultaneous to Publication III, Weiser, Spreitzer and Bod-
ner [137] independently found the same vulnerability, and demonstrated a
controlled-channel page-fault attack on RSA key generation in a privileged
threat model using Intel SGX enclaves. The authors disclosed their findings
to the OpenSSL team and provided a patch, replacing the offending BN_gcd

function with the BN_mod_inverse_no_branch7. However, this patch was not
enough to completely close the leak and a subsequent patch was merged into
the library8.

3.4 A Game of Whack-A-Mole

The previous methodology and the accompanying tool developed in Publica-
tion III, as well as 15 years of cache-timing attack history, unveiled a widespread
problem affecting OpenSSL and other cryptographic libraries with respect to
SCA. The problem is that a considerable percentage of side-channel attacks are
attributable to a small known set of vulnerable functions used in a wide variety
of cryptosystems and contexts. Focusing on this small set of vulnerable func-
tions it is possible to greatly reduce the side-channel attack surface by tracking
their usage in several places and entry points in code. Publication IV takes and
greatly improves the methodology from Publication III, and packages it in a
new tool called Triggerflow9. Triggerflow permits to track specific code paths
during program execution through the use of code annotations, i.e., it gener-
ates a report and a complete map, through a call graph, of all the functions
called leading to the Triggerflow annotation for any program running under it.
The main goal of Triggerflow is to support developers by providing an accurate
map of execution flows, as well as testing reachability of new code in order
to detect vulnerable code paths enabling side-channel attacks. Moreover, the

7Commit: 8db7946ee879ce483f4c81141926e1357aa6b941
8Commit: 54f007af94b8924a46786b34665223c127c19081
9https://gitlab.com/nisec/triggerflow

67

https://github.com/openssl/openssl/commit/8db7946ee879ce483f4c81141926e1357aa6b941
https://github.com/openssl/openssl/commit/54f007af94b8924a46786b34665223c127c19081
https://gitlab.com/nisec/triggerflow

tool is flexible, supports different types of annotations such as conditionals,
groups, and ignore annotations; and it can be used in the Continuous Integra-
tion (CI) development pipeline to automatically generate reports, maps, and
test new builds, allowing to detect code flaws and regressions. Publication IV
demonstrated the effectiveness of Triggerflow in two ways: firstly by validat-
ing old and previously exploited SCA vulnerabilities in OpenSSL, such as the
ones exploited in Publications I–III and VII; and secondly by finding a new
side-channel leak and a software defect.

The side-channel leak was due to the use of the insecure modular inversion
function BN_mod_inverse when converting an EC point from projective to affine
coordinate representation. Leakage protection in the context of coordinate
conversion was a known issue [90, 99] that could potentially be exploited with
a side-channel attack. In fact, this same issue was later found and exploited in
the mbedTLS library by Aldaya, Pereida García and B. B. Brumley [13]. With
the help of Triggerflow this leak was closed by unifying the finite field inversion
across the EC module in OpenSSL10. In other words, instead of setting the
BN_FLG_CONSTTIME flag in each function requiring modular inversions, a new
function pointer was added to the EC structure containing pointers for the
required finite field operations. This new pointer led to one of three different
SCA-secure implementations based on the elliptic curve in use.

Triggerflow also helped to identify a deep rooted issue in the BN_CTX object
used by OpenSSL. The BN_CTX object is a stack-like buffer storing BIGNUM

variables that are shared among the top level functions and their callees and
descendants, with the goal of minimizing memory allocations [31]. During a
typical execution of a cryptosystem in OpenSSL, such as ECDSA, the lifetime
of BIGNUM variables inside the BN_CTX object can vary greatly, and some of these
variables are reused at different stages during the execution of the cryptosystem.
Interestingly, Triggerflow detected that the BN_FLG_CONSTTIME flag is preserved
in those BIGNUM variables in which the flag was previously set, resulting in
different execution paths depending on the flag status of each BIGNUM variable
used. Although it seemed that this software defect only led to the execution of
SCA-secure code paths, it also introduced false negatives, unexpected function
calls, performance penalties, and potential application crashes. The fix was

10Commit: 97dfa14e05f142d7c00a46514975a0a02cf14668

68

https://github.com/openssl/openssl/commit/97dfa14e05f142d7c00a46514975a0a02cf14668

simply to unconditionally clear the BN_FLG_CONSTTIME flag every time a BIGNUM

variable is retrieved from the BN_CTX object11.
In the case of OpenSSL, the library supports a wide variety of platforms and

building options, dictating the implementation to execute at runtime, therefore
catering to a large user base. However, this also means it is difficult to test
every possible combination for possible SCA-vulnerable code paths and software
defects. Triggerflow is a remarkably useful tool for developers dealing with such
projects as it can be automated to reliably test for new and existing code leading
to regressions. Moreover, Triggerflow confirmed once again that the OpenSSL
architecture decision of making the BN_FLG_CONSTTIME flag an opt-in instead
of a default mechanism resulted in unexpected and fragile execution flow with
deeper implications than those originally intended.

3.5 Towards an SCA-secure OpenSSL

Prior cache-timing attacks on OpenSSL, especially those described earlier in
this dissertation, exploited software flaws accumulated over more than a decade,
mostly involving the insecure-by-default approach requiring correct and exact
usage of the BN_FLG_CONSTTIME flag. One would think that some lessons would
be learned from this abundant list of examples, avoiding repeating these mis-
takes in current and future code in the process of integration into the library.
Unfortunately, this is not the case when the complexities of the code base de-
mand a specialised skill set and a deep knowledge of the library possessed by
only few developers, and more importantly, out of consideration for average
developers. The burden of keeping track of subtle details such as the BN_FLG_

CONSTTIME flag, and correctly implementing these details to achieve SCA-secure
implementations should be abstracted away from the developers. In addition to
being a specialised task, SCA is an iterative process requiring years of expertise,
and often is extremely error-prone. All of the previous points are demonstrated
in OpenSSL, suggesting that lessons take a long time to be learned in big FOSS
projects, leading to repeated software flaws and vulnerabilities, especially when
code contributions are integrated in a rush into the code base.

Publication V analyzes the late-stage adoption of the SM2 cryptosystem into

11Commit: 4803ad495293515ccdd2b490620384d9736c4956

69

https://github.com/openssl/openssl/commit/4803ad495293515ccdd2b490620384d9736c4956

OpenSSL just before the release of version 1.1.1. Despite SM2 being similar and
sharing many low-level functions with other widely used EC cryptosystems, it
failed in the exact same functions previously exploited using SCA. Additionally,
this hurried integration contained traditional software bugs causing crashes and
other security vulnerabilities.

The implementations for SM2 digital signature (SM2DSA) and public key
encryption (SM2PKE) rely on the same building blocks as ECDSA and ECIES,
namely, modular inversion and scalar multiplication functions. These functions
require the BN_FLG_CONSTTIME flag to be set prior to their execution when
dealing with secret inputs, otherwise the execution flow leads to the SCA-
vulnerable versions of those algorithms. The rushed integration of the SM2
cryptosystem at a late stage prior to the major release of OpenSSL version
1.1.1 left a short window of time for public reviews, and Publication V filled
this gap with a complete analysis and rework of OpenSSL internals not only
improving the SCA security of SM2, but the overall security of the library. The
analysis revealed software flaws enabling remote timing attacks, cache-timing
attacks, and EM attacks.

The remote timing attack vulnerability discovered was facilitated by a lack of
scalar padding before the scalar multiplication function, hence it was analogue
to the research in [32, 33]. SM2DSA can be instantiated with a variety of
elliptic curves, including prime curves and binary curves, so this attack was
demonstrated in both types of curves. Binary curves use the Montgomery
ladder algorithm for scalar multiplication whereas the recommended SM2 prime
curve used the vulnerable wNAF scalar multiplication function. Despite the
algorithm difference, the execution time of both algorithms was shown to be
correlated to the length of the nonce used during signature generation, therefore
leaking the top bits of the nonce on each signature. Additionally, two different
cache-timing attacks were demonstrated against SM2DSA. On the one hand,
and as mentioned before, the scalar multiplication algorithm used with the SM2
recommended curve was the SCA-vulnerable wNAF function, therefore the
spy process clearly captured the sequence of ECC double and add operations,
leaking information from the secret scalar. On the other hand, the second attack
was the result of, yet again, a missed BN_FLG_CONSTTIME flag prior to modular
inversion, hence taking the SCA-vulnerable code path to the BN_mod_inverse

70

function, similar to the vulnerabilities in Publications II and III. However, in
contrast to (EC)DSA, SM2DSA does not invert the nonce value, but instead
the long-term private key, therefore leaking bits directly from the private-key
during each signature generated, and giving an attacker the opportunity to
accurately trace the sequence of operations from the BEEA execution. Finally,
the EM analysis confirmed that the wNAF function affecting SM2DSA, also
affected SM2PKE but this time during the decryption part, thus leaking the
sequence of ECC double and add operations from the long-term private key.

While the techniques and the attacks themselves were not novel, Publica-
tion V showed that not only old, but also new asymmetric cryptosystems are
potentially vulnerable to SCA due to continuous support of the opt-in and
insecure-by-default approach. Moreover, this work proved that OpenSSL de-
velopers must be careful when implementing new cryptographic primitives, as
it is quite easy to shoot oneself in the foot due to the current mechanisms in
use, demanding an unreasonable skill set in order to achieve an SCA-secure
implementation.

On the mitigation side, Publication V contributes greatly towards a secure-
by-default OpenSSL with several contributions to the EC module, thus not only
improving SM2, but also other ECC cryptosystems. The contributions are the
following:

• Scalar multiplication. The insecure wNAF function is no longer the de-
fault algorithm for scalar multiplication. Instead, an early exit is taken to
the new Montgomery ladder [96] when either a fixed-point or a variable-
point scalar multiplication must be calculated12, the former commonly
used in ECDSA, and the latter in ECDH and ECIES. The wNAF func-
tion is still in the code base, however is only used for multi-scalar point
multiplication, a common use case for digital signature verification where
no secrets are used as input values.

• Scalar padding. The padding is no longer dependant on the cryptosystem,
but instead was pushed to the lower-level EC module, ensuring a constant
number of ladder iterations13.

• Coordinate blinding. In addition to the highly regular Montgomery lad-
12Commit: 3712436071c04ed831594cf47073788417d1506b
13Commit: fe2d3975880e6a89702f18ec58881307bf862542

71

https://github.com/openssl/openssl/commit/3712436071c04ed831594cf47073788417d1506b
https://github.com/openssl/openssl/commit/fe2d3975880e6a89702f18ec58881307bf862542

der, coordinate blinding [41] serves as a countermeasure against DPA
attacks as well as attacks during coordinate conversion [13, 90, 99] by
applying a map by a random value before the ladder execution14.

• Modular inversion. Similarly, the insecure BEEA function was phased out
of EC cryptosystems, replacing it by the FLT method originally provided
by Gueron and Krasnov [57]. This change finally provided a secure-by-
default modular inversion at the EC layer15.

Arguably, the biggest contribution of Publication V is the change to the
execution flow to avoid dependence on the BN_FLG_CONSTTIME flag for side-
channel protection. While these changes did not completely eliminated the use
of the flag in OpenSSL, it was a big step towards a secure-by-default execution
flow in cryptosystems based on EC.

3.6 Port Contention Side-Channel Attack

So far, this dissertation dealt in its majority with SCA abusing the cache hier-
archy using different cache-timing attack techniques, threatening a wide variety
of cryptosystems as demonstrated in Publications I–V and VII. Yet, the tech-
niques used as part of those publications, as well as the techniques previously
described in Section 2.2, are only a subset of a growing number of techniques ex-
ploiting not only the cache hierarchy, but also other components in the microar-
chitecture. CPUs supporting SMT share many other components, in addition
to the caches, among their executing threads. These components have the po-
tential to be abused to break the isolation between independent processes, thus
allowing them to communicate. Publication VI describes a new side-channel
attack vector exploiting port contention on the execution units within a single
physical CPU core, enabled by the SMT technology. Dubbed PortSmash, this
new side-channel attack technique differs from cache-based attack techniques
by targeting a non-persistent shared resource, making it stealthier than the
cache-based counterpart.

Figure 3.1 shows PortSmash in action. At a high level, given a CPU with
SMT support, two programs executing in two separate logical cores but within

14Commit: f667820c16a44245a4a898a568936c47a9b0ee6e
15Commit: 792546eb18c3088d7eca0c1ebeb86695bcae18d8

72

https://github.com/openssl/openssl/commit/f667820c16a44245a4a898a568936c47a9b0ee6e
https://github.com/openssl/openssl/commit/792546eb18c3088d7eca0c1ebeb86695bcae18d8

P
or
t
1

P
or
t
5

P
or
t
6

µops µops

Attacker Victim

(a) Smash

P
or
t
1

P
or
t
5

P
or
t
6

µops µops

Attacker Victim

12

3

6

9

(b) Time

P
or
t
1

P
or
t
5

P
or
t
6

µops µops

Attacker Victim

12

3

6

9

(c) Time

 60

 80

 100

 120

 140

 160

 180

 200

 35000 36000 37000 38000 39000

L
at

en
cy

Time

Filtered

(d) Example

Figure 3.1 The PORTSMASH technique: (a) attacker issues instructions saturating
a set of ports; (b) attacker times the instruction execution completion; (c) attacker
continues timing and observes variations due to victim; (d) example trace of attacker
spying on the wNAF scalar multiplication revealing add operations (peaks).

the same physical core, can potentially infer information from each other by
looking at the port utilization. A spy process can saturate one or several ports
by cleverly issuing instructions with a specific port footprint, then it measures
the time it takes to execute said instructions. This is done in a loop, trying to
detect port contention, which is observed through an increased latency. From
an SCA perspective, if the victim’s port utilization depends on a secret, this

73

can be potentially observed by the spy process using PortSmash.

As can be seen, PortSmash operates at a port level, and as such, it pro-
vides a very fine spatial granularity—finer than previous cache-timing attack
techniques. Moreover, it is able to adapt to different scenarios requiring differ-
ent port saturation according to the target footprint, and due to this flexibility,
the attack requirements are minimal since no knowledge of the cache-hierarchy,
cache lines, nor eviction sets are needed prior to the attack, making it consid-
erably more portable than the cache-based techniques.

Publication VI first demonstrates PortSmash in action by using it to cre-
ate a covert channel allowing communication between two unrelated programs,
then it proceeds to demonstrate its efficacy by targeting and exploiting the vul-
nerable wNAF scalar multiplication function in the context of the NIST P-384
elliptic curve. Using PortSmash, a spy process creates contention in a spe-
cific set of ports while timing the latency of executing a group of instructions
utilizing the set of ports previously chosen. This generates a raw signal trace
containing the sequence of ECC double and add operations executed during
scalar multiplication. After processing the signal it reveals the LSDs of the
secret scalar value, then the LSDs of several traces are combined and lattice
methods applied, resulting in full key recovery. Similar to Publications I–III,
the attack is not only demonstrated against ECDSA in isolation, but also when
running as part of the TLS protocol, showing that this technique is as capable
as cache-based techniques. Additionally, this attack is also presented against an
OpenSSL victim process running inside an Intel SGX enclave, suggesting that
this technique can be transparently applied to this technology. As a side note,
an observant reader may notice that previous Publication V claims to have
fixed the SCA-vulnerable wNAF function. Indeed, the function is no longer in
use in new OpenSSL releases, however, older releases still use the vulnerable
function. Nevertheless, the attack on this curve on an old OpenSSL version is
for demonstration purposes, to show the impact of this new side-channel vector.

PortSmash is possible due to the very nature of SMT, i.e., trying to max-
imize resource utilization by sharing as many resources among processes as
possible, even if these processes have different security needs. As possible coun-
termeasures against this new vector, Publication VI recommends two different
approaches: (i) use code whose port footprint does not depend on secret values;

74

and (ii) remove the SMT attack surface. The simplest of the countermeasures
is to disable SMT at the OS level, which was promoted and is already adopted
by OpenBSD developers16. The port-independent code approach is in line with
the countermeasures previously described and implemented as part of this dis-
sertation, and for this specific case, the newest versions of OpenSSL no longer
uses the wNAF scalar multiplication by default, but instead it uses the secret-
independent Montgomery ladder algorithm [96].

3.7 Side-Channel Attacks Enabled by
Cryptographic Key Formats

Previous SCA-vulnerabilities and software flaws affecting common functions
used by different cryptosystems, as described in Publications I–VI, were ex-
ploited at the protocol level. This allowed to demonstrate the impact of the
vulnerabilities, and to show that cryptography does not exist in isolation, in-
stead, it is commonly used as a building block in a protocol or a system. The
countermeasures applied to fix these flaws were introduced as close as possible
to the lower level functions, with the expectation that current and future im-
plementations would directly benefit from the SCA countermeasures in place.
However, Publication VII exposes, one more time, that the insecure-by-default
BN_FLG_CONSTTIME flag mechanism prevents new and existing implementations
benefiting from these SCA countermeasures even when the newly discovered
vulnerabilities are identical to others previously exploited and fixed, but in a
slightly different context.

OpenSSL and many other cryptographic libraries offer command line tools
allowing users to quickly perform a wide variety of cryptographic operations
that are commonly needed when dealing with public and private keys. These
command line tools are convenient as they abstract away complex operations
such as reading files, parsing keys, sending the output to either a file or to
the screen, from the actual cryptographic operations. Moreover, for the sake
of simplicity, these command line tools try to be as generic as possible within
reason, i.e., the user can input a cryptographic key and is up to the tool to

16https://marc.info/?l=openbsd-cvs&m=152943660103446

75

https://marc.info/?l=openbsd-cvs&m=152943660103446

decide if the key is correct and can be used to perform the chosen operation,
i.e., sign, verify, encrypt, or decrypt a message.

Publication VII analyzes a set of command line tools in OpenSSL and
mbedTLS operating in private keys. The analysis uses Triggerflow from Publi-
cation IV, and finds new and repeated vulnerabilities facilitated by the insecure-
by-default behavior adopted across OpenSSL, leading to SCA-vulnerable code
paths that are either oblivious to the flagging mechanism, or fail to set the
BN_FLG_CONSTTIME flag correctly. Focusing on OpenSSL, the vulnerabilities
are dependent on two different features: key format, and key parameters.

Typically, public and private keys contain several key parameters required
by the cryptosystem in order to perform a specific operation. These param-
eters are defined by standards such as the ANSI X9.62 standard [2] and the
SEC1 standard [118], and often these standards declare the mandatory and
the optional parameters. However, sometimes the standards only issue recom-
mendations, leaving to the developer’s interpretation on how to deal with the
parameters—such as the case of RSA and PKCS #1 (RFC 8017 [97]). From
a software perspective, this flexibility increases the complexity of key parsing
tremendously. Cryptographic library developers need to decide which manda-
tory and which optional parameters to support, while keeping in considera-
tion interoperability across libraries, across versions, and across formats—with
legacy formats sometimes supporting and containing a subset of parameters.

Publication VII discovers that in the case of OpenSSL, the SCA-security
of ECDSA keys depends on some key parameters, which at the same time are
dictated by the way the keys are provisioned. More specifically, keys contain-
ing the curve name or the curve OID, follow a specialized scalar multiplication
implementation for the given curve if it is available, otherwise they default to
the generic Montgomery ladder implementation. Keys containing explicit pa-
rameters follow the generic implementation that is SCA-secure thanks to the
changes introduced in Publication V, but it is not as optimized as a special-
ized implementation. This is true even if the explicit parameters describe a
named curve, that is, they are equivalent. Finally, keys containing explicit
parameters but with a zero value in their co-factor parameter, default to the
SCA-vulnerable wNAF implementation previously exploited in Publication VI.
As countermeasures to fix these issues, Publication VII introduced changes to

76

https://tools.ietf.org/html/rfc8017

match explicit parameters to named curves parameters17, checking their equiv-
alence, and allowing them to enjoy optimized and specialized implementations
when possible. In the case of the co-factor, instead of relying on the parame-
ter value in the key, it is now computed at runtime18 for both named curves
and curves with explicit parameters, thus avoiding the insecure wNAF scalar
multiplication function.

Similarly, Publication VII detects that OpenSSL uses SCA-vulnerable func-
tions when using, converting, or checking DSA and RSA private keys. In the
case of DSA, OpenSSL supports private keys from Microsoft’s proprietary PVK
and MSBLOB formats, but leaks private key material when using them or con-
verting them to other widely used formats such as PEM (RFC 7468 [77]). The
library expects the private and public keys to be readily available, but since
these formats only contain private key material, the public part must be com-
puted at runtime. Analogous to Publication I, the execution flow uses the
SCA-vulnerable sliding window function to compute the public key because
the private key is not marked with the BN_FLG_CONSTTIME flag, thus directly
leaking private key information. In the case of RSA, OpenSSL provides a com-
mand line tool to check the validity of an RSA key, which involves recomputing
the key parameters and comparing them to the input key. Unfortunately, the
computation of many secret key parameters is done in an insecure manner.
Resembling the flaws presented in Publication III, OpenSSL fails to set the
BN_FLG_CONSTTIME flag in several BIGNUM values holding secret key parame-
ters, leaking information on several functions:

• BN_mod_exp_mont and BN_mod_inverse leak information on p and q dur-
ing primality testing.

• BN_gcd leaks information on p − 1 and q − 1 during private exponent d

computation.

• BN_mod_inverse leaks information on q during CRT parameter iq com-
putation.

Despite the countermeasures introduced in Publications I–VI, this work finds
new instances of missed flags, supporting previous claims on the hardness of

17Commit: bacaa618c26411d212015493d0eb82076a3e76a1
18Commit: b783beeadf6b80bc431e6f3230b5d5585c87ef87

77

https://tools.ietf.org/html/rfc7468
https://github.com/openssl/openssl/commit/bacaa618c26411d212015493d0eb82076a3e76a1
https://github.com/openssl/openssl/commit/b783beeadf6b80bc431e6f3230b5d5585c87ef87

using properly the flag. While RSA key checking and DSA key conversion
from these legacy formats are perhaps not widely used operations, their secu-
rity and resistance against SCA is equally important. Moreover, all of these
are preventable flaws, in other words, they could have been avoided by using a
secure-by-default approach. To fix these issues, the BN_FLG_CONSTTIME flag was
properly set during DSA19 key conversion and RSA20 key checking. Moreover,
the highly input-dependent BN_gcd function affecting this and previous Publi-
cation III, was replaced by a new constant-time version proposed by Bernstein
and Yang [26]. This new version provides SCA-security across OpenSSL to all
the cryptosystems using this function, therefore getting OpenSSL a step closer
to constant-time.

3.8 Summary of Mitigations on OpenSSL

This dissertation tries to present the research and results as a continuous, clear,
concise, and logical sequence of events to facilitate its understanding. Looking
back, it is easy to put all the pieces together, however, it was not always
the case while performing the research work, especially when dealing with an
ever evolving project such as OpenSSL, offering several versions—sometimes
supporting very different cryptographic implementations.

At the time of writing OpenSSL version 3.0 is under beta release, bringing
new features and several architecture changes compared to the current long
term support (LTS) version 1.1.1. From a cryptography point of view, both of
the current versions contain either the mitigations introduced as a direct result
of Publications I–VII, or improved mitigations due to more recent research
work. Figure 3.2 presents an updated timeline including the results of this
chapter. In summary, the mitigations presented in this dissertation and adopted
in OpenSSL can be classified by the affected cryptosystem as follows:

ECC. The SCA mitigations provided are the following:

• Curves without a specialized implementation such as NIST P-384, Brain-
pool curves [95], SECG curves [119], and generic prime curves defined

19Commit: 724339ff44235149c4e8ddae614e1dda6863e23e
20Commit: 311e903d8468e2a380d371609a10eda71de16c0e

78

https://github.com/openssl/openssl/commit/724339ff44235149c4e8ddae614e1dda6863e23e
https://github.com/openssl/openssl/commit/311e903d8468e2a380d371609a10eda71de16c0e

using custom parameters—e.g., for GOST [44] or SM221—now perform
scalar multiplication using the Montgomery ladder instead of the SCA-
vulnerable and input-dependent wNAF implementation.

• Scalar padding has been integrated into the Montgomery ladder function,
therefore providing a constant number of ladder iterations.

• The modular inversion uses the FLT method instead of the BN_mod_

inverse_no_branch function.

• Generic prime curves use coordinate blinding.

• The co-factor is manually computed when parsing a key, leading to the
correct scalar multiplication function.

• Explicit key parameters are matched against a known list of named curves,
enabling the use of specialized implementations even if a key was provi-
sioned with explicit parameters.

DSA. The SCA mitigations are the following:

• The modular exponentiation uses the fixed window implementation after
properly setting the BN_FLG_CONSTTIME flag during signature generation.

• The modular exponentiation uses the fixed window implementation after
properly setting the BN_FLG_CONSTTIME flag during key conversion and
general key use of PVK and MSBLOB keys.

• The modular inverse used the BN_mod_inverse_no_branch function after
setting the missing flag, however subsequent contributions changed the
execution flow, allowing DSA to enjoy the secure-by-default approach
provided by the FLT algorithm.

RSA. The SCA mitigations are the following:

• Modular exponentiation uses the fixed window implementation after set-
ting the missing BN_FLG_CONSTTIME flag during key generation and key
checking.

21https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02

79

• Modular inverse uses the BN_mod_inverse_no_branch function after set-
ting the missing BN_FLG_CONSTTIME flag during key generation and key
checking.

• The BN_gcd function was replaced by the BN_mod_inverse_no_branch

and appropriate flags during key generation22.

• The highly input-dependent BN_gcd function was replaced by a new constant-
time and SCA-secure BN_gcd function. This is now the secure-by-default
GCD implementation across the library, thus fixing the vulnerabilities
during key generation and key checking.

22This was independently and simultaneously discovered and fixed by [137]

80

2003
2005

2007
2008

2009
2010

2011
2012

2014
2015

2016
- Remote timing attack
- RSA blinding

- L1 dcache attack
- BN FLG EXP CONSTTIME
- BN mod exp mont consttime

- SBPA
- BN FLG CONSTTIME
- BN mod inv no branch
- BN div no branch

- L1 icache attack
- Fix Mont multiplication

- L1 dcache attack
- No fixes

- L1 cache attack
- BN mod exp mont consttime

- Remote timing attack
- Add nonce padding

- EC GFp nistp224 method
- EC GFp nistp256 method
- EC GFp nistp521 method

- LLC cache attack
- Montgomery ladder fix on Binary EC

- EC GFp nistz256 method
- Modular inversion using FLT

- LLC cache attack
- Performance deg. attack

- Cache-bank collision attack
- Fix exponentiation function

T
h
is

d
issertation

2016
2017

2018
2019

- LLC cache attack
- Set BN FLG CONSTTIME

- LLC cache attack
- Set BN FLG CONSTTIME

O
penSSL

- LLC cache, EM, and timing attacks on SM2
- Montgomery power ladder
- Coordinate blinding
- Scalar padding

- LLC cache attack on keygen
- Set BN FLG CONSTTIME

- Triggerflow testing tool
- Secure coordinate conversion

- Port-contention attack
- Montgomery ladder for NIST P-384

P
u
b

I

P
u
b

II

P
u
b

III

P
u
b

IV
P

u
b

V

P
u
b

V
I

EC

R
SA

D
SA

2020P
u
b

V
II

P
u
b

V
II

P
u
b

V
II

- L1 dcache, EM, and timing attacks on DSA, and ECDSA
- Manually compute co-factor for ECDSA keys
- Match explicit parameters to named curves
- Set BN FLG CONSTTIME in DSA and RSA code paths
- Constant-time GCD function

Figure 3.2 Updated timeline including attacks and countermeasures from Publica-
tions I–VII.

81

82

4 CONCLUSIONS

This dissertation takes a closer look and criticizes the well-intentioned, but
flawed, defense mechanism against side-channel attacks in OpenSSL—the BN_FLG_
CONSTTIME flag. The architecture decision to make this an opt-in mechanism
instead of a secure-by-default mechanism in the name of performance, has led
to several security flaws representing a serious threat to security-critical soft-
ware relying on this library. This dissertation advances the field of side-channel
analysis, cache-timing attacks and applied cryptography not only using state-
of-the-art attack techniques, but improving them, proposing new attack tech-
niques, and adopting better defense mechanisms in real-world cryptography.

The following paragraphs briefly discuss the future direction of the results
presented in this dissertation, as well as topics related to OpenSSL, microarchi-
tectural attacks, cache-timing attack defenses, and final words of advice. After
this, the introductory part of this dissertation ends, and is followed by the seven
publications previously discussed.

The future of the BN_FLG_CONSTTIME flag. Publications I–VII built a good
knowledge base not only of cache-timing attacks techniques, but also of the most
common errors and pitfalls enabling side-channel attacks on multiple public-
key cryptosystems, many derived from the BN_FLG_CONSTTIME flag misuse. The
work leading to this dissertation improved the overall security of OpenSSL
as described in Section 3.8, therefore providing a better understanding of the
cryptographic library as a research tool, and consequently easing the path for
future researchers exploring this field.

At the time of writing this dissertation OpenSSL 3.0 is in beta release, and
unfortunately, the BN_FLG_CONSTTIME flag is still a mechanism used in the li-
brary to provide SCA-security. However, as seen throughout this dissertation,
it is a fragile and error-prone mechanism. The recent work by Braga, Fouque

83

and Sabt [28] follows a similar trend as Publication VII by performing a side-
channel attack exploiting a well-known vulnerability but through a different
protocol, enabled once more by a missing BN_FLG_CONSTTIME flag. The offend-
ing function is the SCA-vulnerable BN_mod_exp_mont modular exponentiation
function used as part of the Secure Remote Password (SRP) protocol. While
correcting vulnerabilities related to the BN_FLG_CONSTTIME is trivial, these re-
sults demonstrate that the BN_FLG_CONSTTIME flag is the gift that keeps giving,
and it will continue to do so until OpenSSL finally decides to adopt a secure-
by-default approach across the library—which could take many years based on
current support and release schedules.

As a side note, it is worth mentioning that OpenSSL is not the only library
using and affected by the insecure-by-default BN_FLG_CONSTTIME flag. Born
in 2014 as forks of OpenSSL after the high-profile HeartBleed vulnerability,
BoringSSL and LibreSSL originally inherited the BN_FLG_CONSTTIME flag from
OpenSSL, thus influencing their code base. This is reflected in Publication I
and Publication II, where both vulnerabilities affected OpenSSL, BoringSSL,
and LibreSSL. At the time of writing, OpenSSL and LibreSSL are still using the
BN_FLG_CONSTTIME flag as a security mechanism against SCA, while BoringSSL
has adopted a secure-by-default approach.

OpenSSL Security Policy. Between April and May 2019 the OpenSSL
Security Policy was updated with a new threat model section, and in this section,
OpenSSL declared certain attacks outside of the scope of the library. Most
relevant for this dissertation, all side-channel attacks requiring physical access
or co-location, i.e., SPA, DPA, EM, and most microarchitectural side-channel
attacks, were now considered out of the scope of the library. The new security
policy meant that no new CVEs would be issued for these attacks, however, the
OpenSSL team still tries to address security issues outside of the threat model,
The change of policy is reflected in Publication VII where despite reporting
and fixing multiple vulnerabilities, a CVE1 was assigned only to the ECDSA
remote timing attack.

Arguably, this policy change was motivated by the growing number of mi-
croarchitectural side-channel attacks affecting OpenSSL on the years and months
prior to the change.

1https://www.openssl.org/news/secadv/20190910.txt

84

https://www.openssl.org/news/secadv/20190910.txt

Applicability of results. In addition to improving the security of OpenSSL,
the tools, and the body of knowledge generated for this dissertation—including
analysis, exploitation, remediation, and prevention—has started to permeate
into other research work, and other cryptographic libraries. Hassan et al. [62]
applied a combination of Triggerflow and DATA [138] frameworks to Mozilla’s
NSS cryptographic library, directing them to the most common points of failure
with respect to SCA in public-key cryptography, finding several issues affecting
NSS. The library-wide SCA performed by the authors revealed several flaws in
different cryptosystems, including RSA, DSA, and ECDSA, some of which had
been present in the library for more than a decade. Similarly, Aldaya and B. B.
Brumley [9] expand on the performance degradation technique of Publication II
to further decrease the execution performance of the target process, opening the
possibility to new attacks. The authors apply their HyperDegrade technique to
a current version of OpenSSL to perform a successful practical Raccoon attack
[94] against the DH key exchange protocol. While new side-channel attacks
are getting harder to exploit, thus requiring new or improved techniques, these
results suggests that knowledge about existing side-channel vulnerabilities, and
protection mechanisms against them are not equally spread and applied to
other widely used cryptographic libraries, and therefore further work must be
done to ensure SCA protection to libraries that have not been as scrutinized as
OpenSSL.

Microarchitectural attacks and beyond. Microarchitectural side-channel
attacks targeting microarchitecture components other than the cache memory
hierarchy have existed for over a decade, most notably the initial works on
branch predictors [5, 6, 7], and arithmetic logic units [8]. As researchers improve
the understanding of microarchitecture components, their interaction, and their
performance features, new attacks targeting a wide variety of components have
been published in recent years. Some of the microarchitecture components that
have been exploited more recently include the Translation Lookaside Buffer [34,
48], the Branch Target Buffer [46], the Floating Point Unit [16], the DRAM
[79, 83], and the Execution Unit ports as demonstrated in Publication VI.

Moreover, researchers discovered that microarchitecture components not
only leak timing information through resource contention when using SCA-
vulnerable algorithms, but also these components momentarily hold confiden-

85

tial information through their microarchitecture state, potentially exposing the
information to a clever attacker before changes to the microarchitecture state
are reverted—an operation that is hard to achieve in a complete and clean
manner. Dubbed transient-execution attacks [35], this new type of attack falls
under the umbrella of microarchitectural attacks, and while it is not a type of
side-channel attack, it commonly uses microarchitectural side-channel attacks
as a building block. Side-channel attacks permit to exfiltrate not only crypto-
graphic information out of the microarchitecture state, but also text and generic
pieces of data. Transient-execution attacks rely on operations that should not
be performed but are computed, e.g., due to mispredictions or out-of-order ex-
ecution, causing changes in the microarchitecture state during a small period
of time called a transient window. This transient window is exploited by an
attacker to leak information. Meltdown [87] and Spectre [81] are, arguably, the
most widely known attacks in this category due both to their impact, and their
wide coverage by the media. More importantly, these results have motivated
researchers to analyze CPUs and their microarchitecture more comprehensively,
looking at them not as isolated components, but as a complete system. This
approach allows to increase their security from the design stage, thus reducing
their ability to leak information from the lowest level.

Defenses. Several defense mechanisms can be used to prevent cache-timing
attacks and side-channel attacks in general. These mechanisms can be applied
at different levels such as hardware level, OS level, and software level.

On the hardware level the most prolific defense research is the design of
microarchitecture components preventing or limiting resource sharing between
processes with different security levels [40, 42, 80, 82, 88, 104, 128, 136, 140].
Other hardware defense mechanisms include developing microarchitecture de-
signs where supported instructions execute independently from the input values,
such as in ARM’s Data-Independent-Timing (DIT) [20], Intel’s CMOV instruction
family [58], and more recently the RISC-V’s Zkt extension2. Also, developing
instruction set extensions to give more control for developers to protect against
microarchitectural attacks [19].

At the OS level, the most common defense mechanisms proposed involve par-
tition of the cache according to different security levels, trust, and needs [140].

2https://github.com/rvkrypto/riscv-zkt-list

86

https://github.com/rvkrypto/riscv-zkt-list

Additionally, modifying3 4 5, blocking [131], or introducing noise [123] to the
timing measurements have been proposed as defense mechanisms. A different
approach is to accept that several microarchitecture components leak infor-
mation at different degrees throughout all the system, therefore side-channel
attacks cannot be easily prevented but they can be detected using for example
performance counters [39, 54, 98].

At the software level the most robust defense mechanism is to adopt a
constant-time and secure-by-default approach for all the algorithms dealing
with secrets and confidential data [24]. Publications I–VII tried to follow this
approach as much as possible during the development of the mitigations de-
scribed in Section 3.8, however the mitigations were selected and sometimes
limited according to OpenSSL own standards and coding preferences. This
approach is considerably challenging as no generic solution exists that can be
applied to all the cryptosystems, however, it is effective, and more importantly
it can be retrofitted to provide SCA security to existing systems. Looking at
newer cryptosystems with far fewer SCA vulnerabilities during their lifetime
such as Ed25519 [25] and Ed448 [60], this is perhaps the best long-term solu-
tion to close most of the side channels, instead of applying band-aids such as
the BN_FLG_CONSTTIME flag.

Finally, extending the approach of constant-time implementations, an idea
that has recently gained traction is the adoption of formally verified crypto-
graphic implementations [45, 151] over high performance hand-written imple-
mentations. The down-side of hand-written implementations is that often they
are too complex to verify for absence of bugs and flaws. This means that
formally verified implementations provide both mathematical proofs of correct-
ness, and also proofs of absence of classes of bugs and flaws. Moreover, many
formally verified implementations include side-channel attacks as part of their
threat model, thus considering SCA-security from design. Multiple tools have
been developed on top of these formally verified implementations [22, 109] to
help developers automatically generate SCA-secure implementations that can
be easily adapted to new cryptographic libraries and software in a wide variety
of CPUs without the need of a cryptanalyst.

3https://bugs.webkit.org/show_bug.cgi?id=146531
4https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
5https://bugs.chromium.org/p/chromium/issues/detail?id=158234

87

https://bugs.webkit.org/show_bug.cgi?id=146531
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://bugs.chromium.org/p/chromium/issues/detail?id=158234

Impact. The research work done for this dissertation has resulted in signif-
icant impact on both inside and outside of academia. The publications strive
to be open, self-contained, and reproducible, therefore they are often accompa-
nied with research artifacts such as tools and datasets, allowing researchers to
reproduce parts of the experiments. With respect to tooling, Triggerflow keeps
continuously testing code paths in new code introduced to OpenSSL6, testing
for possible regressions enabling new side-channel attacks. On the dataset part,
perhaps the most notable is [129], resulting from Publication V, which accord-
ing to Weissbart, Picek and Batina [139] is the first public SCA dataset on ECC.
Outside of academia, five out of the seven publications received a CVE number
to track the side-channel vulnerabilities discovered. Of those four CVEs, Pub-
lication VI gained attention from the media locally and internationally, rising
awareness about the importance of information security and system security
starting from the hardware design, which is controlled by CPU vendors.

Final words. Without taking merit away from this dissertation and the
research involved, undeniably, an important part of the bulk of research for
this dissertation is the product of the combination between an insecure-by-
default architecture decision—taken more than a decade ago—and incomplete
and untested countermeasures accumulated over the years. Is impossible to
know where the research field would be if OpenSSL would have decided to
take a secure-by-default approach from the very beginning—thus closing most
of the side-channel vulnerabilities. However, is clear that those decisions and
mistakes enabled new and ground-breaking research results, moving forward
the field of Side-Channel Analysis. Moreover, new threat models and attack
scenarios—such as those used during microarchitectural attacks—have pushed
for new methods and attack techniques. At the same time, these new methods
and attack techniques have allowed attackers to circumvent restrictions, easing
the attack requirements, resulting in a positive feedback loop that has rapidly
advanced the research field during the last five years—when the research work
for this dissertation started.

All in all, this dissertation serves as an example of the attack-defense race
between cryptographers and cryptanalysts, by demonstrating practical attacks,

6https://gitlab.com/nisec/openssl-triggerflow-ci

88

https://gitlab.com/nisec/openssl-triggerflow-ci

and providing suitable countermeasures to OpenSSL, while striving for a secure-
by-default approach. A final reminder regarding side-channel attacks on OpenSSL
is that as long as the BN_FLG_CONSTTIME flag lives in the library—which con-
tinues to exist in the upcoming OpenSSL 3.0—there is potential to find and
(re)introduce new side-channel vulnerabilities.

89

90

REFERENCES

[1] A. Abel and J. Reineke. Reverse engineering of cache replacement policies
in Intel microprocessors and their evaluation. 2014 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2014, Monterey, CA, USA, March 23-25, 2014. IEEE Computer Society,
2014, 141–142. doi: 10.1109/ISPASS.2014.6844475. url: https://
doi.org/10.1109/ISPASS.2014.6844475.

[2] Accredited Standards Committee X9, ed. ANSI X9.62-2005: Public Key
Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). ANSI American National Stan-
dards Institute, 2005.

[3] O. Aciiçmez and W. Schindler. A Vulnerability in RSA Implementations
Due to Instruction Cache Analysis and Its Demonstration on OpenSSL.
Topics in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the
RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008. Pro-
ceedings. Ed. by T. Malkin. Vol. 4964. Lecture Notes in Computer Science.
Springer, 2008, 256–273. doi: 10.1007/978-3-540-79263-5_16. url:
https://doi.org/10.1007/978-3-540-79263-5_16.

[4] O. Acıiçmez, B. B. Brumley and P. Grabher. New Results on Instruction
Cache Attacks. Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-
20, 2010. Proceedings. Ed. by S. Mangard and F.-X. Standaert. Vol. 6225.
Lecture Notes in Computer Science. Springer, 2010, 110–124. doi: 10.
1007/978-3-642-15031-9_8. url: https://doi.org/10.1007/978-3-
642-15031-9_8.

[5] O. Acıiçmez, S. Gueron and J.-P. Seifert. New Branch Prediction Vulner-
abilities in OpenSSL and Necessary Software Countermeasures. Cryptog-

91

https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8

raphy and Coding, 11th IMA International Conference, Cirencester, UK,
December 18-20, 2007, Proceedings. Ed. by S. D. Galbraith. Vol. 4887.
Lecture Notes in Computer Science. Springer, 2007, 185–203. doi: 10.
1007/978-3-540-77272-9_12. url: https://doi.org/10.1007/978-
3-540-77272-9_12.

[6] O. Acıiçmez, Ç. K. Koç and J.-P. Seifert. On the Power of Simple Branch
Prediction Analysis. Proceedings of the 2007 ACM Symposium on Infor-
mation, Computer and Communications Security, AsiaCCS 2007, Singa-
pore, March 20-22, 2007. Ed. by F. Bao and S. Miller. ACM, 2007, 312–
320. doi: 10.1145/1229285.1266999. url: http://doi.acm.org/10.
1145/1229285.1266999.

[7] O. Acıiçmez, Ç. K. Koç and J.-P. Seifert. Predicting Secret Keys Via
Branch Prediction. Topics in Cryptology - CT-RSA 2007, The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA,
February 5-9, 2007, Proceedings. Ed. by M. Abe. Vol. 4377. Lecture Notes
in Computer Science. Springer, 2007, 225–242. doi: 10.1007/11967668_
15. url: https://doi.org/10.1007/11967668_15.

[8] O. Acıiçmez and J.-P. Seifert. Cheap Hardware Parallelism Implies Cheap
Security. Fourth International Workshop on Fault Diagnosis and Toler-
ance in Cryptography, 2007, FDTC 2007: Vienna, Austria, 10 September
2007. Ed. by L. Breveglieri, S. Gueron, I. Koren, D. Naccache and J.-P.
Seifert. IEEE Computer Society, 2007, 80–91. doi: 10.1109/FDTC.2007.
4318988. url: https://doi.org/10.1109/FDTC.2007.4318988.

[9] A. C. Aldaya and B. B. Brumley. HyperDegrade: From GHz to MHz
Effective CPU Frequencies. CoRR abs/2101.01077 (2021). arXiv: 2101.
01077. url: https://arxiv.org/abs/2101.01077.

[10] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García and N.
Tuveri. Port Contention for Fun and Profit. 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 2019, 870–887. doi: 10.1109/SP.2019.00066.

[11] A. C. Aldaya, A. J. Cabrera Sarmiento and S. Sánchez-Solano. SPA vul-
nerabilities of the binary extended Euclidean algorithm. J. Cryptographic

92

https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1145/1229285.1266999
http://doi.acm.org/10.1145/1229285.1266999
http://doi.acm.org/10.1145/1229285.1266999
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/11967668_15
https://doi.org/10.1109/FDTC.2007.4318988
https://doi.org/10.1109/FDTC.2007.4318988
https://doi.org/10.1109/FDTC.2007.4318988
https://arxiv.org/abs/2101.01077
https://arxiv.org/abs/2101.01077
https://arxiv.org/abs/2101.01077
https://doi.org/10.1109/SP.2019.00066

Engineering 7.4 (2017), 273–285. doi: 10.1007/s13389-016-0135-4.
url: https://doi.org/10.1007/s13389-016-0135-4.

[12] A. C. Aldaya, C. Pereida García, L. M. Alvarez Tapia and B. B. Brumley.
Cache-Timing Attacks on RSA Key Generation. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019.4 (2019), 213–242. doi: 10.13154/tches.

v2019.i4.213-242.

[13] A. C. Aldaya, C. Pereida García and B. B. Brumley. From A to Z: Projec-
tive coordinates leakage in the wild. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2020.3 (2020), 428–453. doi: 10.13154/tches.v2020.i3.428-
453. url: https://doi.org/10.13154/tches.v2020.i3.428-453.

[14] T. Allan, B. B. Brumley, K. E. Falkner, J. van de Pol and Y. Yarom.
Amplifying side channels through performance degradation. Proceedings
of the 32nd Annual Conference on Computer Security Applications, AC-
SAC 2016, Los Angeles, CA, USA, December 5-9, 2016. Ed. by S. Schwab,
W. K. Robertson and D. Balzarotti. ACM, 2016, 422–435. doi: 10.1145/
2991079.2991084. url: http://doi.acm.org/10.1145/2991079.

2991084.

[15] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir and M. Emmi. Ver-
ifying Constant-Time Implementations. 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. Ed. by
T. Holz and S. Savage. USENIX Association, 2016, 53–70. url: https://
www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/almeida.

[16] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner and H.
Shacham. On Subnormal Floating Point and Abnormal Timing. 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 2015, 623–639. doi:
10.1109/SP.2015.44. url: https://doi.org/10.1109/SP.2015.44.

[17] S. Aravamuthan and V. R. Thumparthy. A Parallelization of ECDSA
Resistant to Simple Power Analysis Attacks. Proceedings of the Second
International Conference on COMmunication System softWAre and Mid-
dlewaRE (COMSWARE 2007), January 7-12, 2007, Bangalore, India.
Ed. by S. Paul, H. Schulzrinne and G. Venkatesh. IEEE, 2007. doi:

93

https://doi.org/10.1007/s13389-016-0135-4
https://doi.org/10.1007/s13389-016-0135-4
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.1145/2991079.2991084
https://doi.org/10.1145/2991079.2991084
http://doi.acm.org/10.1145/2991079.2991084
http://doi.acm.org/10.1145/2991079.2991084
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1109/SP.2015.44
https://doi.org/10.1109/SP.2015.44

10.1109/COMSWA.2007.382592. url: https://doi.org/10.1109/

COMSWA.2007.382592.

[18] A. Arcangeli, I. Eidus and C. Wright. Increasing memory density by using
KSM. Proceedings of the Linux Symposium. 2009, 19–28.

[19] ARM A64 Instruction Set Architecture ARMv8. ARMv8 Architecture
Profile. ARM Limited, June 2021.

[20] Armv8, for Armv8-A architecture profile. Arm Architecture Reference
Manual. ARM Limited, Jan. 2021.

[21] G. Balakrishnan and T. W. Reps. WYSINWYX: What you see is not
what you eXecute. ACM Trans. Program. Lang. Syst. 32.6 (2010), 23:1–
23:84. doi: 10.1145/1749608.1749612. url: https://doi.org/10.
1145/1749608.1749612.

[22] D. Belyavsky, B. B. Brumley, J.-J. Chi-Domínguez, L. Rivera-Zamarripa
and I. Ustinov. Set It and Forget It! Turnkey ECC for Instant Integration.
ACSAC ’20: Annual Computer Security Applications Conference, Virtual
Event / Austin, TX, USA, 7-11 December, 2020. ACM, 2020, 760–771.
doi: 10.1145/3427228.3427291. url: https://doi.org/10.1145/
3427228.3427291.

[23] N. Benger, J. van de Pol, N. P. Smart and Y. Yarom. “Ooh Aah... Just
a Little Bit”: A Small Amount of Side Channel Can Go a Long Way.
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th In-
ternational Workshop, Busan, South Korea, September 23-26, 2014. Pro-
ceedings. Ed. by L. Batina and M. Robshaw. Vol. 8731. Lecture Notes
in Computer Science. Springer, 2014, 75–92. doi: 10.1007/978-3-662-
44709-3_5. url: https://doi.org/10.1007/978-3-662-44709-3_5.

[24] D. J. Bernstein. Cache-timing attacks on AES. 2005. url: http://cr.
yp.to/papers.html#cachetiming.

[25] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang. High-
speed high-security signatures. J. Cryptographic Engineering 2.2 (2012),
77–89. doi: 10.1007/s13389-012-0027-1. url: https://doi.org/10.
1007/s13389-012-0027-1.

94

https://doi.org/10.1109/COMSWA.2007.382592
https://doi.org/10.1109/COMSWA.2007.382592
https://doi.org/10.1109/COMSWA.2007.382592
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1

[26] D. J. Bernstein and B.-Y. Yang. Fast constant-time gcd computation and
modular inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.3
(2019), 340–398. doi: 10.13154/tches.v2019.i3.340-398. url: https:
//doi.org/10.13154/tches.v2019.i3.340-398.

[27] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B.
Parno, A. Rane, S. T. V. Setty and L. Thompson. Vale: Verifying High-
Performance Cryptographic Assembly Code. 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017. Ed. by E. Kirda and T. Ristenpart. USENIX Association, 2017, 917–
934. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/bond.

[28] D. D. A. Braga, P.-A. Fouque and M. Sabt. PARASITE: PAssword Re-
covery Attack against Srp Implementations in ThE wild. IACR Cryptol.
ePrint Arch. 2021 (2021), 553. url: https://eprint.iacr.org/2021/
553.

[29] S. Briongos, P. Malagón, J. M. Moya and T. Eisenbarth. RELOAD+REFRESH:
Abusing Cache Replacement Policies to Perform Stealthy Cache Attacks.
CoRR abs/1904.06278 (2019). arXiv: 1904.06278. url: http://arxiv.
org/abs/1904.06278.

[30] B. B. Brumley and R. M. Hakala. Cache-Timing Template Attacks. Ad-
vances in Cryptology - ASIACRYPT 2009, 15th International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity, Tokyo, Japan, December 6-10, 2009. Proceedings. Ed. by M. Matsui.
Vol. 5912. Lecture Notes in Computer Science. Springer, 2009, 667–684.
doi: 10.1007/978-3-642-10366-7_39. url: https://doi.org/10.
1007/978-3-642-10366-7_39.

[31] B. B. Brumley and N. Tuveri. Cache-timing attacks and shared contexts.
Constructive Side-Channel Analysis and Secure Design - 2nd Interna-
tional Workshop, COSADE 2011, Darmstadt, Germany, February 24-25,
2011. Proceedings. 2011, 233–242. url: https://researchportal.tuni.
fi/files/15671512/cosade2011.pdf.

[32] B. B. Brumley and N. Tuveri. Remote Timing Attacks Are Still Practical.
Computer Security - ESORICS 2011 - 16th European Symposium on Re-

95

https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.13154/tches.v2019.i3.340-398
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://eprint.iacr.org/2021/553
https://eprint.iacr.org/2021/553
https://arxiv.org/abs/1904.06278
http://arxiv.org/abs/1904.06278
http://arxiv.org/abs/1904.06278
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-10366-7_39
https://researchportal.tuni.fi/files/15671512/cosade2011.pdf
https://researchportal.tuni.fi/files/15671512/cosade2011.pdf

search in Computer Security, Leuven, Belgium, September 12-14, 2011.
Proceedings. Ed. by V. Atluri and C. Díaz. Vol. 6879. Lecture Notes in
Computer Science. Springer, 2011, 355–371. doi: 10.1007/978-3-642-
23822-2_20. url: https://doi.org/10.1007/978-3-642-23822-2_20.

[33] D. Brumley and D. Boneh. Remote timing attacks are practical. Com-
puter Networks 48.5 (2005), 701–716. doi: 10.1016/j.comnet.2005.01.
010. url: https://doi.org/10.1016/j.comnet.2005.01.010.

[34] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D.
Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. V. Bulck and Y. Yarom.
Fallout: Leaking Data on Meltdown-resistant CPUs. Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2019, London, UK, November 11-15, 2019. Ed. by L. Cavallaro,
J. Kinder, X. Wang and J. Katz. ACM, 2019, 769–784. doi: 10.1145/
3319535.3363219. url: https://doi.org/10.1145/3319535.3363219.

[35] C. Canella, K. N. Khasawneh and D. Gruss. The Evolution of Transient-
Execution Attacks. GLSVLSI ’20: Great Lakes Symposium on VLSI 2020,
Virtual Event, China, September 7-9, 2020. Ed. by T. Mohsenin, W. Zhao,
Y. Chen and O. Mutlu. ACM, 2020, 163–168. doi: 10.1145/3386263.
3407583. url: https://doi.org/10.1145/3386263.3407583.

[36] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala
and D. Stefan. FaCT: A Flexible, Constant-Time Programming Lan-
guage. IEEE Cybersecurity Development, SecDev 2017, Cambridge, MA,
USA, September 24-26, 2017. IEEE Computer Society, 2017, 69–76. doi:
10.1109/SecDev.2017.24. url: https://doi.org/10.1109/SecDev.
2017.24.

[37] D. Cerdeira, N. Santos, P. Fonseca and S. Pinto. SoK: Understanding the
Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems.
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020. IEEE, 2020, 1416–1432. doi: 10 . 1109 /

SP40000.2020.00061. url: https://doi.org/10.1109/SP40000.2020.
00061.

[38] P.-Y. Chang, E. Hao and Y. N. Patt. Alternative implementations of
hybrid branch predictors. Proceedings of the 28th Annual International

96

https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3386263.3407583
https://doi.org/10.1145/3386263.3407583
https://doi.org/10.1145/3386263.3407583
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061

Symposium on Microarchitecture, Ann Arbor, Michigan, USA, November
29 - December 1, 1995. Ed. by T. N. Mudge and K. Ebcioglu. ACM / IEEE
Computer Society, 1995, 252–257. doi: 10.1109/MICRO.1995.476833.
url: https://doi.org/10.1109/MICRO.1995.476833.

[39] M. Chiappetta, E. Savas and C. Yilmaz. Real time detection of cache-
based side-channel attacks using hardware performance counters. Appl.
Soft Comput. 49 (2016), 1162–1174. doi: 10.1016/j.asoc.2016.09.014.
url: https://doi.org/10.1016/j.asoc.2016.09.014.

[40] CoreLink Level 2 Cache Controller L2C-310. Tech. rep. ARM, 2010.

[41] J.-S. Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August
12-13, 1999, Proceedings. Ed. by Ç. K. Koç and C. Paar. Vol. 1717. Lec-
ture Notes in Computer Science. Springer, 1999, 292–302. doi: 10.1007/
3-540-48059-5_25. url: https://doi.org/10.1007/3-540-48059-
5_25.

[42] G. Dessouky, T. Frassetto and A.-R. Sadeghi. HybCache: Hybrid Side-
Channel-Resilient Caches for Trusted Execution Environments. 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020. Ed. by
S. Capkun and F. Roesner. USENIX Association, 2020, 451–468. url:
https://www.usenix.org/conference/usenixsecurity20/presentation/

dessouky.

[43] C. Disselkoen, D. Kohlbrenner, L. Porter and D. M. Tullsen. Prime+Abort:
A Timer-Free High-Precision L3 Cache Attack using Intel TSX. 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. Ed. by E. Kirda and T. Ristenpart. USENIX
Association, 2017, 51–67. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/disselkoen.

[44] V. Dolmatov and A. Degtyarev. GOST R 34.10-2012: Digital Signature
Algorithm. RFC 7091. RFC Editor, Dec. 2013, 1–21. doi: 10.17487/

RFC7091. url: https://datatracker.ietf.org/doc/rfc7091/.

97

https://doi.org/10.1109/MICRO.1995.476833
https://doi.org/10.1109/MICRO.1995.476833
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://doi.org/10.17487/RFC7091
https://doi.org/10.17487/RFC7091
https://datatracker.ietf.org/doc/rfc7091/

[45] A. Erbsen, J. Philipoom, J. Gross, R. Sloan and A. Chlipala. Simple
High-Level Code for Cryptographic Arithmetic - With Proofs, Without
Compromises. 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, 1202–1219. doi:
10.1109/SP.2019.00005. url: https://doi.org/10.1109/SP.2019.
00005.

[46] D. Evtyushkin, R. Riley, N. B. Abu-Ghazaleh and D. Ponomarev. Branch-
Scope: A New Side-Channel Attack on Directional Branch Predictor. Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018. Ed. by X. Shen, J.
Tuck, R. Bianchini and V. Sarkar. ACM, 2018, 693–707. doi: 10.1145/
3173162.3173204. url: https://doi.org/10.1145/3173162.3173204.

[47] J. A. Fisher and S. M. Freudenberger. Predicting Conditional Branch
Directions From Previous Runs of a Program. ASPLOS-V Proceedings -
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, Massachusetts, USA, October
12-15, 1992. Ed. by B. Flahive and R. L. Wexelblat. ACM Press, 1992,
85–95. doi: 10.1145/143365.143493. url: https://doi.org/10.1145/
143365.143493.

[48] B. Gras, K. Razavi, H. Bos and C. Giuffrida. Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks. 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. Ed. by W. Enck and A. P. Felt. USENIX As-
sociation, 2018, 955–972. url: https://www.usenix.org/conference/
usenixsecurity18/presentation/gras.

[49] B. Gras, K. Razavi, E. Bosman, H. Bos and C. Giuffrida. ASLR on the
Line: Practical Cache Attacks on the MMU. 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, Califor-
nia, USA, February 26 - March 1, 2017. The Internet Society, 2017. url:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

aslrcache-practical-cache-attacks-mmu/.

98

https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/143365.143493
https://doi.org/10.1145/143365.143493
https://doi.org/10.1145/143365.143493
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/

[50] I. Gridin, C. Pereida García, N. Tuveri and B. B. Brumley. Triggerflow:
Regression Testing by Advanced Execution Path Inspection. Detection
of Intrusions and Malware, and Vulnerability Assessment - 16th Interna-
tional Conference, DIMVA 2019, Gothenburg, Sweden, June 19-20, 2019,
Proceedings. Ed. by R. Perdisci, C. Maurice, G. Giacinto and M. Almgren.
Vol. 11543. Lecture Notes in Computer Science. Springer, 2019, 330–350.
doi: 10.1007/978-3-030-22038-9_16.

[51] D. Grunwald and S. Ghiasi. Microarchitectural denial of service: insur-
ing microarchitectural fairness. Proceedings of the 35th Annual Interna-
tional Symposium on Microarchitecture, Istanbul, Turkey, November 18-
22, 2002. Ed. by E. R. Altman, K. Ebcioglu, S. A. Mahlke, B. R. Rau
and S. J. Patel. ACM/IEEE Computer Society, 2002, 409–418. doi: 10.
1109/MICRO.2002.1176268. url: https://doi.org/10.1109/MICRO.
2002.1176268.

[52] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller and M. Costa.
Strong and Efficient Cache Side-Channel Protection using Hardware Trans-
actional Memory. 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by E. Kirda and
T. Ristenpart. USENIX Association, 2017, 217–233. url: https://www.
usenix.org/conference/usenixsecurity17/technical- sessions/

presentation/gruss.

[53] D. Gruss, C. Maurice and S. Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. Detection of Intrusions and Malware,
and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings. Ed. by J. Ca-
ballero, U. Zurutuza and R. J. Rodríguez. Vol. 9721. Lecture Notes in
Computer Science. Springer, 2016, 300–321. doi: 10.1007/978-3-319-
40667-1_15. url: https://doi.org/10.1007/978-3-319-40667-1_15.

[54] D. Gruss, C. Maurice, K. Wagner and S. Mangard. Flush+Flush: A Fast
and Stealthy Cache Attack. Detection of Intrusions and Malware, and
Vulnerability Assessment - 13th International Conference, DIMVA 2016,
San Sebastián, Spain, July 7-8, 2016, Proceedings. Ed. by J. Caballero,
U. Zurutuza and R. J. Rodríguez. Vol. 9721. Lecture Notes in Computer

99

https://doi.org/10.1007/978-3-030-22038-9_16
https://doi.org/10.1109/MICRO.2002.1176268
https://doi.org/10.1109/MICRO.2002.1176268
https://doi.org/10.1109/MICRO.2002.1176268
https://doi.org/10.1109/MICRO.2002.1176268
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15

Science. Springer, 2016, 279–299. doi: 10.1007/978-3-319-40667-1_14.
url: https://doi.org/10.1007/978-3-319-40667-1_14.

[55] D. Gruss, R. Spreitzer and S. Mangard. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015. Ed. by J. Jung and T. Holz. USENIX Association, 2015, 897–
912. url: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/gruss.

[56] S. Gueron. Intel’s New AES Instructions for Enhanced Performance and
Security. Fast Software Encryption, 16th International Workshop, FSE
2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers.
Ed. by O. Dunkelman. Vol. 5665. Lecture Notes in Computer Science.
Springer, 2009, 51–66. doi: 10.1007/978- 3- 642- 03317- 9_4. url:
https://doi.org/10.1007/978-3-642-03317-9_4.

[57] S. Gueron and V. Krasnov. Fast prime field elliptic-curve cryptography
with 256-bit primes. J. Cryptographic Engineering 5.2 (2015), 141–151.
doi: 10.1007/s13389-014-0090-x. url: https://doi.org/10.1007/
s13389-014-0090-x.

[58] Guidelines for Mitigating Timing Side Channels Against Cryptographic
Implementations. Tech. rep. Intel, Sept. 2019. url: https://software.
intel.com/content/www/us/en/develop/articles/software-security-

guidance/secure-coding/mitigate-timing-side-channel-crypto-

implementation.html.

[59] D. Gullasch, E. Bangerter and S. Krenn. Cache Games - Bringing Access-
Based Cache Attacks on AES to Practice. 32nd IEEE Symposium on
Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California,
USA. IEEE Computer Society, 2011, 490–505. doi: 10.1109/SP.2011.22.
url: https://doi.org/10.1109/SP.2011.22.

[60] M. Hamburg. Ed448-Goldilocks, a new elliptic curve. IACR Cryptol. ePrint
Arch. 2015 (2015), 625. url: http://eprint.iacr.org/2015/625.

[61] J. Hasan, A. Jalote, T. N. Vijaykumar and C. E. Brodley. Heat Stroke:
Power-Density-Based Denial of Service in SMT. 11th International Con-
ference on High-Performance Computer Architecture (HPCA-11 2005),

100

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP.2011.22
http://eprint.iacr.org/2015/625

12-16 February 2005, San Francisco, CA, USA. IEEE Computer Society,
2005, 166–177. doi: 10.1109/HPCA.2005.16. url: https://doi.org/
10.1109/HPCA.2005.16.

[62] S. ul Hassan, I. Gridin, I. M. Delgado-Lozano, C. Pereida García, J.-J.
Chi-Domínguez, A. C. Aldaya and B. B. Brumley. Déjà Vu: Side-Channel
Analysis of Mozilla’s NSS. CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November
9-13, 2020. Ed. by J. Ligatti, X. Ou, J. Katz and G. Vigna. ACM, 2020,
1887–1902. doi: 10.1145/3372297.3421761. url: https://doi.org/
10.1145/3372297.3421761.

[63] W. Henecka, A. May and A. Meurer. Correcting Errors in RSA Private
Keys. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings.
Ed. by T. Rabin. Vol. 6223. Lecture Notes in Computer Science. Springer,
2010, 351–369. doi: 10.1007/978-3-642-14623-7_19. url: https:
//doi.org/10.1007/978-3-642-14623-7_19.

[64] N. Heninger and H. Shacham. Reconstructing RSA Private Keys from
Random Key Bits. Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2009. Proceedings. Ed. by S. Halevi. Vol. 5677. Lecture Notes in
Computer Science. Springer, 2009, 1–17. doi: 10.1007/978- 3- 642-

03356-8_1. url: https://doi.org/10.1007/978-3-642-03356-8_1.

[65] N. Howgrave-Graham and N. P. Smart. Lattice Attacks on Digital Signa-
ture Schemes. Des. Codes Cryptogr. 23.3 (2001), 283–290. doi: 10.1023/
A:1011214926272. url: https://doi.org/10.1023/A:1011214926272.

[66] R. Hund, C. Willems and T. Holz. Practical Timing Side Channel At-
tacks Against Kernel Space ASLR. 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013. The Internet Society, 2013. url: https://www.
ndss-symposium.org/ndss2013/practical-timing-side-channel-

attacks-against-kernel-space-aslr.

[67] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth and B. Sunar.
Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Pub-

101

https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://www.ndss-symposium.org/ndss2013/practical-timing-side-channel-attacks-against-kernel-space-aslr
https://www.ndss-symposium.org/ndss2013/practical-timing-side-channel-attacks-against-kernel-space-aslr
https://www.ndss-symposium.org/ndss2013/practical-timing-side-channel-attacks-against-kernel-space-aslr

lic Cloud. IACR Cryptol. ePrint Arch. 2015 (2015), 898. url: http :

//eprint.iacr.org/2015/898.

[68] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth and B. Sunar.
Cache Attacks Enable Bulk Key Recovery on the Cloud. Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International Con-
ference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. Ed.
by B. Gierlichs and A. Y. Poschmann. Vol. 9813. Lecture Notes in Com-
puter Science. Springer, 2016, 368–388. doi: 10.1007/978-3-662-53140-
2_18. url: https://doi.org/10.1007/978-3-662-53140-2_18.

[69] Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1.
Intel, May 2021. url: https://software.intel.com/sites/default/
files/managed/a4/60/253665-sdm-vol-1.pdf.

[70] Intel 64 and IA-32 Architectures Software Developer’s Manual Combined
Volumes. Volume 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Intel, May
2021. url: https://www.intel.com/content/www/us/en/develop/
download / intel - 64 - and - ia - 32 - architectures - sdm - combined -

volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[71] G. Irazoqui, T. Eisenbarth and B. Sunar. S$A: A Shared Cache Attack
That Works across Cores and Defies VM Sandboxing - and Its Application
to AES. 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 2015, 591–
604. doi: 10.1109/SP.2015.42. url: https://doi.org/10.1109/SP.
2015.42.

[72] G. Irazoqui, T. Eisenbarth and B. Sunar. Systematic Reverse Engineering
of Cache Slice Selection in Intel Processors. 2015 Euromicro Conference
on Digital System Design, DSD 2015, Madeira, Portugal, August 26-28,
2015. IEEE Computer Society, 2015, 629–636. doi: 10.1109/DSD.2015.
56. url: https://doi.org/10.1109/DSD.2015.56.

[73] G. Irazoqui, T. Eisenbarth and B. Sunar. Cross Processor Cache Attacks.
Proceedings of the 11th ACM on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,
2016. Ed. by X. Chen, X. Wang and X. Huang. ACM, 2016, 353–364.

102

http://eprint.iacr.org/2015/898
http://eprint.iacr.org/2015/898
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/DSD.2015.56
https://doi.org/10.1109/DSD.2015.56
https://doi.org/10.1109/DSD.2015.56

doi: 10.1145/2897845.2897867. url: https://doi.org/10.1145/
2897845.2897867.

[74] A. Jaleel, K. B. Theobald, S. C. S. Jr. and J. S. Emer. High perfor-
mance cache replacement using re-reference interval prediction (RRIP).
37th International Symposium on Computer Architecture (ISCA 2010),
June 19-23, 2010, Saint-Malo, France. Ed. by A. Seznec, U. C. Weiser
and R. Ronen. ACM, 2010, 60–71. doi: 10.1145/1815961.1815971. url:
https://doi.org/10.1145/1815961.1815971.

[75] D. A. Jiménez. Improved latency and accuracy for neural branch predic-
tion. ACM Trans. Comput. Syst. 23.2 (2005), 197–218. doi: 10.1145/
1062247.1062250. url: https://doi.org/10.1145/1062247.1062250.

[76] D. A. Jiménez and C. Lin. Neural methods for dynamic branch prediction.
ACM Trans. Comput. Syst. 20.4 (2002), 369–397. doi: 10.1145/571637.
571639. url: https://doi.org/10.1145/571637.571639.

[77] S. Josefsson and S. Leonard. Textual Encodings of PKIX, PKCS, and
CMS Structures. RFC 7468. RFC Editor, Apr. 2015, 1–20. doi: 10.17487/
RFC7468. url: https://datatracker.ietf.org/doc/rfc7468/.

[78] E. Käsper. Fast Elliptic Curve Cryptography in OpenSSL. Financial
Cryptography and Data Security - FC 2011 Workshops, RLCPS and WECSR
2011, Rodney Bay, St. Lucia, February 28 - March 4, 2011, Revised Se-
lected Papers. Ed. by G. Danezis, S. Dietrich and K. Sako. Vol. 7126. Lec-
ture Notes in Computer Science. Springer, 2011, 27–39. doi: 10.1007/
978-3-642-29889-9_4. url: https://doi.org/10.1007/978-3-642-
29889-9_4.

[79] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J.-H. Lee, D. Lee, C. Wilkerson,
K. Lai and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014, Min-
neapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 2014,
361–372. doi: 10.1109/ISCA.2014.6853210. url: https://doi.org/
10.1109/ISCA.2014.6853210.

103

https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1062247.1062250
https://doi.org/10.1145/1062247.1062250
https://doi.org/10.1145/1062247.1062250
https://doi.org/10.1145/571637.571639
https://doi.org/10.1145/571637.571639
https://doi.org/10.1145/571637.571639
https://doi.org/10.17487/RFC7468
https://doi.org/10.17487/RFC7468
https://datatracker.ietf.org/doc/rfc7468/
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210

[80] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe, S. Devadas and J. S.
Emer. DAWG: A Defense Against Cache Timing Attacks in Specula-
tive Execution Processors. 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-
24, 2018. IEEE Computer Society, 2018, 974–987. doi: 10.1109/MICRO.
2018.00083. url: https://doi.org/10.1109/MICRO.2018.00083.

[81] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz and Y. Yarom. Spectre
Attacks: Exploiting Speculative Execution. 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 2019, 1–19. doi: 10.1109/SP.2019.00002. url: https:
//doi.org/10.1109/SP.2019.00002.

[82] J. Kong, O. Aciiçmez, J.-P. Seifert and H. Zhou. Hardware-software in-
tegrated approaches to defend against software cache-based side channel
attacks. 15th International Conference on High-Performance Computer
Architecture (HPCA-15 2009), 14-18 February 2009, Raleigh, North Car-
olina, USA. IEEE Computer Society, 2009, 393–404. doi: 10.1109/HPCA.
2009.4798277. url: https://doi.org/10.1109/HPCA.2009.4798277.

[83] A. Kwong, D. Genkin, D. Gruss and Y. Yarom. RAMBleed: Reading
Bits in Memory Without Accessing Them. 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020. IEEE, 2020, 695–711. doi: 10.1109/SP40000.2020.00020. url:
https://doi.org/10.1109/SP40000.2020.00020.

[84] A. Langley. ctgrind—checking that functions are constant time with Val-
grind. https://github.com/agl/ctgrind. 2010.

[85] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice and S. Mangard. ARMaged-
don: Cache Attacks on Mobile Devices. 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
Ed. by T. Holz and S. Savage. USENIX Association, 2016, 549–564.
url: https : / / www . usenix . org / conference / usenixsecurity16 /

technical-sessions/presentation/lipp.

[86] M. Lipp, V. Hazic, M. Schwarz, A. Perais, C. Maurice and D. Gruss.
Take A Way: Exploring the Security Implications of AMD’s Cache Way

104

https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://github.com/agl/ctgrind
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp

Predictors. ASIA CCS ’20: The 15th ACM Asia Conference on Computer
and Communications Security, Taipei, Taiwan, October 5-9, 2020. Ed. by
H.-M. Sun, S.-P. Shieh, G. Gu and G. Ateniese. ACM, 2020, 813–825. doi:
10.1145/3320269.3384746. url: https://doi.org/10.1145/3320269.
3384746.

[87] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom and M. Hamburg. Melt-
down: Reading Kernel Memory from User Space. 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. Ed. by W. Enck and A. P. Felt. USENIX Association, 2018, 973–
990. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp.

[88] F. Liu, H. Wu, K. Mai and R. B. Lee. Newcache: Secure Cache Archi-
tecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36.5 (2016),
8–16. doi: 10.1109/MM.2016.85. url: https://doi.org/10.1109/MM.
2016.85.

[89] F. Liu, Y. Yarom, Q. Ge, G. Heiser and R. B. Lee. Last-Level Cache Side-
Channel Attacks are Practical. 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer
Society, 2015, 605–622. doi: 10.1109/SP.2015.43. url: https://doi.
org/10.1109/SP.2015.43.

[90] D. Maimut, C. Murdica, D. Naccache and M. Tibouchi. Fault Attacks on
Projective-to-Affine Coordinates Conversion. Constructive Side-Channel
Analysis and Secure Design - 4th International Workshop, COSADE 2013,
Paris, France, March 6-8, 2013, Revised Selected Papers. Ed. by E. Prouff.
Vol. 7864. Lecture Notes in Computer Science. Springer, 2013, 46–61. doi:
10.1007/978-3-642-40026-1_4. url: https://doi.org/10.1007/978-
3-642-40026-1_4.

[91] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller
and M. Upton. Hyper-Threading Technology Architecture and Microar-
chitecture. Intel Technology Journal 6.1 (2002). issn: 1535864X.

[92] C. Maurice, C. Neumann, O. Heen and A. Francillon. C5: Cross-Cores
Cache Covert Channel. Detection of Intrusions and Malware, and Vulner-

105

https://doi.org/10.1145/3320269.3384746
https://doi.org/10.1145/3320269.3384746
https://doi.org/10.1145/3320269.3384746
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1007/978-3-642-40026-1_4
https://doi.org/10.1007/978-3-642-40026-1_4
https://doi.org/10.1007/978-3-642-40026-1_4

ability Assessment - 12th International Conference, DIMVA 2015, Milan,
Italy, July 9-10, 2015, Proceedings. Ed. by M. Almgren, V. Gulisano and
F. Maggi. Vol. 9148. Lecture Notes in Computer Science. Springer, 2015,
46–64. doi: 10.1007/978-3-319-20550-2_3. url: https://doi.org/
10.1007/978-3-319-20550-2_3.

[93] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen and A. Francillon.
Reverse Engineering Intel Last-Level Cache Complex Addressing Using
Performance Counters. Research in Attacks, Intrusions, and Defenses -
18th International Symposium, RAID 2015, Kyoto, Japan, November 2-4,
2015, Proceedings. Ed. by H. Bos, F. Monrose and G. Blanc. Vol. 9404.
Lecture Notes in Computer Science. Springer, 2015, 48–65. doi: 10.1007/
978-3-319-26362-5_3. url: https://doi.org/10.1007/978-3-319-
26362-5_3.

[94] R. Merget, M. Brinkmann, N. Aviram, J. Somorovsky, J. Mittmann and J.
Schwenk. Raccoon Attack: Finding and Exploiting Most-Significant-Bit-
Oracles in TLS-DH(E). 30th USENIX Security Symposium (USENIX Se-
curity 21). USENIX Association, Aug. 2021. url: https://www.usenix.
org/conference/usenixsecurity21/presentation/merget.

[95] J. Merkle and M. Lochter. Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation. RFC 5639. RFC Editor, Mar.
2010, 1–27. doi: 10.17487/RFC5639. url: https://datatracker.ietf.
org/doc/rfc5639/.

[96] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comp. 48.177 (1987), 243–264. issn: 0025-5718. doi:
10.2307/2007888. url: https://doi.org/10.2307/2007888.

[97] K. Moriarty, B. Kaliski, J. Jonsson and A. Rusch. PKCS #1: RSA Cryp-
tography Specifications Version 2.2. RFC 8017. RFC Editor, Nov. 2016,
1–78. doi: 10.17487/RFC8017. url: https://datatracker.ietf.org/
doc/rfc8017/.

[98] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre and G.
Gogniat. NIGHTs-WATCH: a cache-based side-channel intrusion detector
using hardware performance counters. Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Pri-

106

https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://doi.org/10.17487/RFC5639
https://datatracker.ietf.org/doc/rfc5639/
https://datatracker.ietf.org/doc/rfc5639/
https://doi.org/10.2307/2007888
https://doi.org/10.2307/2007888
https://doi.org/10.17487/RFC8017
https://datatracker.ietf.org/doc/rfc8017/
https://datatracker.ietf.org/doc/rfc8017/

vacy, HASP@ISCA 2018, Los Angeles, CA, USA, June 02-02, 2018. Ed.
by J. Szefer, W. Shi and R. B. Lee. ACM, 2018, 1:1–1:8. doi: 10.1145/
3214292.3214293. url: https://doi.org/10.1145/3214292.3214293.

[99] D. Naccache, N. P. Smart and J. Stern. Projective Coordinates Leak.
Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings. Ed. by C. Cachin and J. Ca-
menisch. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004,
257–267. doi: 10.1007/978-3-540-24676-3_16. url: https://doi.
org/10.1007/978-3-540-24676-3_16.

[100] M. Nemec, M. Sýs, P. Svenda, D. Klinec and V. Matyas. The Return
of Coppersmith’s Attack: Practical Factorization of Widely Used RSA
Moduli. Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017. Ed. by B. M. Thuraisingham, D. Evans, T. Malkin
and D. Xu. ACM, 2017, 1631–1648. doi: 10.1145/3133956.3133969.
url: http://doi.acm.org/10.1145/3133956.3133969.

[101] P. Q. Nguyen and I. E. Shparlinski. The Insecurity of the Elliptic Curve
Digital Signature Algorithm with Partially Known Nonces. Des. Codes
Cryptogr. 30.2 (2003), 201–217. doi: 10.1023/A:1025436905711. url:
https://doi.org/10.1023/A:1025436905711.

[102] Y. Oren, V. P. Kemerlis, S. Sethumadhavan and A. D. Keromytis. The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Im-
plications. Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, Denver, CO, USA, October 12-16,
2015. Ed. by I. Ray, N. Li and C. Kruegel. ACM, 2015, 1406–1418. doi:
10.1145/2810103.2813708. url: https://doi.org/10.1145/2810103.
2813708.

[103] D. A. Osvik, A. Shamir and E. Tromer. Cache Attacks and Counter-
measures: The Case of AES. Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA,
February 13-17, 2006, Proceedings. Ed. by D. Pointcheval. Vol. 3860. Lec-

107

https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1007/978-3-540-24676-3_16
https://doi.org/10.1007/978-3-540-24676-3_16
https://doi.org/10.1007/978-3-540-24676-3_16
https://doi.org/10.1145/3133956.3133969
http://doi.acm.org/10.1145/3133956.3133969
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708

ture Notes in Computer Science. Springer, 2006, 1–20. doi: 10.1007/
11605805_1. url: https://doi.org/10.1007/11605805_1.

[104] D. Page. Partitioned Cache Architecture as a Side-Channel Defence
Mechanism. IACR Cryptol. ePrint Arch. 2005 (2005), 280. url: http:
//eprint.iacr.org/2005/280.

[105] C. Percival. Cache Missing for Fun and Profit. BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings. 2005. url: http://www.daemonology.
net/papers/cachemissing.pdf.

[106] C. Pereida García and B. B. Brumley. Constant-Time Callees with Variable-
Time Callers. 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. Ed. by E. Kirda and T.
Ristenpart. USENIX Association, 2017, 83–98. isbn: 978-1-931971-40-
9. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/garcia.

[107] C. Pereida García, B. B. Brumley and Y. Yarom. “Make Sure DSA Sign-
ing Exponentiations Really are Constant-Time”. Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. Ed. by E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers and S. Halevi. ACM, 2016, 1639–1650.
doi: 10.1145/2976749.2978420.

[108] C. Pereida García, S. ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya and
B. B. Brumley. Certified Side Channels. 29th USENIX Security Sympo-
sium, USENIX Security 2020, August 12-14,2020. Ed. by S. Capkun and
F. Roesner. USENIX Association, 2020, 2021–2038. url: https://www.
usenix.org/conference/usenixsecurity20/presentation/garcia.

[109] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova, K.
Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet, N.
Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. M. Wintersteiger
and S. Z. Béguelin. EverCrypt: A Fast, Verified, Cross-Platform Crypto-
graphic Provider. 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, 983–1002.
doi: 10.1109/SP40000.2020.00114. url: https://doi.org/10.1109/
SP40000.2020.00114.

108

https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://eprint.iacr.org/2005/280
http://eprint.iacr.org/2005/280
http://www.daemonology.net/papers/cachemissing.pdf
http://www.daemonology.net/papers/cachemissing.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://doi.org/10.1145/2976749.2978420
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/SP40000.2020.00114

[110] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr. and J. S. Emer. Adap-
tive insertion policies for high performance caching. 34th International
Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007,
San Diego, California, USA. Ed. by D. M. Tullsen and B. Calder. ACM,
2007, 381–391. doi: 10.1145/1250662.1250709. url: https://doi.
org/10.1145/1250662.1250709.

[111] O. Reparaz, J. Balasch and I. Verbauwhede. Dude, is my code con-
stant time?: Design, Automation & Test in Europe Conference & Exhibi-
tion, DATE 2017, Lausanne, Switzerland, March 27-31, 2017. Ed. by D.
Atienza and G. D. Natale. IEEE, 2017, 1697–1702. doi: 10.23919/DATE.
2017.7927267. url: https://doi.org/10.23919/DATE.2017.7927267.

[112] T. Ristenpart, E. Tromer, H. Shacham and S. Savage. Hey, you, get off
of my cloud: exploring information leakage in third-party compute clouds.
Proceedings of the 2009 ACM Conference on Computer and Communica-
tions Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009.
Ed. by E. Al-Shaer, S. Jha and A. D. Keromytis. ACM, 2009, 199–212.
doi: 10.1145/1653662.1653687. url: http://doi.acm.org/10.1145/
1653662.1653687.

[113] B. Rodrigues, F. M. Q. Pereira and D. F. Aranha. Sparse representa-
tion of implicit flows with applications to side-channel detection. Proceed-
ings of the 25th International Conference on Compiler Construction, CC
2016, Barcelona, Spain, March 12-18, 2016. Ed. by A. Zaks and M. V.
Hermenegildo. ACM, 2016, 110–120. doi: 10.1145/2892208.2892230.
url: http://doi.acm.org/10.1145/2892208.2892230.

[114] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. J. Pollack and J. P. Shen.
Coming challenges in microarchitecture and architecture. Proc. IEEE 89.3
(2001), 325–340. doi: 10.1109/5.915377. url: https://doi.org/10.
1109/5.915377.

[115] A. Saini. Design of the Intel PentiumTM Processor. Proceedings 1993
International Conference on Computer Design: VLSI in Computers &
Processors, ICCD ’93, Cambridge, MA, USA, October 3-6, 1993. IEEE
Computer Society, 1993, 258–261. doi: 10.1109/ICCD.1993.393370.
url: https://doi.org/10.1109/ICCD.1993.393370.

109

https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.1145/1653662.1653687
http://doi.acm.org/10.1145/1653662.1653687
http://doi.acm.org/10.1145/1653662.1653687
https://doi.org/10.1145/2892208.2892230
http://doi.acm.org/10.1145/2892208.2892230
https://doi.org/10.1109/5.915377
https://doi.org/10.1109/5.915377
https://doi.org/10.1109/5.915377
https://doi.org/10.1109/ICCD.1993.393370
https://doi.org/10.1109/ICCD.1993.393370

[116] M. Schwarz and D. Gruss. How Trusted Execution Environments Fuel
Research on Microarchitectural Attacks. IEEE Secur. Priv. 18.5 (2020),
18–27. doi: 10.1109/MSEC.2020.2993896. url: https://doi.org/10.
1109/MSEC.2020.2993896.

[117] M. Schwarz, S. Weiser, D. Gruss, C. Maurice and S. Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. Detection of In-
trusions and Malware, and Vulnerability Assessment - 14th International
Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings.
Ed. by M. Polychronakis and M. Meier. Vol. 10327. Lecture Notes in Com-
puter Science. Springer, 2017, 3–24. doi: 10.1007/978-3-319-60876-
1_1. url: https://doi.org/10.1007/978-3-319-60876-1_1.

[118] SEC 1: Elliptic Curve Cryptography. SEC 1. Standards for Efficient
Cryptography Group, May 2009. url: http://www.secg.org/sec1-
v2.pdf.

[119] SEC 2: Recommended Elliptic Curve Domain Parameters. SEC 2. Stan-
dards for Efficient Cryptography Group, Jan. 2010. url: http://www.
secg.org/sec2-v2.pdf.

[120] R. Seggelmann, M. Tüxen and M. G. Williams. Transport Layer Secu-
rity (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat
Extension. RFC 6520 (2012), 1–9. doi: 10.17487/RFC6520. url: https:
//doi.org/10.17487/RFC6520.

[121] A. Seznec. Tage-sc-l branch predictors. JILP-Championship Branch Pre-
diction. 2014.

[122] D. Shanks. Class number, a theory of factorization, and genera. Proc. of
Symp. Math. Soc., 1971. Vol. 20. 1971, 41–440.

[123] P. Shrestha, M. Mohamed and N. Saxena. Slogger: Smashing Motion-
based Touchstroke Logging with Transparent System Noise. Proceedings
of the 9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, WISEC 2016, Darmstadt, Germany, July 18-22, 2016. Ed. by
M. Hollick, P. Papadimitratos and W. Enck. ACM, 2016, 67–77. doi:
10.1145/2939918.2939924. url: https://doi.org/10.1145/2939918.
2939924.

110

https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.17487/RFC6520
https://doi.org/10.17487/RFC6520
https://doi.org/10.17487/RFC6520
https://doi.org/10.1145/2939918.2939924
https://doi.org/10.1145/2939918.2939924
https://doi.org/10.1145/2939918.2939924

[124] L. Simon, D. Chisnall and R. J. Anderson. What You Get is What
You C: Controlling Side Effects in Mainstream C Compilers. 2018 IEEE
European Symposium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018. IEEE, 2018, 1–15. doi: 10.1109/
EuroSP.2018.00009. url: https://doi.org/10.1109/EuroSP.2018.
00009.

[125] R. Spreitzer and B. Gérard. Towards More Practical Time-Driven Cache
Attacks. Information Security Theory and Practice. Securing the Internet
of Things - 8th IFIP WG 11.2 International Workshop, WISTP 2014,
Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings. Ed. by
D. Naccache and D. Sauveron. Vol. 8501. Lecture Notes in Computer
Science. Springer, 2014, 24–39. doi: 10.1007/978-3-662-43826-8_3.
url: https://doi.org/10.1007/978-3-662-43826-8%5C_3.

[126] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables. Constructive Side-Channel Analysis and Secure Design -
4th International Workshop, COSADE 2013, Paris, France, March 6-8,
2013, Revised Selected Papers. Ed. by E. Prouff. Vol. 7864. Lecture Notes
in Computer Science. Springer, 2013, 200–214. doi: 10.1007/978-3-642-
40026-1_13. url: https://doi.org/10.1007/978-3-642-40026-1_13.

[127] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache
Attacks on Mobile Devices. Network and System Security - 7th Interna-
tional Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings.
Ed. by J. López, X. Huang and R. S. Sandhu. Vol. 7873. Lecture Notes in
Computer Science. Springer, 2013, 656–662. doi: 10.1007/978-3-642-
38631-2_53. url: https://doi.org/10.1007/978-3-642-38631-
2%5C_53.

[128] Y. Tan, J. Wei and W. Guo. The Micro-architectural Support Coun-
termeasures against the Branch Prediction Analysis Attack. 13th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications, TrustCom 2014, Beijing, China, September 24-26,
2014. IEEE Computer Society, 2014, 276–283. doi: 10.1109/TrustCom.
2014.38. url: https://doi.org/10.1109/TrustCom.2014.38.

111

https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1007/978-3-662-43826-8_3
https://doi.org/10.1007/978-3-662-43826-8%5C_3
https://doi.org/10.1007/978-3-642-40026-1_13
https://doi.org/10.1007/978-3-642-40026-1_13
https://doi.org/10.1007/978-3-642-40026-1_13
https://doi.org/10.1007/978-3-642-38631-2_53
https://doi.org/10.1007/978-3-642-38631-2_53
https://doi.org/10.1007/978-3-642-38631-2%5C_53
https://doi.org/10.1007/978-3-642-38631-2%5C_53
https://doi.org/10.1109/TrustCom.2014.38
https://doi.org/10.1109/TrustCom.2014.38
https://doi.org/10.1109/TrustCom.2014.38

[129] N. Tuveri, S. ul Hassan, C. Pereida García and B. B. Brumley. Electro-
magnetic (EM) side-channel traces of elliptic curve point multiplication
during SM2 decryption in OpenSSL. Zenodo, Sept. 2018. doi: 10.5281/
zenodo.1436828. url: https://doi.org/10.5281/zenodo.1436828.

[130] N. Tuveri, S. ul Hassan, C. Pereida García and B. B. Brumley. Side-
Channel Analysis of SM2: A Late-Stage Featurization Case Study. Pro-
ceedings of the 34th Annual Computer Security Applications Conference,
ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM, 2018,
147–160. doi: 10.1145/3274694.3274725.

[131] B. C. Vattikonda, S. Das and H. Shacham. Eliminating fine grained
timers in Xen. Proceedings of the 3rd ACM Cloud Computing Security
Workshop, CCSW 2011, Chicago, IL, USA, October 21, 2011. Ed. by C.
Cachin and T. Ristenpart. ACM, 2011, 41–46. doi: 10.1145/2046660.
2046671. url: https://doi.org/10.1145/2046660.2046671.

[132] P. Vila, P. Ganty, M. Guarnieri and B. Köpf. CacheQuery: learning
replacement policies from hardware caches. Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed. by
A. F. Donaldson and E. Torlak. ACM, 2020, 519–532. doi: 10.1145/
3385412.3386008. url: https://doi.org/10.1145/3385412.3386008.

[133] P. Vila, B. Köpf and J. F. Morales. Theory and Practice of Finding
Eviction Sets. 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, 39–54. doi: 10.
1109/SP.2019.00042. url: https://doi.org/10.1109/SP.2019.00042.

[134] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-
Hashimi and G. V. Merrett. BRB: Mitigating Branch Predictor Side-
Channels. 25th IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2019, Washington, DC, USA, February 16-
20, 2019. IEEE, 2019, 466–477. doi: 10.1109/HPCA.2019.00058. url:
https://doi.org/10.1109/HPCA.2019.00058.

[135] C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. 5th Symposium on Operating System Design and Implementation
(OSDI 2002), Boston, Massachusetts, USA, December 9-11, 2002. Ed. by

112

https://doi.org/10.5281/zenodo.1436828
https://doi.org/10.5281/zenodo.1436828
https://doi.org/10.5281/zenodo.1436828
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1145/2046660.2046671
https://doi.org/10.1145/2046660.2046671
https://doi.org/10.1145/2046660.2046671
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/HPCA.2019.00058
https://doi.org/10.1109/HPCA.2019.00058

D. E. Culler and P. Druschel. USENIX Association, 2002. url: http:
//www.usenix.org/events/osdi02/tech/waldspurger.html.

[136] Z. Wang and R. B. Lee. New cache designs for thwarting software cache-
based side channel attacks. 34th International Symposium on Computer
Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA.
Ed. by D. M. Tullsen and B. Calder. ACM, 2007, 494–505. doi: 10.1145/
1250662.1250723. url: https://doi.org/10.1145/1250662.1250723.

[137] S. Weiser, R. Spreitzer and L. Bodner. Single Trace Attack Against
RSA Key Generation in Intel SGX SSL. Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, AsiaCCS 2018,
Incheon, Republic of Korea, June 04-08, 2018. Ed. by J. Kim, G.-J. Ahn,
S. Kim, Y. Kim, J. López and T. Kim. ACM, 2018, 575–586. doi: 10.
1145/3196494.3196524. url: http://doi.acm.org/10.1145/3196494.
3196524.

[138] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard and G. Sigl.
DATA - Differential Address Trace Analysis: Finding Address-based Side-
Channels in Binaries. 27th USENIX Security Symposium, USENIX Secu-
rity 2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by W. Enck
and A. P. Felt. USENIX Association, 2018, 603–620. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/weiser.

[139] L. Weissbart, S. Picek and L. Batina. One Trace Is All It Takes: Ma-
chine Learning-Based Side-Channel Attack on EdDSA. Security, Privacy,
and Applied Cryptography Engineering - 9th International Conference,
SPACE 2019, Gandhinagar, India, December 3-7, 2019, Proceedings. Ed.
by S. Bhasin, A. Mendelson and M. Nandi. Vol. 11947. Lecture Notes in
Computer Science. Springer, 2019, 86–105. doi: 10.1007/978-3-030-
35869-3_8. url: https://doi.org/10.1007/978-3-030-35869-
3%5C_8.

[140] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss and S.
Mangard. ScatterCache: Thwarting Cache Attacks via Cache Set Ran-
domization. 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019. Ed. by N. Heninger and

113

http://www.usenix.org/events/osdi02/tech/waldspurger.html
http://www.usenix.org/events/osdi02/tech/waldspurger.html
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/3196494.3196524
https://doi.org/10.1145/3196494.3196524
http://doi.acm.org/10.1145/3196494.3196524
http://doi.acm.org/10.1145/3196494.3196524
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://doi.org/10.1007/978-3-030-35869-3_8
https://doi.org/10.1007/978-3-030-35869-3_8
https://doi.org/10.1007/978-3-030-35869-3%5C_8
https://doi.org/10.1007/978-3-030-35869-3%5C_8

P. Traynor. USENIX Association, 2019, 675–692. url: https://www.
usenix.org/conference/usenixsecurity19/presentation/werner.

[141] J. Wichelmann, A. Moghimi, T. Eisenbarth and B. Sunar. MicroWalk:
A Framework for Finding Side Channels in Binaries. Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC 2018,
San Juan, PR, USA, December 03-07, 2018. ACM, 2018, 161–173. doi:
10.1145/3274694.3274741. url: https://doi.org/10.1145/3274694.
3274741.

[142] M. Wu, S. Guo, P. Schaumont and C. Wang. Eliminating timing side-
channel leaks using program repair. Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018. Ed. by F. Tip and
E. Bodden. ACM, 2018, 15–26. doi: 10.1145/3213846.3213851. url:
https://doi.org/10.1145/3213846.3213851.

[143] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. H. Campbell
and J. Torrellas. Attack Directories, Not Caches: Side Channel Attacks in
a Non-Inclusive World. 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, 888–
904. doi: 10.1109/SP.2019.00004. url: https://doi.org/10.1109/
SP.2019.00004.

[144] Y. Yarom and N. Benger. Recovering OpenSSL ECDSA Nonces Using
the FLUSH+RELOAD Cache Side-channel Attack. IACR Cryptol. ePrint
Arch. 2014 (2014), 140. url: http://eprint.iacr.org/2014/140.

[145] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014. USENIX
Association, 2014, 719–732. isbn: 978-1-931971-15-7. url: https://www.
usenix.org/conference/usenixsecurity14/technical- sessions/

presentation/yarom.

[146] Y. Yarom, Q. Ge, F. Liu, R. B. Lee and G. Heiser. Mapping the Intel
Last-Level Cache. IACR Cryptol. ePrint Arch. 2015 (2015), 905. url:
http://eprint.iacr.org/2015/905.

114

https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1109/SP.2019.00004
https://doi.org/10.1109/SP.2019.00004
https://doi.org/10.1109/SP.2019.00004
http://eprint.iacr.org/2014/140
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://eprint.iacr.org/2015/905

[147] Y. Yarom, D. Genkin and N. Heninger. CacheBleed: A Timing Attack
on OpenSSL Constant Time RSA. Cryptographic Hardware and Embed-
ded Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, August 17-19, 2016, Proceedings. Ed. by B. Gierlichs
and A. Y. Poschmann. Vol. 9813. Lecture Notes in Computer Science.
Springer, 2016, 346–367. doi: 10.1007/978-3-662-53140-2_17. url:
https://doi.org/10.1007/978-3-662-53140-2_17.

[148] F. Zhang and H. Zhang. SoK: A Study of Using Hardware-assisted Iso-
lated Execution Environments for Security. Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016, HASP@ICSA
2016, Seoul, Republic of Korea, June 18, 2016. ACM, 2016, 3:1–3:8. doi:
10.1145/2948618.2948621. url: https://doi.org/10.1145/2948618.
2948621.

[149] L. Zhang, N. Wu, F. Ge, F. Zhou and M. R. Yahya. A Dynamic Branch
Predictor Based on Parallel Structure of SRNN. IEEE Access 8 (2020),
86230–86237. doi: 10.1109/ACCESS.2020.2992643. url: https://doi.
org/10.1109/ACCESS.2020.2992643.

[150] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart. Cross-VM side
channels and their use to extract private keys. the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012. Ed. by T. Yu, G. Danezis and V. D. Gligor. ACM,
2012, 305–316. doi: 10.1145/2382196.2382230. url: https://doi.
org/10.1145/2382196.2382230.

[151] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche.
HACL*: A Verified Modern Cryptographic Library. Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.
Ed. by B. M. Thuraisingham, D. Evans, T. Malkin and D. Xu. ACM,
2017, 1789–1806. doi: 10.1145/3133956.3134043. url: http://doi.
acm.org/10.1145/3133956.3134043.

115

https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.1109/ACCESS.2020.2992643
https://doi.org/10.1109/ACCESS.2020.2992643
https://doi.org/10.1109/ACCESS.2020.2992643
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/3133956.3134043
http://doi.acm.org/10.1145/3133956.3134043
http://doi.acm.org/10.1145/3133956.3134043

116

PUBLICATIONS

117

PUBLICATION
I

“Make Sure DSA Signing Exponentiations Really are
Constant-Time”

C. Pereida García, B. B. Brumley and Y. Yarom

Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. Ed. by

E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers and S. Halevi. 2016,
1639–1650

doi: 10.1145/2976749.2978420

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1145/2976749.2978420

“Make Sure DSA Signing Exponentiations Really are
Constant-Time”

Cesar Pereida García
Department of Computer

Science
Aalto University, Finland

cesar.pereida@aalto.fi

Billy Bob Brumley
Department of Pervasive

Computing
Tampere University of
Technology, Finland

billy.brumley@tut.fi

Yuval Yarom
The University of Adelaide and

Data61, CSIRO, Australia
yval@cs.adelaide.edu.au

ABSTRACT
TLS and SSH are two of the most commonly used proto-
cols for securing Internet traffic. Many of the implemen-
tations of these protocols rely on the cryptographic primi-
tives provided in the OpenSSL library. In this work we dis-
close a vulnerability in OpenSSL, affecting all versions and
forks (e.g. LibreSSL and BoringSSL) since roughly October
2005, which renders the implementation of the DSA signa-
ture scheme vulnerable to cache-based side-channel attacks.
Exploiting the software defect, we demonstrate the first pub-
lished cache-based key-recovery attack on these protocols:
260 SSH-2 handshakes to extract a 1024/160-bit DSA host
key from an OpenSSH server, and 580 TLS 1.2 handshakes
to extract a 2048/256-bit DSA key from an stunnel server.

Keywords
applied cryptography; digital signatures; side-channel anal-
ysis; timing attacks; cache-timing attacks; DSA; OpenSSL;
CVE-2016-2178

1. INTRODUCTION
One of the contributing factors to the explosion of the

Internet in the last decade is the security provided by the
underlying cryptographic protocols. Two of those protocols
are the Transport Layer Security (TLS) protocol, which pro-
vides security to network communication and the more spe-
cialized Secure Shell (SSH), which provides secure login to
remote hosts.

Software implementations of these protocols often use the
cryptographic primitives’ implementations of the OpenSSL
cryptographic library. Consequently, the security of these
implementations depends on the security of OpenSSL.

In this paper we present a novel side-channel cache-timing
attack against OpenSSL’s DSA implementation. The attack
exploits a vulnerability in OpenSSL, which fails to use a side-
channel-secure implementation of modular exponentiation
— the core mathematical operation used in DSA signatures.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
CCS’16 October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2978420

Our attack builds upon several techniques to profile the
cache memory and capture timing signals. The signals are
processed and converted into a sequence of square and mul-
tiplication (SM) operations from which we extract informa-
tion to create a lattice problem. The solution to the lattice
problem yields the secret key of digital signatures.

Flush+Reload [40] is a powerful technique to perform
cache-timing attacks. We adapt the Flush+Reload tech-
nique to OpenSSL’s implementation of DSA and, exploit-
ing properties of the Intel implementation of the x86 and
x64 processor architectures, our spy program probes rele-
vant memory addresses to create a signal trace.

We process the captured signal to get the SM sequence
performed by the sliding window exponentiation (SWE) al-
gorithm. Then we observe and analyze the number of bits
that can be extracted and used from each of those sequences.
Later, the variable amount of bits extracted from each trace
is used as input to a lattice attack that recovers the private
key.

To bridge the gap between the limited resolution of the
Flush+Reload technique [4] and the high-performance of
the OpenSSL code we apply the performance-degradation
technique of Allan et al. [4]. This technique slows the expo-
nentiation by an average factor of 20, giving a high resolution
trace and allowing us to extract up to 8 bits of information
from some of the traces.

Similar to previous works [9, 14, 21, 32], we perform a
lattice attack to recover the secret key. We use the lattice
construction of Benger et al. [9] and solve the resulting lat-
tice problem using the lattice reduction technique of Nguyen
and Shparlinski [28].

A unique feature of our work is that we target common
cryptographic protocols. Previous works that demonstrate
cache-timing key-recovery attacks only target the crypto-
graphic primitives, ignoring potential cache noise from the
protocol implementation. In contrast, we present end-to-
end attacks on two common cryptographic protocols: SSH
and TLS. We are, therefore, the first to demonstrate that
cache-timing attacks are a threat not only when executing
the cryptographic primitives but also in the presence of the
cache activity of the whole protocol suite.

Our contributions in this work are the following:

• We identify a security weakness in OpenSSL which
fails to use a side-channel safe implementation when
performing DSA signatures. (Section 3)

• We describe how to use a combination of the Flush+

1639

Reload technique with a performance-degradation at-
tack to leak information from the unsafe SWE algo-
rithm. (Section 4)

• We present the first key-recovery cache-timing attack
on the TLS and SSH cryptographic protocols. (Sec-
tion 5)

• We construct and solve a lattice problem with the side-
channel information and the digital signatures in order
to recover the secret key. (Section 6)

2. BACKGROUND

2.1 Memory Hierarchy
Accessing data and instructions from main memory is a

time consuming operation which delays the work of the fast
processors, for that reason the memory hierarchy includes
smaller and faster memories called caches. Caches improve
the performance by exploiting the spatial and temporal lo-
cality of the memory access.

In modern processors the hierarchy of caches is structured
as follows, higher-level caches, located closer to the processor
core, are smaller and faster than low-level caches, which are
located closer to main memory. Recent Intel architecture
typically has three levels of cache: L1, L2 and Last-Level
Cache (LLC).

Each core has two L1 caches, a data cache and an instruc-
tion cache, each 32 KiB in size with an access time of 4
cycles. L2 caches are also core-private and have an inter-
mediate size (256 KiB) and latency (7 cycles). The LLC is
shared among all of the cores and is a unified cache, con-
taining both data and instructions. Typical LLC sizes are
in megabytes and access time is in the order of 40 cycles.

The unit of memory and allocation in a cache is called
cache line. Cache lines are of a fixed size B, which is typ-
ically 64 bytes. The lg(B) low-order bits of the address,
called line offset, are used to locate the datum in the cache
line.

When a memory address is accessed, the processor checks
the availability of the address line in the top-level L1 cache.
If the data is there then it is served to the processor, a
situation referred to as a cache hit. In a cache miss, when
the data is not found in the L1 cache, the processor repeats
the search for the line in the next cache level and continues
through all the caches. Once the line is found, the processor
stores a copy in the cache for future use.

Most caches are set-associative. They are composed of S
cache sets each containing a fixed number of cache lines. The
number of cache lines in a set is the cache associativity, i.e.,
a cache with W lines in each set is a W -way set-associative
cache.

Since the main memory is orders of magnitude larger than
the cache, more than W memory lines may map to the same
cache set. If a cache miss occurs and all the cache lines in
the matching cache set are in use, one of the cached lines
is evicted, freeing a slot for a new line to be fetched from
a lower-level memory. Several cache replacement policies
exist to determine the cache line to evict when a cache miss
occurs but the typical policy in use is an approximation to
the least-recently-used (LRU).

The last-level cache in modern Intel processors is inclusive.
Inclusive caches contain a superset of the contents of the

cache levels above them. In the case of Intel processors,
the contents of the L1 and L2 caches is also stored in the
last-level cache. A consequence of the inclusion property is
that when data is evicted from the last-level cache it is also
evicted from all of the other levels of cache in the processor.

Intel architecture implements several cache optimizations.
The spatial pre-fetcher pairs cache lines and attempt to fetch
the pair of a missed line [17]. Consecutive accesses to mem-
ory addresses are detected and pre-fetched when the pro-
cessor anticipates they may be required [17]. Additionally,
when the processor is presented with a conditional branch,
speculative execution brings the data of both branches into
the cache before the branch condition is evaluated [35].

Page [30] noted that tracing the sequence of cache hits
and misses of software may leak information on the internal
working of the software, including information that may lead
to recovering cryptographic keys.

This idea was later extended and used for mounting sev-
eral cache-based side-channel attacks [10, 29, 31]. Other
attacks were shown against the L1-instruction cache [3], the
branch prediction buffer [1, 2] and the last-level cache [20,
22, 25, 40].

2.2 The Flush+Reload Attack
Our LLC-based attack is based on the Flush+Reload [20,

40] attack, which is a cache-based side-channel attack tech-
nique.

Unlike the earlier Prime+Probe technique [29, 31] that
detects activity in cache sets, the Flush+Reload technique
identifies access to memory lines, giving it a higher resolu-
tion, a high accuracy and high signal-to-noise ratio.

Like Prime+Probe, Flush+Reload relies on cache shar-
ing between processes. Additionally, it requires data shar-
ing, which is typically achieved through the use of shared
libraries or using page de-duplication [6, 36].

A round of the attack, which identifies victim access to
a shared memory line, consists of three phases. (See Algo-
rithm 1.) In the first phase the adversary evicts the mon-
itored memory line from the cache. In the second phase,
the adversary waits a period of time so the victim has an
opportunity to access the memory line. In the third phase,
the adversary measures the time it takes to reload the mem-
ory line. If during the second phase the victim accesses the
memory line, the line will be available in the cache and the
reload operation in the third phase will take a short time. If,
on the other hand, the victim does not access the memory
line then the third phase takes a longer time as the memory
line is loaded from main memory.

Algorithm 1: Flush+Reload Attack

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin
flush(addr)
Wait for the victim.
time ← current_time()

tmp ← read(addr)
readTime ← current_time() - time
return readTime < threshold

The execution of the victim and the adversary processes
are independent of each other, thus synchronization of prob-

1640

ing is important and several factors need to be considered
when processing the side-channel data. Some of those fac-
tors are the waiting period for the adversary between probes,
memory lines to be probed, size of the side-channel trace and
cache-hit threshold. One important goal for this attack is to
achieve the best resolution possible while keeping the error
rate low and one of the ways to achieve this is by targeting
memory lines that occur frequently during execution, such
as loop bodies. Several processor optimizations are in place
during a typical process execution and an attacker must be
aware of these optimizations to filter them during the anal-
ysis of the attack results. See [4, 39, 40] for discussions of
some of these parameters.

A typical implementation of the Flush+Reload attack
makes use of the clflush instruction of the x86 and x64
instruction sets. The clflush instruction evicts a specific
memory line from all the cache hierarchy and being an un-
privileged instruction, it can be used by any process.

The inclusiveness of the LLC is essential for the Flush+
Reload attack. Whenever a memory line is evicted from
the LLC, the processor also evicts the line from all of the L1
and L2 caches. On processors that do not have an inclusive
LLC, e.g., AMD processors, the attack does not work [40].
See, however, Lipp et al. [24] for a variant of the technique
that does not require an inclusive LLC.

2.3 The Digital Signature Algorithm (DSA)
A variant of the ElGamal signature scheme, DSA was first

proposed by the U.S. National Institute of Standards and
Technology (NIST). DSA uses the multiplicative group of a
finite field. We use the following notation for DSA.
Parameters: Primes p, q such that q divides (p − 1), a gen-
erator g of multiplicative order q in GF (p) and an approved
hash function h (e.g. SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen such that 0 < α < q and the corresponding
public key y is given by y = gα mod p. Calculating the
private key given the public key requires solving the discrete
logarithm problem and for correctly chosen parameters, this
is an intractable problem.
Signing: A given party, Alice, wants to send a signed mes-
sage m to Bob—the message m is not necessarily encrypted.
Using her private-public key pair (αA, yA), Alice performs
the following steps:

1. Select uniformly at random a secret nonce k such that
0 < k < q.

2. Compute r = (gk mod p) mod q and h(m).

3. Compute s = k−1(h(m) + αAr) mod q.

4. Alice sends (m, r, s) to Bob.

Verifying: Bob wants to be sure the message he received
comes from Alice—a valid DSA signature gives strong evi-
dence of authenticity. Bob performs the following steps to
verify the signature:

1. Reject the signature if it does not satisfy 0 < r < q
and 0 < s < q.

2. Compute w = s−1 mod q and h(m).

3. Compute u1 = h(m)w mod q and u2 = rw mod q.

4. Compute v = (gu1yu2
A mod p) mod q.

5. Accept the signature if and only if v = r holds.

2.3.1 DSA in Practice
Putting it mildly, there is no consensus on key sizes, and

furthermore keys seen in the wild and used in ubiquitous
protocols have varying sizes—sometimes dictated by existing
and deployed standards. For example, NIST defines 1024-bit
p with 160-bit q as “legacy-use” and 2048-bit p with 256-bit
q as “acceptable” [8]. We focus on these two parameter sets.

SSH’s Transport Layer Protocol1 lists DSA key type ssh-

dss as “required” and defines r and s as 160-bit integers,
implying 160-bit q. In fact the OpenSSH tool ssh-keygen
defaults to 160-bit q and 1024-bit p for these key types, not
allowing the user to override that option, and using the same
parameters to generate the server’s host key. It is worth
noting that recently as of version 7.0, OpenSSH disables
host server DSA keys by a configurable default option2, but
of course this does not affect already deployed solutions.

As a countermeasure to previous timing attacks, Open-
SSL’s DSA implementation pads nonces by adding either q
or 2q to k—see details in Section 3.

For the DSA signing algorithm, Step 2 is the performance
bottleneck and the exponentiation algorithm used will prove
to be of extreme importance when we later collect our side-
channel information in Section 4.

2.4 Sliding Window Exponentiation
Sliding window exponentiation (SWE) is a widely imple-

mented software method to perform integer exponentiations,
e.g. featured alongside other methods in the OpenSSL code-
base. SWE is fairly popular due to its performance since it
reduces the amount of pre-computation needed and, more-
over, reduces the average amount of multiplications per-
formed during the exponentiation.

An exponent e is represented and processed as a sequence
of windows ei, each of length L(ei) bits. Processing the
exponent in windows reduces the amount of multiplications
at the cost of increased memory utilization since a table of
pre-computed values is used.

A window ei can be a zero window represented as a string
of “0”s or non-zero window represented as a string starting
and ending with “1”s and such window is of width w (de-
termined in OpenSSL by the size in bits of the exponent e).
The length of non-zero windows satisfy 1 ≤ L(ei) ≤ w, thus
the value of any given non-zero window is an odd number
between 1 and 2w − 1.

As mentioned before, the algorithm pre-computes values
and stores them in a table to be used later during multipli-
cation operations. The multipliers computed are bv mod m
for each odd value of v where 1 ≤ v ≤ 2w − 1 and these
values are stored in table index g[i] where i = (v−1)/2. For
example, with the standard 160-bit q size, OpenSSL uses a
window width w = 4, the algorithm pre-computes multipli-
ers b1, b3, b5, ..., b15 mod m and stores them in g[0], g[1], g[2],
..., g[7], respectively.

Using the SWE representation of the exponent e, Algo-
rithm 2 computes the corresponding exponentiation through
a combination of squares and multiplications in a left-to-
right approach. The algorithm scans every window ei from

1https://tools.ietf.org/html/rfc4253
2http://www.openssh.com/legacy.html

1641

Algorithm 2: Sliding window exponentiation.

Input: Window size w, base b, modulo m, N-bit
exponent e represented as n windows ei, each of
length L(ei).

Output: be mod m.
// Pre-computation
g[0]← b mod m;
s← MULT(g[0], g[0]) mod m;

for j ← 1 to 2w−1 − 1 do
g[j]←MULT(g[j − 1], s) mod m;

// Exponentiation
r ← 1;
for i← n to 1 do

for j ← 1 to L(ei) do
r ←MULT(r, r) mod m;

if ei 6= 0 then r ←MULT(r, g[(ei − 1)/2]) mod m;

return r;

the most significant bit (MSB) to the least significant bit
(LSB).

For any window, a square operation is executed for each
bit and additionally for a non-zero window, the algorithm
executes an extra multiplication when it reaches the LSB of
the window.

For novel reasons explained later in Section 3, the side-
channel part of our attack focuses on this algorithm. Specif-
ically, in getting the sequence of squares and multiplies per-
formed during its execution. Then we extract partial infor-
mation from the sequence for later use in the lattice attack.

2.5 Partial key disclosure
Recall that the nonce k and the secret key α satisfy the

following linear congruence.

s = k−1(h(m) + αr) mod q

The constants of the linear combination are specified by
s, h(m), and r, which, typically for a signed message, are all
public. Hence, knowing the nonce k reveals the secret key
α.

Typically, side-channel leakage from SWE only recovers
partial information about the nonce. The adversary, there-
fore, has to use that partial information to recover the key.
The usual technique for recovering the secret key from the
partial information is to express the problem as a hidden
number problem [12] which is solved using a lattice tech-
nique.

2.5.1 The hidden number problem
In the hidden number problem (HNP) the task is to find a

hidden number given some of the MSBs of several modular
linear combinations of the hidden number. More specifically,
the problem is to find a secret number α given a number of
triples (ti, ui, `i) such that for vi = |α · ti − ui|q we have
|vi| ≤ q/2`i+1, where | · |q is the reduction modulo q into the
range (−q/2, . . . , q/2).

Boneh and Venkatesan [12] initially investigate HNP with

a constant `i = `. They show that for ` < log1/2 q+log log q
and random ti, the hidden number α can be recovered given
a number of triples linear in log q.

Howgrave-Graham and Smart [21] extend the work of

Boneh and Venkatesan [12] showing how to construct an
HNP instance from leaked LSBs and MSBs of DSA nonces.
Nguyen and Shparlinski [27] prove that for a good enough
hash function and for a linear number of randomly chosen
nonces, knowing the ` LSBs of a certain number of nonces,
the ` + 1 MSBs or 2 · ` consecutive bits anywhere in the
nonces is enough for recovering the long term key α. They
further demonstrate that a DSA-160 key can be broken if
only the 3 LSBs of a certain number of nonces are known.
Nguyen and Shparlinski [28] extend the results to ECDSA,
and Liu and Nguyen [26] demonstrate that only 2 LSBs are
required for breaking a DSA-160 key. Benger et al. [9] ex-
tend the technique to use a different number of leaked LSBs
for each signature.

2.5.2 Lattice attack
To find the hidden number from the triples we solve a

lattice problem. The construction of the lattice problem
presented here is due to Benger et al. [9], and is based on
the constructions in earlier publications [12, 27].

Given d triples, we construct a d + 1-dimensional lattice
using the rows of the matrix

B =

2`1+1 · q
. . .

2`d+1 · q
2`1+1 · t1 . . . 2`d+1 · td 1

 .

By the definition of vi, there are integers λi such that
vi = λi · q + α · ti − ui. Consequently, for the vectors x =
(λ1, . . . , λd, α), y = (2`1+1 · v1, . . . , 2`d+1 · vd, α) and u =
(2`1+1 · u1, . . . , 2

`d+1 · ud, 0) we have

x ·B − u = y.

The 2-norm of the vector y is about
√
d+ 1 · q whereas

the determinant of the lattice L(B) is 2d+
∑
li · qd. Hence y

is a short vector in the lattice and the vector u is close to
the lattice vector x ·B. We can now solve the Closest Vector
Problem (CVP) with inputs B and u to find x, revealing the
value of the hidden number α.

2.5.3 Related Work
Several authors describe attacks on cryptographic systems

that exploit partial nonce disclosure to recover long-term
private keys.

Brumley and Hakala [14] use an L1 data cache-timing at-
tack to recover the LSBs of ECDSA nonces from the dgst

command line tool in OpenSSL 0.9.8k. They collect 2,600
signatures (8K with noise) and use the Howgrave-Graham
and Smart [21] attack to recover a 160-bit ECDSA private
key. In a similar vein, Acıiçmez et al. [3] use an L1 instruc-
tion cache-timing attack to recover the LSBs of DSA nonces
from the same tool in OpenSSL 0.9.8l, requiring 2,400 sig-
natures (17K with noise) to recover a 160-bit DSA private
key. Both attacks require HyperThreading architectures.

Brumley and Tuveri [15] mount a remote timing attack on
the implementation of ECDSA with binary curves in Open-
SSL 0.9.8o. They show that the timing leaks information on
the MSBs of the nonce used and that after collecting that
information over 8,000 TLS handshakes the private key can
be recovered.

Benger et al. [9] recover the secret key of OpenSSL’s EC-
DSA implementation for the curve secp256k1 using less than

1642

256 signatures. They use the Flush+Reload technique to
find some LSBs of the nonces and extend the lattice tech-
nique of Howgrave-Graham and Smart [21] to use all of the
leaked bits rather than limiting to a fixed number.

Van de Pol et al. [32] exploit the structure of the modulus
in some elliptic curves to use all of the information leaked
in consecutive sequences of bits anywhere in the top half of
the nonces, allowing them to recover the secret key after ob-
serving only a handful of signatures. Allan et al. [4] improve
on these results by using a performance-degradation attack
to amplify the side-channel. The amplification allows them
to observe the sign bit in the wNAF representation used in
OpenSSL 1.0.2a and to recover a 256 bit key after observing
only 6 signatures.

Genkin et al. [19] perform electromagnetic and power anal-
ysis attacks on mobile phones. They show how to construct
HNP triples when the signature uses the low s-value [38].

3. A NEW SOFTWARE DEFECT
Percival [31] demonstrated that the SWE implementation

of modular exponentiation in OpenSSL version 0.9.7g is vul-
nerable to cache-timing attacks, applied to recover RSA pri-
vate keys. Following the issue, the OpenSSL team com-
mitted two code changes relevant to this work. The first3

adds a“constant-time” implementation of modular exponen-
tiation, with a fixed-window implementation and using the
scatter-gather method [13, 41] of masking table access to the
multipliers.

The new implementation is slower than the original SWE
implementation. To avoid using the slower new code when
the exponent is not secret, OpenSSL added a flag (BN_FLG_-
CONSTTIME) to its representation of big integers. When the
exponent should remain secret (e.g. in decryption and sign-
ing) the flag is set (e.g. in the case of DSA nonces, Figure 1,
Line 252) at runtime and the exponentiation code takes the
“constant-time” execution path (Figure 2, Line 413). Oth-
erwise, the original SWE implementation is used.

The execution time of the“constant-time” implementation
still depends on the bit length of the exponent, which in the
case of DSA should be kept secret [12, 15, 27]. The second
commit4 aims to “make sure DSA signing exponentiations
really are constant-time” by ensuring that the bit length of
the exponent is fixed. This safe default behavior can be dis-
abled by applications enabling the DSA_FLAG_NO_EXP_CON-

STTIME flag at runtime within the DSA structure, although
we are not aware of any such cases.

To get a fixed bit length, the DSA implementation adds γq
to the randomly chosen nonce, where γ ∈ {1, 2}, such that
the bit length of the sum is one more than the bit length of
q. More precisely, the implementation creates a copy of the
nonce k (Figure 1, Line 264), adds q to it (Line 274), checks
if the bit length of the sum is one more than that of q (Line
276), otherwise it adds q again to the sum (Line 277). If q
is n bits, then k + q is either n or n+ 1 bits. In the former
case, indeed k + 2q is n + 1 bits. As an aside, we note the
code in question is not constant-time and potentially leaks
the value of γ. Such a leak would create a bias that can be
exploited to mount the Bleichenbacher attack [5, 11, 18].

3https://github.com/openssl/openssl/commit/
46a643763de6d8e39ecf6f76fa79b4d04885aa59
4https://github.com/openssl/openssl/commit/
0ebfcc8f92736c900bae4066040b67f6e5db8edb

While the procedure in this commit ensures that the bit
length of the sum kq is fixed, unfortunately it introduces a
software defect. The function BN_copy is not designed to
propagate flags from the source to the destination. In fact,
OpenSSL exposes a distinct API BN_with_flags for that
functionality—quoting the documentation:

BN_with_flags creates a temporary shallow copy
of b in dest . . . Any flags provided in flags will
be set in dest in addition to any flags already set
in b. For example this might commonly be used
to create a temporary copy of a BIGNUM with
the BN_FLG_CONSTTIME flag set for constant time
operations.

In contrast, with BN_copy the BN_FLG_CONSTTIME flag does
not propagate to kq. Consequently, the sum is not treated
as secret, reverting the change made in the first commit—
when the exponentiation wrapper subsequently gets called
(Figure 1, Line 285), it fails the security-critical branch. Fol-
lowing a debug session in Figure 2, indeed the flag (explicit
value 0x4) is not set, and the execution skips the call to BN_-

mod_exp_mont_consttime and instead continues with the in-
secure SWE code path for DSA exponentiation.

In addition to testing our attack against OpenSSL (1.0.2h),
we reviewed the code of two popular OpenSSL forks: Li-
breSSL5 and BoringSSL6. Using builds with debugging sym-
bols, we confirm both LibreSSL7 and BoringSSL8 share the
same defect. It is worth noting that BoringSSL stripped out
TLS DSA cipher suites in late 20149.

4. EXPLOITING THE DEFECT
In this section we describe how we use and combine the

Flush+Reload technique with a performance degradation
technique [4] to attack the OpenSSL implementation of DSA.

We tested our attack on an Intel Core i5-4570 Haswell
Quad-Core 3.2GHz (22nm) with 16GB of memory running
64-bit Ubuntu 14.04 LTS “Trusty”. Each core has an 8-way
32KB L1 data cache, an 8-way 32KB L1 instruction cache,
an 8-way 256KB L2 unified cache, and all the cores share a
12-way 6MB unified LLC (all with 64B lines). It does not
feature HyperThreading.

We used our own build of OpenSSL 1.0.2h which is the
same default build of OpenSSL but with debugging symbols
on the executable. Debugging symbols facilitate mapping
source code to memory addresses but they are not loaded
during run time, thus the victim’s performance is not af-
fected. Debugging symbols are, typically, not available to
attackers but using reverse engineering techniques [16] is
possible to map source code to memory addresses.

As previously discussed in Section 2.5, for DSA-type sig-
natures, knowing a few bits of sufficiently many signature
nonces allows an attacker to recover the secret key. This
is the goal of our attack: we trace and recover side-channel
information of the SWE algorithm that reveals the sequence

5https://www.libressl.org
6https://boringssl.googlesource.com/boringssl
7https://github.com/libressl-portable/openbsd/blob/
master/src/lib/libssl/src/crypto/dsa/dsa ossl.c
8https://boringssl.googlesource.com/boringssl/+/master/
crypto/dsa/dsa.c
9https://boringssl.googlesource.com/boringssl/+/
ef2116d33c3c1b38005eb59caa2aaa6300a9b450

1643

246 /* Get random k */

247 do

248 if (!BN_rand_range(&k, dsa->q))

249 goto err;

250 while (BN_is_zero(&k)) ;

251 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

252 BN_set_flags(&k, BN_FLG_CONSTTIME);

253 }

...

263 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

264 if (!BN_copy(&kq, &k))

265 goto err;

266

267 /*

268 * We do not want timing information to leak the length of k, so we

269 * compute g^k using an equivalent exponent of fixed length. (This

270 * is a kludge that we need because the BN_mod_exp_mont() does not

271 * let us specify the desired timing behaviour.)

272 */

273

274 if (!BN_add(&kq, &kq, dsa->q))

275 goto err;

276 if (BN_num_bits(&kq) <= BN_num_bits(dsa->q)) {

277 if (!BN_add(&kq, &kq, dsa->q))

278 goto err;

279 }

280

281 K = &kq;

282 } else {

283 K = &k;

284 }

285 DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,

286 dsa->method_mont_p);

Figure 1: Excerpt from OpenSSL’s dsa_sign_setup in
crypto/dsa/dsa_ossl.c. Line 252 sets the BN_FLG_CON-

STTIME flag, yet BN_copy on Line 264 does not prop-
agate it. The subsequent Line 285 exponentiation
call will have pointer K with the flag clear.

+--bn_exp.c--+

|402 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |

|403 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |

|404 { |

B+ |405 int i, j, bits, ret = 0, wstart, wend, window, wvalue; |

|406 int start = 1; |

|407 BIGNUM *d, *r; |

|408 const BIGNUM *aa; |

|409 /* Table of variables obtained from ’ctx’ */ |

|410 BIGNUM *val[TABLE_SIZE]; |

|411 BN_MONT_CTX *mont = NULL; |

|412 |

>|413 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |

|414 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |

|415 } |

|416 |

|417 bn_check_top(a); |

+--+

|0x7ffff779db3e <BN_mod_exp_mont+92> mov 0x14(%rax),%eax |

|0x7ffff779db41 <BN_mod_exp_mont+95> and $0x4,%eax |

|0x7ffff779db44 <BN_mod_exp_mont+98> test %eax,%eax |

>|0x7ffff779db46 <BN_mod_exp_mont+100> je 0x7ffff779db85 <BN_mod_exp_mont+163> |

|0x7ffff779db48 <BN_mod_exp_mont+102> mov -0x1b0(%rbp),%r8 |

+--+

child process 29096 In: BN_mod_exp_mont Line: 413 PC: 0x7ffff779db46

(gdb) break BN_mod_exp_mont

Breakpoint 1 (BN_mod_exp_mont) pending.

(gdb) run dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl \

dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Breakpoint 1, BN_mod_exp_mont (...) at bn_exp.c:405

(gdb) backtrace

#0 BN_mod_exp_mont (...) at bn_exp.c:405

#1 0x00007ffff77eea62 in dsa_sign_setup (...) at dsa_ossl.c:285

#2 0x00007ffff77ee344 in DSA_sign_setup (...) at dsa_sign.c:87

#3 0x00007ffff77ee53d in dsa_do_sign (...) at dsa_ossl.c:159

#4 0x00007ffff77ee30c in DSA_do_sign (...) at dsa_sign.c:75

...

(gdb) stepi

(gdb) info register eax

eax 0x0 0

(gdb) print BN_get_flags(p, BN_FLG_CONSTTIME)

$1 = 0

(gdb) macro expand BN_get_flags(p, BN_FLG_CONSTTIME)

expands to: ((p)->flags&(0x04))

(gdb) print ((p)->flags&(0x04))

$2 = 0

(gdb)

Figure 2: Debugging OpenSSL DSA signing in
crypto/bn/bn_exp.c. The Line 413 branch is not
taken since BN_FLG_CONSTTIME is not set, as seen from
the print command outputs. Hence BN_mod_exp_-

mont_consttime is not called— the control flow con-
tinues with classical SWE code.

of squares and multiplications, from that sequence we re-
cover a few bits that we use for the lattice attack described
in Section 6.

As seen in Figure 2, every time OpenSSL performs a DSA
signature, the exponentiation method BN_mod_exp_mont in
crypto/bn/bn_exp.c gets called. There, the BN_FLG_CONST-
TIME flag is checked but due to the software defect discussed
in Section 3 the condition fails and the routine continues
with the SWE pre-computation and then the actual expo-
nentiation. For the finite field operations, BN_mod_exp_mont
calls BN_mod_mul_montgomery in crypto/bn/bn_mont.c and
from there, the multiply wrapper bn_mul_mont is called,
where, by default for x64 targets, assembly code is executed
to perform low level operations using BIGNUMs for square
and multiplication. OpenSSL uses Montgomery represen-
tation for efficiency. Note that for other platforms and/or
non-default build configurations, the actual code executed
ranges from pure C implementation to entirely different as-
sembly. The attacker can easily adapt to these different
execution paths, but the discussion that follows is geared
towards our target platform.

The threshold set for the load time in the Flush+Reload
technique (cache hit vs. cache miss) is system and software
dependent. From our measurements we set this threshold
accordingly since the load times from LLC and from memory
were clearly defined. Figure 4 shows that loads from LLC
take less that 100 cycles, while loads from main memory
take more than 200 cycles.

As mentioned before, to get better resolution and gran-
ularity during the attack one effective strategy is to tar-
get body loops or routines that are invoked several times.
For that reason we probe, using the Flush+Reload tech-
nique, inner routines used for square and multiply. Since
squares can be computed more efficiently than multiplica-
tion, OpenSSL’s multiply wrapper checks if the two pointer
operands are the same and, if so, calls to assembly squar-
ing code (bn_sqr8x_mont)—otherwise, to assembly multiply
code (bn_mul4x_mont).

At the same time we run a performance degradation at-
tack, flushing actively used memory addresses during these
routines (e.g. assembly labels Lsqr4x_inner and Linner4x,
respectively). We slow down the execution time to a safe,
but not noticeable by the victim, threshold that ensures a
good trace by our spy program. In our experiments, we ob-
serve slow down factors of roughly 16 and 26 for 1024-bit and
2048-bit DSA, respectively due to the degrade technique.

Using this strategy, our spy program collects data from
two channels: one for square latencies and the other for
multiply latencies. We then apply signal processing tech-
niques to this raw channel data. A moving average filter on
the data results in Figure 3 and Figure 4 for 1024-bit and
2048-bit DSA, respectively. There is a significant amount
of information to extract from these signals on the SWE
algorithm state transitions and hence exponent bit values.
Generally, extracted multiplications yield a single bit of in-
formation and the squares yield the position for these bits.
Some short examples follow.

Stepping through Figure 3, the initial low amplitude for
the multiply signal is the multiplication for converting the
base operand to Montgomery representation. The subse-
quent low amplitude for the square signal is the temporary
square value used to build the odd powers for the SWE pre-
computation table (i.e. s in Algorithm 2). The subsequent

1644

long period of low multiply amplitude is the successive mul-
tiplications to build the pre-computation table itself. Then
begins the main loop of SWE. As an upward sloping multiply
amplitude intersects a downward sloping square amplitude,
this marks the transition from a multiplication operation to
a square operation (and vice versa). This naturally occurs
several times as the main exponentiation loop iterates. The
end of this particular signal shows a final transition from
multiply to a single square, indicating that the exponent is
even and the two LSBs are 1 and 0.

Stepping through Figure 4 is similar, yet the end of this
particular signal shows a final transition from square to
multiply—indicating that the exponent is odd, i.e. the LSB
is 1.

Even when employing the degrade technique, it is impor-
tant to observe the vast granularity difference between these
two cryptographic settings. On average, a 2048-bit signal is
roughly ten times the length of a 1024-bit signal, even when
the exponent is only 60% longer (i.e. 256-bit vs. 160-bit).
This generally suggests we should be able to extract more
accurate information from 2048-bit signals than 1024-bit—
i.e., the higher security cryptographic parameters are more
vulnerable to side-channel attack in this case. See [37, 39, 40]
for similar examples of this phenomenon.

Granularity is vital to determining the number of squares
interleaved between multiplications. Since, in our environ-
ment, there appears to be no reliable indicator in the signal
for transitions from one square to the next, we estimate the
number of adjacent squares by the horizontal distance be-
tween multiplications. Since the channel is latency data, we
also have reference clock cycle counter values so another es-
timate is based on the counter differences at these points.
Our experiments showed no significant advantage of one ap-
proach over the other.

Extracting the multiplications from the signal and inter-
leaving them with a number of consecutive squares propor-
tional to the width of the corresponding gap gives us the
square and multiplication sequence, or SM sequence, that
the SWE algorithm passed through. Figure 7 shows an ex-
ample of an SM sequence recorded by the spy program when
OpenSSL signs using 2048-bit DSA.

Our spy program is able to capture most of the SM se-
quence accurately. It can miss or duplicate a few squares
due to drift but is able to capture all of the multiplication
operations. Closer to the LSBs, the information extracted
from the SM sequence is more reliable since the bit position
is lost if any square operation is missed during probing.

5. VICTIMIZING APPLICATIONS
The defect from the previous section is in a shared library.

Potentially any application that links against OpenSSL for
DSA functionality can be affected by this vulnerability. But
to make our attack concrete, we focus on two ubiquitous
protocols and applications: TLS within stunnel and SSH
within OpenSSH.

As we discuss later in Section 6, the trace data alone is
not enough for private key recovery—we also need the digital
signatures themselves and (hashed) messages. To this end,
the goal of this section is to describe the practical tooling
we developed to exploit the defect within these applications,
collecting both trace data and protocol messages.

5.1 Attacking TLS
To feature TLS support, one option for network applica-

tions that do not natively support TLS communication is
to use stunnel10, a popular portable open source software
package that forwards network connections from one port
to another and provides a TLS wrapper. A typical stun-
nel use case is listening on a public port to expose a TLS-
enabled network service, then connecting to a localhost port
where a non-TLS network service is listening—stunnel pro-
vides a TLS layer between the two ports. It links against
the OpenSSL shared library to provide this functionality.
For our experiments, we used stunnel 5.32 compiled from
stock source and linked against OpenSSL 1.0.2h. We gener-
ated a 2048-bit DSA certificate for the stunnel service and
chose the DHE-DSS-AES128-SHA256 TLS 1.2 cipher suite.

We wrote a custom TLS client that connects to this stun-
nel service. It launches our spy to collect the timing signals,
but its main purpose is to carry out the TLS handshake and
collect the digital signatures and protocol messages. Fig-
ure 5 shows the TLS handshake. Relevant to this work, the
initial ClientHello message contains a 32-byte random field,
and similarly the server’s ServerHello message. In practice,
these are usually a 4-byte UNIX timestamp concatenated
with a 28-byte nonce. The Certificate message contains
the DSA certificate we generated for the stunnel service. The
ServerKeyExchange message contains a number of critical
fields for our attack: Diffie-Hellman key exchange parame-
ters, the signature algorithm and hash function identifiers,
and finally the digital signature itself in the signed_params

field. Given our stunnel configuration and certificate, the
2048-bit DSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, both dictated by the
SignatureAndHashAlgorithm field (explicit values 0x6, 0x2).
Our client saves the hash of this string and the DER-encoded
digital signature sent from the server. All subsequent mes-
sages, including ServerHelloDone and any client responses,
are not required by our attack. Our client therefore drops
the connection at this stage, and repeats this process sev-
eral hundred times to build up a set of distinct trace, digital
signature, and digest tuples. See Section 6 for our explicit
attack parameters. Figure 4 is a typical signal extracted by
our spy program in parallel to the handshake between our
client and the victim stunnel service.

5.2 Attacking SSH
OpenSSH11 is a suite of tools whose main goal is to provide

secure communications over an insecure channel using the
SSH network protocol.

OpenSSH is linked to the OpenSSL shared library to per-
form several cryptographic operations, including digital sig-
natures (excluding ed25519 signatures). For our experi-
ments we used the stock OpenSSH 6.6.1p1 binary pack-
age from the Ubuntu repository, and pointed the run-time
shared library loader at OpenSSL 1.0.2h. The DSA key pair
used by the server and targeted by our attack is the default
1024-bit key pair generated during installation of OpenSSH.

Similar to Section 5.1, we wrote a custom SSH client that

10https://www.stunnel.org
11http://www.openssh.com

1645

 100

 200

 300

 0 2000 4000 6000 8000 10000 12000

L
at

en
cy

Time

multiply probe
square probe

Figure 3: Complete filtered trace of a 1024-bit DSA sign operation during an OpenSSH SSH-2 handshake.

 100

 200

 300

 0 20000 40000 60000 80000 100000 120000

L
at

en
cy

Time

multiply probe
square probe

Figure 4: Complete filtered trace of a 2048-bit DSA sign operation during an stunnel TLS 1.2 handshake.

launches our spy program, the spy program collects the tim-
ing signals during the handshake. At the same time it per-
forms an SSH handshake where the protocol messages and
the digital signature are collected for our attack.

Relevant to this work, the SSH protocol defines the Diffie-
Hellman key exchange parameters in the SSH_MSG_KEXINIT

message, along with the signature algorithm and the hash
function identifiers. Additionally a 16-byte random nonce is
sent for host authentication by the client and the server.

The SSH_MSG_KEXDH_REPLY message contains the server’s
public key (used to create and verify the signature), server’s
DH public key f (used to compute the shared secret K in
combination with the client’s DH public key e) and the sig-
nature itself. Figure 6 shows the SSH handshake with the
critical parameters sent in every message relevant for the
attack. To be more precise, the signature is over the SHA-1
hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT + Server.SSH_MSG_KEXINIT +

Server.publicKey + minSize + prefSize + maxSize +

p + g + e + f + K

As the key exchange12 and public key parameters, our
SSH client was configured to use diffie-hellman-group-

-exchange-sha1 and ssh-dss respectively. Note that two
different hashing functions may be used, one hash function
for key derivation following Diffie-Hellman key exchange and
another hash function for the signing algorithm, which for
DSA is the SHA-1 hash function.

Similarly to the TLS case, our client saves the hash of
the concatenated string and the digital signature raw bytes
sent from the server. All subsequent messages, including
SSH_MSG_NEWKEYS and any client responses, are not required
by our attack. Our client therefore drops the connection at
this stage, and repeats this process several hundred times to

12https://tools.ietf.org/html/rfc4419

build up a set of distinct trace, digital signature, and digest
tuples. See Section 6 for our explicit attack parameters.
Figure 3 is a typical signal extracted by our spy program in
parallel to the handshake between our client and the victim
SSH server.

5.3 Observations
These two widely deployed protocols share many similar-

ities in their handshakes regarding e.g. signaling, content of
messages, and security context of messages. However, in the
process of designing and implementing our attacker clients
we observe a subtle difference in the threat model between
the two. In TLS, all values that go into the hash function to
compute the digital signature are public and can be observed
(unencrypted) in various handshake messages. In SSH, most
of the values are public—the exception is the last input to
the hash function: the shared DH key. The consequence
is side-channel attacks against TLS can be passive, listen-
ing to legitimate handshakes not initiated by the attacker
yet collecting side-channel data as this occurs. In SSH, the
attacker must be active and initiate its own handshakes—
without knowing the shared DH key, a passive attacker can-
not compute the corresponding digest needed later for the
lattice stage of the attack. We find this innate protocol
level side-channel property to be an intriguing feature, and
a factor that should be carefully considered during protocol
design.

6. RECOVERING THE PRIVATE KEY
In previous sections we showed how our attack can re-

cover the sequence of square and multiply operations that
the victim performs. We further showed how to get the sig-
nature information matching each sequence for both SSH
and TLS. We now turn to recovering the private key from
the information we collect.

The scheme we use is similar to past works. We first

1646

Client Server

ClientHello

[random,

CipherSuite] ------->

ServerHello

[random,

cipher_suite]

Certificate

ServerKeyExchange

[params,

HashAlgorithm,

SignatureAlgorithm,

signed_params]

<------- ServerHelloDone

ClientKeyExchange

(ChangeCipherSpec)

Finished ------->

(ChangeCipherSpec)

<------- Finished

Application Data <------> Application Data

Figure 5: Our custom client carries out TLS hand-
shakes, collecting certain fields from the ClientHello,
ServerHello, and SeverKeyExchange messages to con-
struct the digest. It collects timing traces in parallel
to the server’s DSA sign operation, said digital sig-
nature being included in a SeverKeyExchange field and
collected by our client.

Client Server

ClientVersion ----->

ServerVersion

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

<----- publicKey_alg]

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_KEXDH_GEX_REQUEST

[minSize, prefSize,

maxSize] ----->

SSH_KEXDH_GEX_GROUP

<----- [p, g]

SSH_KEXDH_GEX_INIT

[e] ----->

SSH_KEXDH_GEX_REPLY

[publicKey, f,

<----- Signature]

SSH_MSG_NEWKEYS

----->

Application Data <----> Application Data

Figure 6: Our custom client carries out SSH hand-
shakes, collecting parameters from all the messages
to construct the digest. It collects timing traces in
parallel to the server’s DSA sign operation, said digi-
tal signature being included in a SSH_KEXDH_GEX_REPLY

field and collected by our client.

Table 1: Empirical results of recovering various
LSBs from the spy program traces and their cor-
responding SM sequences.
` a Pattern Accuracy (%) Accuracy (%)

1024-bit, SSH 2048-bit, TLS
1 1 SSM 99.9 99.9
2 2 SMS 99.9 99.7
2 3 SMSM 98.2 97.2
3 4 SSMSS 99.7 99.7
3 6 SMSMS 99.4 98.2
4 8 SSMSSS 97.8 99.6
4 12 SMSMSS 98.4 97.8
5 16 SSMSSSS 96.7 99.1
5 24 SMSMSSS 95.0 97.6
6 32 SSMSSSSS 85.1 98.8
6 48 SMSMSSSS 90.4 95.0
7 64 SSMSSSSSS 87.5 97.5
7 96 SMSMSSSSS 84.6 95.1
8 128 SSMSSSSSSS 67.7 98.7
8 192 SMSMSSSSSS 75.0 94.8

SMMMMMMMMMMMMMMMMSSSMSSSSSSSMSSSSMSSSSSSSMSSSSSSM

SSSSSSMSSSSSSSSMSSSMSSSSSSSSSSMSSSSSSSSMSSSSSMSSS

SSMSSSSSSSSSMSSSSSMSSSSSSMSSSSSMSSSSSSSMSSSSMSSSS

SSSMSSSSSSMSSSSMSSSSSSSSMSSSSSSSSMSSSMSSSSSSSMSSS

SSMSSSSSMSSSSMSSSSSSMSSSMSSSSSSMSSSSSSMSSMSSSSSSS

SSMSSSSMSSSSSSSSMSSSSSSSSSMSMSSSSSMSSSSSSSSSMSSSS

SSSSSSMSSSSM

Figure 7: Example of an extracted SM sequence,
where S and M are square and multiply, respectively.

use the side-channel information we capture to collect in-
formation on the nonce used in each signature. We use the
information to construct HNP instances and use a lattice
technique to find the private key. Further details on each
step are provided below.

6.1 Extracting the least significant bits
In Section 4 we showed how we collect the SM sequences

of each exponentiation. From every SM sequence, we extract
a few LSBs to be used later in the lattice attack. To that
end, Table 1 contains our empirical accuracy statistics for
various relevant patterns trailing the SM sequences, and fur-
thermore not for the SWE in isolation but rather in the con-
text of OpenSSL DSA executing in real world applications
(TLS via stunnel, SSH via OpenSSH), as described above
in Section 5. All of these patterns correspond to recovering
a = k̄ mod 2` for an exponent k̄. From these figures, we
note two trends. (1) The accuracy decreases as ` increases
due to deviation in the square operation width. Yet weighed
with the exponentially decreasing probability of the longer
patterns, the practical impact diminishes. (2) As expected,
we generally obtain more accurate results with 2048-bit vs.
1024-bit due to granularity. These numbers show that, ex-
ploiting our new software defect and leveraging the tech-
niques in Section 4, we can recover a with extremely high
probability.

1647

6.2 Lattice attack implementation
Recall that to protect against timing attacks OpenSSL

uses an exponent k̄ equivalent to the randomly selected nonce
k. k̄ is calculated by adding the modulus q once or twice to
k to ensure that k̄ is of a fixed length. That is, k̄ = k + γq
such that 2n ≤ k̄ < 2n+ q where n = dlg(q)e and γ ∈ {1, 2}.

The side-channel leaks information on bits of the expo-
nent k̄ rather than directly on the nonce. To create HNP
instances from the leak we need to handle the unknown value
of γ. In previous works, due to ECC parameters the modu-
lus is close to a power of two hence the value of γ is virtually
constant [9]. For DSA, the modulus is not close to a power
of two and the value of γ varies between signatures. The
challenge is, therefore, to construct an HNP instance with-
out the knowledge of γ. We now show how to address this
challenge.

Recall that s = k−1(h(m) + αr) mod q. Equivalently,
k = s−1(h(m) + αr) mod q. The side-channel information
recovers the ` LSBs of k̄. We, therefore, have k̄ = b2` + a
where a = k̄ mod 2` is known, and

2n−` ≤ b < 2n−` +
⌈
q/2`

⌉
. (1)

Following previous works we use b·cq to denote the reduc-
tion modulo q to the range [0, q) and | · |q for the reduction
modulo q to the range (−q/2, q/2). Within these expres-
sions division operations are carried over the reals whereas
all other operations are carried over GF (q).

We now look at
⌊
b− 2n−`

⌋
q
.

⌊
b− 2n−`

⌋
q

=
⌊
(k̄ − a) · 2−` − 2n−`

⌋
q

=
⌊
k̄ · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` + γ · q · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
(s−1 · (h(m) + α · r) · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
α · s−1 · r · 2−` − (2n + a− s−1 · h(m)) · 2−`⌋

q

Hence, we can set:

t =
⌊
s−1 · r · 2−`

⌋
q

u =
⌊
(2n + a− s−1 · h(m)) · 2−` +

⌈ q

2`+1

⌉⌋
q

v = |α · t− u|q
and by (1) we have |v| ≤

⌈
q/2`+1

⌉
.

Out of the HNP instances we generate, we select at ran-
dom 49 for the SSH attack, 130 for the TLS attack and
construct a lattice as described in Section 2.5.2. We solve
the CVP problem with a Sage script, performing lattice re-
duction using BKZ [34], and enumerate the lattice points
using Babai’s Nearest Plane (NP) algorithm [7]. We ap-
ply two different techniques to extend NP to a larger search
space. First, we take multiple rounding values to explore
210 different solutions in the tree paths [23, Sec. 4]. Second,
we use a randomization technique [26, Sec. 3.5] and shuffle
the rows of B between lattice reductions. We repeat with
a different random selection of instances until we find the
private key.

Table 2: Empirical lattice attack results over a thou-
sand trials. Set size and errors are mean values.
Iterations and CPU time are median values.

Victim OpenSSH (SSH) stunnel (TLS)
Key size 1024/160-bit 2048/256-bit
Handshakes 260 580
Lattice size 50 131
Set size 70.8 158.1
Errors 2.1 1.7
Iterations 13 22
CPU minutes 5.9 38.8
Success rate (%) 100.0 100.0

6.3 Results
We implemented the attack and evaluated it against the

two protocols, SSH with 1024/160-bit DSA and TLS with
2048/256-bit DSA. Table 2 contains the results. For both
protocols we only utilize traces with ` ≥ 3. With this value
we experimentally found that we require 49 such signatures
for SSH and 130 for TLS in order to achieve a reasonable
probability of solving the resulting CVP.

Because the nonces are chosen uniformly at random, only
about one in every four signatures has an ` that we can
utilize. To gather enough signatures and to compensate for
possible trace errors, we collect 580 SM sequences from TLS
handshakes and 260 from SSH.

On average, these collected sequences yield 70.8 (SSH)
and 158.1 (TLS) traces with ` ≥ 3. Comparing the traces to
the ground truth, we know that on average less than 3 have
trace errors. However, because an adversary cannot check
against the ground truth, we leave these erroneous traces
in the set and use them in the attack. We note that due
to the smaller key size in SSH, trace errors are much more
prevalent there.

We construct a lattice from a random selection of the col-
lected traces and attempt to solve the resulting CVP. Due
to the presence of the error traces there is a non-negligible
probability that our selected set contains an error. Further-
more, even if all the chosen traces are correct, the algorithm
may fail to find the target solution due to the heuristic na-
ture of lattice techniques. In case of failure, we repeat the
process with a new random selection from the same set. We
need to execute a median value of 13 iterations for SSH and
22 for TLS until we find the target solution.

As seen from Table 2, repeating our experiment over a
thousand trials on a cluster with hundreds of nodes, mixed
between Intel X5660 and AMD Opteron 2435 cores, we find
the private key in all cases requiring a median 5.9 CPU min-
utes for the SSH key and 38.8 CPU minutes for the TLS key.
Although we executed each trial on a single core, in reality
the iterations are independent of each other—the lattice at-
tack is embarrassingly parallel.

7. CONCLUSION
In this work we disclose a programming error in Open-

SSL that results in a security weakness. We show that as
a result of the defect, the DSA implementation in Open-
SSL is vulnerable to cache-timing attacks, and exploit the
vulnerability to mount end-to-end attacks against SSH (via
OpenSSH) and TLS (via stunnel).

It is all too easy to dismiss the bug as an innocent pro-

1648

gramming error. However, we believe that the core issue is
a design problem. When designing the “constant-time” fix,
the developers elected to use an insecure default behavior.
From an engineering perspective the decision is justified—
it is much easier to identify the handful of locations where
we know that the exponent should be kept secret than to
analyze the entire library identifying exponents that can be
leaked. However, from a security perspective, this design
decision breaches the principle of fail-safe defaults, which
Saltzer and Schroeder [33] justify by saying: a design or
implementation mistake in a mechanism that explicitly ex-
cludes access tends to fail by allowing access, a failure which
may go unnoticed in normal use.

It is hard not to appreciate the extraordinary prescience of
Saltzer and Schroeder’s justification. Had OpenSSL elected
to use a better design, that defaults to the constant-time be-
havior, a similar bug could have resulted in a small perfor-
mance loss for non-sensitive exponentiations, but the omis-
sion to preserve the flag in question would have been unlikely
to jeopardize the security of the system. A more secure de-
sign would also improve the security of third-party products
in the case that developers may not be aware of the intrica-
cies of the constant-time flags.

The simplest software-based solution to mitigate our at-
tack is to fix the software defect. During responsible disclo-
sure, OpenSSL, LibreSSL, and BoringSSL merged patches
for CVE-2016-217813, assigned as a result of this work.

Broader, the clflush instruction does not require elevated
privileges to execute, hence we suggest access control mech-
anisms. We recommend that cache flush instructions be
privileged-only execution, or at least restricted to memory
pages to which the process has write access and to memory
pages explicitly allowed by the kernel. Partially or fully dis-
abling caching during sensitive code execution can prevent
cache-timing attacks at the cost of performance [3]. Pre-
venting page sharing between processes is a partial solution
at the cost of increased memory requirements and avoiding
sharing of sensitive code is possible by changing the program
loader.

We close with some practical advice regarding this vul-
nerability. OpenSSH supports building without OpenSSL
as a dependency. We recommend that OpenSSH package
maintainers switch to this option. For OpenSSH adminis-
trators and users, we recommend migrating to ssh-ed25519

key types, the implementation of which has many desirable
side-channel properties. Furthermore, ensure that ssh-dss

is absent from the HostKeyAlgorithms configuration field,
and any such HostKey entries removed. On the TLS side,
we recommend disabling cipher suites that have DSA func-
tionality as a pre-requisite.

Acknowledgments
The first author is supported by the Erasmus Mundus Nord-
SecMob Master’s Programme and the European Commis-
sion.

The first and second authors are supported in part by
TEKES grant 3772/31/2014 Cyber Trust.

This article is based in part upon work from COST Ac-
tion IC1403 CRYPTACUS, supported by COST (European
Cooperation in Science and Technology).

13https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2016-2178

We thank Tampere Center for Scientific Computing (TCSC)
for generously granting us access to computing cluster re-
sources.

References
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre

Seifert. Predicting secret keys via branch prediction.
In 2007 CT-RSA, pages 225–242, 2007.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre
Seifert. On the power of simple branch prediction
analysis. In 2nd AsiaCCS, Singapore, 2007.

[3] Onur Acıiçmez, Billy Bob Brumley, and Philipp
Grabher. New results on instruction cache attacks. In
CHES, Santa Barbara, CA, US, 2010.

[4] Thomas Allan, Billy Bob Brumley, Katrina Falkner,
Joop van de Pol, and Yuval Yarom. Amplifying side
channels through performance degradation. IACR
Cryptology ePrint Archive, Report 2015/1141, Nov
2015.

[5] Diego F. Aranha, Pierre-Alain Fouque, Benôıt Gérard,
Jean-Gabriel Kammerer, Mehdi Tibouchi, and
Jean-Christophe Zapalowicz. GLV/GLS
decomposition, power analysis, and attacks on ECDSA
signatures with single-bit nonce bias. In ASIACRYPT,
pages 262–281, Kaohsiung, TW, Dec 2014.

[6] Andrea Arcangeli, Izik Eidus, and Chris Wright.
Increasing memory density by using KSM. In Linux
symposium, pages 19–28, 2009.

[7] László Babai. On Lovász’ lattice reduction and the
nearest lattice point problem. Combinatorica, 6(1):
1–13, March 1986.

[8] Elaine Barker and Allen Roginsky. Transitions:
Recommendation for transitioning the use of
cryptographic algorithms and key lengths. NIST
Special Publication 800-131A Revision 1, Nov 2015.
URL http://dx.doi.org/10.6028/NIST.SP.800-131Ar1.

[9] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. “Ooh aah. . . , just a little bit”: A small
amount of side channel can go a long way. In CHES,
pages 75–92, Busan, KR, Sep 2014.

[10] Daniel J Bernstein. Cache-timing attacks on AES,
2005. Preprint available at
http://cr.yp.to/papers.html#cachetiming.

[11] Daniel Bleichenbacher. On the generation of one-time
keys in DL signature schemes. Presentation at IEEE
P1363 Working Group meeting, Nov 2000.

[12] Dan Boneh and Ramarathnam Venkatesan. Hardness
of computing the most significant bits of secret keys in
Diffie-Hellman and related schemes. In CRYPTO’96,
pages 129–142, Santa Barbara, CA, US, Aug 1996.

[13] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert.
Mitigating cache/timing based side-channels in AES
and RSA software implementations. RSA Conference
2006 session DEV-203, Feb 2006.

1649

[14] Billy Bob Brumley and Risto M. Hakala.
Cache-timing template attacks. In 15th ASIACRYPT,
pages 667–684, Tokyo, JP, Dec 2009.

[15] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In 16th ESORICS, Leuven,
BE, 2011.

[16] Teodoro Cipresso and Mark Stamp. Software reverse
engineering. In Handbook of Information and
Communication Security, pages 659–696. 2010.

[17] Intel Corporation. Intel 64 and ia-32 architectures
optimization reference manual, Jan 2016.

[18] Elke De Mulder, Michael Hutter, Mark E. Marson,
and Peter Pearson. Using Bleichenbacher’s solution to
the hidden number problem to attack nonce leaks in
384-bit ECDSA. In CHES, pages 435–452, Santa
Barabara, CA, US, Aug 2013.

[19] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran
Tromer, and Yuval Yarom. ECDSA key extraction
from mobile devices via nonintrusive physical side
channels. IACR Cryptology ePrint Archive, Report
2016/230, Mar 2016.

[20] D. Gullasch, E. Bangerter, and S. Krenn. Cache
games – bringing access-based cache attacks on AES
to practice. In S&P, pages 490–505, May 2011.

[21] Nick Howgrave-Graham and Nigel P. Smart. Lattice
attacks on digital signature schemes. DCC, 23(3):
283–290, Aug 2001.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A shared cache attack that works across cores
and defies VM sandboxing – and its application to
AES. In S&P, San Jose, CA, US, May 2015.

[23] Richard Lindner and Chris Peikert. Better key sizes
(and attacks) for LWE-based encryption. In 2011
CT-RSA, pages 319–339, 2011.

[24] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and
Stefan Mangard. ARMageddon: Last-level cache
attacks on mobile devices. arXiv preprint
arXiv:1511.04897, 2015.

[25] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel attacks
are practical. In S&P, pages 605–622, May 2015.

[26] Mingjie Liu and Phong Q Nguyen. Solving BDD by
enumeration: An update. In Topics in
Cryptology–CT-RSA 2013, pages 293–309. 2013.

[27] Phong Q. Nguyen and Igor E. Shparlinski. The
insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology, 15(2):151–176,
Jun 2002.

[28] Phong Q. Nguyen and Igor E. Shparlinski. The
insecurity of the elliptic curve digital signature
algorithm with partially known nonces. DCC, 30(2):
201–217, Sep 2003.

[29] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: The case of AES.
In 2006 CT-RSA, 2006.

[30] Dan Page. Theoretical use of cache memory as a
cryptanalytic side-channel. IACR Cryptology ePrint
Archive, 2002:169, 2002.

[31] Colin Percival. Cache missing for fun and profit. In
BSDCan 2005, Ottawa, CA, 2005.

[32] Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
Just a little bit more. In 2015 CT-RSA, pages 3–21,
San Francisco, CA, USA, Apr 2015.

[33] Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems. Proc.
IEEE, 63(9):1278–1308, Sep 1975.

[34] C. P. Schnorr and M. Euchner. Lattic basis reduction:
Improved practical algorithms and solving subset sum
problems. Math. Prog., 66(1–3):181–199, Aug 1994.

[35] Augustus K. Uht, Vijay Sindagi, and Kelley Hall.
Disjoint eager execution: An optimal form of
speculative execution. MICRO 28, pages 313–325,
1995.

[36] Carl A. Waldspurger. Memory resource management
in VMware ESX server. SIGOPS Oper. Syst. Rev.,
pages 181–194, Dec 2002.

[37] Colin D. Walter. Longer keys may facilitate side
channel attacks. In SAC, pages 42–57, Waterloo, ON,
Canda, Aug 2004.

[38] Pieter Wuille. Dealling with malleability.
https://github.com/bitcoin/bips/blob/master/
bip-0062.mediawiki, March 2014.

[39] Yuval Yarom and Naomi Benger. Recovering
OpenSSL ECDSA nonces using the Flush+Reload
cache side-channel attack. IACR Cryptology ePrint
Archive, Report 2014/140, Feb 2014.

[40] Yuval Yarom and Katrina Falkner. Flush+Reload:
a high resolution, low noise, L3 cache side-channel
attack. In 23rd USENIX Security, pages 719–732, San
Diego, CA, US, 2014.

[41] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A timing attack on OpenSSL constant
time RSA. In CHES, 2016.

1650

PUBLICATION
II

Constant-Time Callees with Variable-Time Callers
C. Pereida García and B. B. Brumley

26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. Ed. by E. Kirda and T. Ristenpart. 2017, 83–98

Publication reprinted with the permission of the copyright holders

This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Constant-Time Callees with Variable-Time Callers
Cesar Pereida García and Billy Bob Brumley, Tampere University of Technology

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia

Constant-Time Callees with Variable-Time Callers

Cesar Pereida Garcı́a Billy Bob Brumley
Tampere University of Technology

{cesar.pereidagarcia,billy.brumley}@tut.fi

Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256
constant-time scalar multiplication and furthermore, we
extend our attack to TLS and SSH protocols, both linked
to OpenSSL for P-256 ECDSA signing.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak

critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-
tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [6], and attacks continue on the same code path to
this date [2, 4, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations

USENIX Association 26th USENIX Security Symposium 83

from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both
the required amount of signatures and side-channel data
compared to previous work [8], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [2] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

• We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

• We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.3)

• We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

• We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.4)

• We perform a key-recovery cache-timing attack on
the TLS and SSH protocols utilizing OpenSSL for
ECDSA functionality. (Section 5)

2 Background

2.1 Elliptic Curve Cryptography
ECC. Developed in the mid 1980’s, elliptic curves were
introduced to cryptography by Miller [20] and Koblitz

[17] independently. Elliptic Curve Cryptography (ECC)
became popular mainly for two important reasons: no
sub-exponential time algorithm to solve the elliptic curve
discrete logarithm problem is known for well-chosen pa-
rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y ∈ GF(p) solutions to the equation

E : y2 = x3 +ax+b

along with an identity element form an abelian group.
Due to their performance characteristics, the parameters
of interest are the NIST standard curves that set a = −3
and p a Mersenne-like prime.
ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).
Parameters: A generator G∈E of an elliptic curve group
of prime order n and an approved hash function h (e.g.
SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen from {1 . .n−1} and the corresponding
public key D = [α]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.
Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(αA,DA), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k < n.

2. Compute r = ([k]G)x mod n.
3. Compute s = k−1(h(m)+αAr) mod n.
4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 < s < n.

2. Compute w = s−1 mod n and h(m).
3. Compute u1 = h(m)w mod n and u2 = rw mod n.
4. Compute (x,y) = [u1]G+[u2]DA.
5. Accept the signature if and only if x = r mod n

holds.

84 26th USENIX Security Symposium USENIX Association

2.2 Side-Channel Attacks

Thanks to the adoption of ECC and the increasing use of
digital signatures, ECDSA has become a popular algo-
rithm choice for digital signatures. ECDSA’s popularity
makes it a good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces ki from the side-channel, leading to a bound
on the value αti − ui that is shorter than the interval
{1 . .n−1} for some known integers ti and ui. This leads
to a version of the Hidden Number Problem (HNP) [5]:
recover α given many (ti,ui) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [6] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [7] attack ECDSA with binary
curves in OpenSSL 0.9.8o. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [4] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [2] improve on previous results by using

a performance-degradation attack to amplify the side-
channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.5,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 The FLUSH+RELOAD Attack
The FLUSH+RELOAD technique is a cache-based side-
channel attack technique targeting the Last-Level Cache
(LLC) and used during our attack. FLUSH+RELOAD is
a high resolution, high accuracy and high signal-to-noise
ratio technique that positively identifies accesses to spe-
cific memory lines. It relies on cache sharing between
processes, typically achieved through the use of shared
libraries or page de-duplication.

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin
flush(addr)
Wait for the victim.
time← current time()

tmp← read(addr)
readTime← current time() - time
return readTime < threshold

Figure 1: FLUSH+RELOAD Attack

A round of attack, depicted in Figure 1, consists of
three phases: (1) The attacker evicts the target memory
line from the cache. (2) The attacker waits some time
so the victim has an opportunity to access the memory
line. (3) The attacker measures the time it takes to reload
the memory line. The latency measured in the last step
tells whether or not the memory line was accessed by the
victim during the second step of the attack, i.e. identifies
cache-hits and cache-misses.

The FLUSH+RELOAD attack technique tries to
achieve the best resolution possible while keeping the

USENIX Association 26th USENIX Security Symposium 85

error rate low. Typically, an attacker encounters multi-
ple challenges due to several processor optimizations and
different architectures. See [2, 24, 28] for discussions of
these challenges.

2.4 Binary Extended Euclidean Algorithm
The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 3, 8].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Input: Integers k and p such that gcd(k, p) = 1.
Output: k−1 mod p.
v← p, u← k, X ← 1, Y ← 0
while u 6= 0 do

while even(u) do
u← u/2 /* u loop */

if odd(X) then X ← X + p
X ← X/2

while even(v) do
v← v/2 /* v loop */

if odd(Y) then Y ← Y + p
Y ← Y/2

if u≥ v then
u← u− v
X ← X−Y

else
v← v−u
Y ← Y −X

return Y mod p

Figure 2: Binary Extended Euclidean Algorithm.

Figure 2 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Aciiçmez et al.
[1], Aravamuthan and Thumparthy [3] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [3] attacked BEEA using Power Anal-
ysis attacks, whereas Aciiçmez et al. [1] attacked BEEA

through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce k, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number and order of subtractions u := u− v.
4. Number and order of subtractions v := v−u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [3] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Cabrera Aldaya et al. [8]
demonstrated a Simple Power Analysis (SPA) attack
against a custom implementation of the BEEA. The au-
thors’ main contribution consists of demonstrating it is
possible to partially determine the order of subtractions
on branches u and v only by knowing the number of
right-shift operations performed in every while-loop it-
eration. Under a perfect SPA trace, the authors use an
algebraic algorithm to determine a short execution se-
quence of u and v subtraction branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on
the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.5 OpenSSL History
OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-

86 26th USENIX Security Symposium USENIX Association

brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.
0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN FLG CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN mod exp mont consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].
0.9.8. The work by Aciiçmez et al. [1] targeting BEEA
prompted the introduction of the BN mod inverse no -

branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN div updated to respect the BN FLG CON-

STTIME flag. Tracking callers to BN mod inverse, the
commit1 enables the BN FLG CONSTTIME across several
cryptosystems where the modular inversion inputs were
deemed security critical, notably the published attack tar-
geting RSA.
1.0.1. Based on the work by Käsper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [6] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit2 included sev-
eral new EC METHOD implementations, of which arguably
EC GFp nistp256 method has the most real world ap-
plication to date. This new scalar multiplication imple-

1https://github.com/openssl/openssl/commit/

bd31fb21454609b125ade1ad569ebcc2a2b9b73c
2https://github.com/openssl/openssl/commit/

3e00b4c9db42818c621f609e70569c7d9ae85717

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN mod exp mont consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

OpenSSL version 0.9.6 0.9.7 0.9.8 1.0.0 1.0.1 1.0.2
BN mod inverse X X X X X X
BN FLG CONSTTIME — X X X X X
BN mod inverse no branch — — X X X X
ec nistp 64 gcc 128 — — — — X X
BN mod exp mont consttime — — — — — X
EC GFp nistz256 method — — — — — X

mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec nistp 64 gcc 128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.
1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC GFp nistz256 -

method. Here we focus on a cherry picked commit3

that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Möller
observes4: “It seems that the BN MONT CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN mod exp mont const-

time and Fermat’s Little Theorem (FLT).

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction

3https://github.com/openssl/openssl/commit/

8aed2a7548362e88e84a7feb795a3a97e8395008
4https://rt.openssl.org/Ticket/Display.html?id=

3149&user=guest&pass=guest

USENIX Association 26th USENIX Security Symposium 87

cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec -

nistp 64 gcc 128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN mod in-

verse no branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN mod -

inverse function was modified to first check the BN -

FLG CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN mod inverse no -

branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN mod inverse within the li-
brary, and enable the BN FLG CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN FLG EXP -

CONSTTIME flag that was replaced with BN FLG CONST-

TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec nistp 64 gcc 128 provides constant-
time scalar multiplication to compute the r component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN mod inverse function, not taking the BN -

mod inverse no branch code path. In the end, the root
cause is that the ECDSA signing implementation does
not set the BN FLG CONSTTIME flag for nonces. Scalar
multiplication with ec nistp 64 gcc 128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN mod inverse requires said
flag to take the new secure code path.

Figure 3 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa sign setup

contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing r, and so on. When control
flow reaches callee BN mod inverse, inputs a and n are
the nonce and generator order, respectively. Stepping by
instruction, it shows that the call to BN mod inverse -

no branch never takes place, since the BN FLG CONST-

TIME flag is not set for either of these operands. Failing
this security critical branch, the control flow continues to

+--bn_gcd.c--+

|226 BIGNUM *BN_mod_inverse(BIGNUM *in, |

|227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |

|228 { |

B+ |229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |

|230 BIGNUM *ret = NULL; |

|231 int sign; |

|232 |

|233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |

>|234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |

|235 return BN_mod_inverse_no_branch(in, a, n, ctx); |

|236 } |

+--+

|0x7ffff77da1c7 <BN_mod_inverse+56> mov -0x90(%rbp),%rax |

|0x7ffff77da1ce <BN_mod_inverse+63> mov 0x14(%rax),%eax |

|0x7ffff77da1d1 <BN_mod_inverse+66> and $0x4,%eax |

|0x7ffff77da1d4 <BN_mod_inverse+69> test %eax,%eax |

|0x7ffff77da1d6 <BN_mod_inverse+71> jne 0x7ffff77da1e9 <BN_mod_inverse+90> |

|0x7ffff77da1d8 <BN_mod_inverse+73> mov -0x98(%rbp),%rax |

|0x7ffff77da1df <BN_mod_inverse+80> mov 0x14(%rax),%eax |

|0x7ffff77da1e2 <BN_mod_inverse+83> and $0x4,%eax |

|0x7ffff77da1e5 <BN_mod_inverse+86> test %eax,%eax |

>|0x7ffff77da1e7 <BN_mod_inverse+88> je 0x7ffff77da212 <BN_mod_inverse+131> |

+--+

native process 3399 In: BN_mod_inverse L234 PC: 0x7ffff77da1e7

(gdb) run dgst -sha256 -sign prime256v1.pem -out lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256v1.pem ...

Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182

#2 0x00007ffff782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105

#3 0x00007ffff782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007ffff782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74

#5 0x00007ffff782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007ffff782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...

(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)

expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1 = 0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 = 0

Figure 3: Modular inversion within OpenSSL 1.0.1u
(built with ec nistp 64 gcc 128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN mod -

inverse no branch never takes place, since the caller
ecdsa sign setup fails to set the BN FLG CONSTTIME

flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

the stock, classical BEEA implementation.

3.1 Forks
OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.
LibreSSL. An 04 Nov 2016 commit5 cherry picked the
EC GFp nistz256 method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN mod exp mont consttime ECDSA nonce in-
version. That is, as of this writing (fixed during dis-
closure) the current LibreSSL master branch can fea-
ture constant-time P-256 scalar multiplication with ei-
ther EC GFp nistz256 method or EC GFp nistp256 -

method callees depending on compile-time options and
minor code changes, but inverts all ECDSA nonces with

5https://github.com/libressl-portable/openbsd/

commit/85b48e7c232e1dd18292a78a266c95dd317e23d3

88 26th USENIX Security Symposium USENIX Association

the BN mod inverse callee that fails the same security
critical branch as OpenSSL, due to the caller ecdsa -

sign setup not setting the BN FLG CONSTTIME flag for
ECDSA signing nonces. We confirmed the vulnerability
using a LibreSSL build with debug symbols, checking
the inversion code path with a debugger.
BoringSSL. An 03 Nov 2015 commit6 picked up
the EC GFp nistz256 method implementation for Bor-
ingSSL. That commit also included the BN mod exp -

mont consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree7 is slightly
older on the same day. Said tree features constant-
time P-256 scalar multiplication with callee EC GFp -

nistp256 method, but inverts ECDSA signing nonces
with callee BN mod inverse that fails the same security
critical branch, again due to the BN FLG CONSTTIME flag
not being set by the caller—i.e. it follows essentially the
same code path as OpenSSL. We verified the vulnerabil-
ity affects said tree using a debugger.

4 Exploiting the Vulnerability

Exploiting the vulnerability and performing our cache-
timing attack is a long and complex process, therefore
the analysis details are decomposed in several subsec-
tions. Section 4.1 discusses the hardware and software
setup used during our experimentation phase. Section 4.2
analyzes and describes the sources of leakage in Open-
SSL and the exploitation techniques. Section 4.3 and
Section 4.4 describe in detail our improvements on the
performance degradation technique and key recovery, re-
spectively. Figure 4 gives an overview of the attack sce-
nario followed during our experiments.

4.1 Attack Setup

Our attack setup consists of an Intel Core i5-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.

We built OpenSSL 1.0.1u with debugging symbols
on the executable. Debugging symbols facilitate map-
ping source code to memory addresses, serving a dou-
ble purpose to us: (1) Improving our degrading attack
(see Section 4.3); (2) Probing the sequence of opera-
tions accurately. Note that debugging symbols are not

6https://boringssl.googlesource.com/boringssl/+/

18954938684e269ccd59152027d2244040e2b819%5E%21/
7https://boringssl.googlesource.com/boringssl/+/

27a0d086f7bbf7076270dbeee5e65552eb2eab3a

Figure 4: Simplified attack scenario depicting a victim,
a spy and two performance degradation processes each
running on a different core. OpenSSL is a shared library
and all the processes have a shared LLC.

loaded during run time, thus not affecting victim’s per-
formance. Attackers can map source code to memory
addresses by using reverse engineering techniques [9] if
debugging symbols are not available. We set enable-
ec nistp 64 gcc 128 and shared as configuration op-
tions at build time to ensure faster execution, constant-
time scalar multiplication and compile OpenSSL as a
shared object.

4.2 Source of Leakage

As seen in the Figure 3 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa sign -

setup to prepare the required parameters and compute
most of the actual signature. The random nonce k is cre-
ated and to avoid possible timing attacks [7] an equiva-
lent fixed bit-length nonce is computed. The length of
the equivalent nonce k̂ is fixed to one bit more than that
of the group’s prime order n, thus the equivalent nonce
satisfies k̂ = k+ γ ·n where γ ∈ {1,2}.

Additionally, ecdsa sign setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by the modular
inverse k−1, needed for the s component of the signa-
ture. To compute the inversion, it calls BN mod inverse,
where the BN FLG CONSTTIME flag is checked but due
to the vulnerability discussed in Section 3 the condition
fails, therefore proceeding to compute k−1 using the clas-
sical BEEA.

Note that before executing the BEEA, the equivalent
nonce k̂ is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa sign setup.

The goal of our attack is to accurately trace and re-

USENIX Association 26th USENIX Security Symposium 89

cover side-channel information leaked from the BEEA
execution, allowing us to construct the sequence of right-
shift and subtraction operations. To that end, we identify
the routines used in the BN mod inverse method leak-
ing side-channel information.

The BN mod inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN uadd, which is a wrapper
for bn add words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN rshift1 routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test u and v bit values at this off-
set. This is an optimization allowing u and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN usub routine, which is a pure C implementation.

Similar in spirit to previous works [4, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.4, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code routines
BN rshift1 and BN usub. These two routines provide
the best resolution and combination of probes, allowing
us to identify the critical input-dependent branches.

The modular inversion is an extremely fast operation
and only a small fraction of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.3.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.

 100

 200

 10 20 30 40 50

L
at

en
cy

Time

L probe
S probe

 100

 200

 10 20 30 40 50 60

L
at

en
cy

Time

L probe
S probe

Figure 5: Raw traces for the beginning of two BEEA ex-
ecutions. The L probe tracks right-shift latencies and the
S probe tracks subtraction. Latency is in CPU clock cy-
cles. For visualization, focus on the amplitude valleys,
i.e. low latency. Top: LS sequence starting SLLLL cor-
responds to j = 5, `i = 4, ai = 1. Bottom: LS sequence
starting LSLLSLS corresponds to j = 7, `i = 5, ai = 10.
See Section 4.4 for notation.

As Figure 4 illustrates, our attack scenario exploits
three CPU cores by running a malicious process in every
core and the victim process in the fourth core. The at-
tack consists of a spy process probing the right-shift and
subtraction operations running in parallel with the vic-
tim application. Additionally, two degrading processes
slow down victim’s execution, allowing us to capture the
LS sequence almost perfectly. Unfortunately there is not
always a reliable indicator in the signal for transitions
from one right-shift operation to the next, therefore we
estimate the number of adjacent right-shift operations by
taking into account the latency and the horizontal dis-
tance between subtractions. Figure 5 contains sample
raw traces captured in our test environment.

Our spy process accurately captures all the subtrac-
tion operations but duplicates some right-shift opera-
tions, therefore we focus on the first part of the sequence
to recover a variable amount of bits of information from
every trace. (See Section 4.4.)

4.3 Improving Performance Degradation
Performance degradation attacks amplify side-channel
signals, improving the quality and the amount of in-
formation leaked. Our performance degradation attack
improves upon the work of Allan et al. [2]. In their
work, the authors first need to identify “hot” memory
addresses, i.e. memory addresses frequently accessed.
They suggest two approaches to find suitable memory
lines to degrade. The first approach is to read and under-

90 26th USENIX Security Symposium USENIX Association

stand the victim code in order to identify frequently ac-
cessed code sections such as tight loops. This approach
requires understanding the code, a task that might not al-
ways be possible, takes time and it is prone to errors [26],
therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to the gcov output. In addition to the caveats
mentioned previously, we note that the gcov profiling
tool adds instrumentation to the code. The instrumenta-
tion skews the performance of the program, therefore this
approach is suboptimal since it requires building the tar-
get code twice, one with instrumentation to identify code
lines and other only with debugging symbols to measure
the real performance.

Once the “hot” memory addresses are identified, the
next step is to evict them from the cache in a tight loop,
thus increasing the execution time of the process access-
ing those addresses. This technique allows to stealthily
degrade a process without alerting the victim, since the
increased execution time is not noticeable by a typical
user. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]).

We note that it can be difficult and time consuming
to identify the “hot” memory addresses to degrade that
result in the best information leak. To that end, we fol-
low a similar but faster and more quantitative approach,
potentially more accurate since it leverages additional
metrics. Similar to [2] we test the efficiency of the at-
tack for several candidate memory lines. We compare
cache-misses between a regular modular inversion and
a degraded modular inversion execution, resulting in a
list of the “hottest” memory lines, building the code only
once with debugging symbols and using hardware regis-
ter counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s modular inverse operation, counting
the number of cache-misses during a regular execution of
the operation. Next, we degrade—by flushing in a loop
from the cache—one memory line at a time from the
caller BN mod inverse and callees BN rshift1, BN -

rshift, BN uadd, bn add words, BN usub.

The perf command output gives us the real count
of cache-misses during the regular execution of BN -

mod inverse, then under degradation of each candidate
memory line. This effectively identifies the “hottest” ad-
dresses during a modular inverse operation with respect
to both the cache and the actual malicious processes we
will use during the attack.

Table 2 summarizes the results over 1,000 iterations of
a regular modular inversion execution versus the degra-
dation of different candidate memory lines identified us-
ing our technique. The table shows cache-miss rates
ranging from ~35% (BN rshift and BN usub) to ~172%
(BN rshift1) for one degrading address. Degrading the
overall 6 “hottest” addresses accessed by the BN mod -

inverse function results in an impressive cache-miss
rate of ~1,146%.

Interestingly, the last column of Table 2 reveals the
real impact of cache-misses in the execution time of
the modular inversion operation. Despite the impres-
sive cache-miss rates, the clock cycle slow down is more
modest with a maximum slow down of ~18. These re-
sults suggest that in order to get a quality trace, the goal is
to achieve an increased rate of cache-misses rather than a
CPU clock cycle slow down because whereas the cache-
misses suggest a CPU clock cycle slow down, it is not
the case for the opposite direction.

The effectiveness of the attack varies for each use case
and for each routine called. Some of the routines iter-
ate over internal loops several times (e.g. BN rshift1)
whereas in some other routines, iteration over internal
loops happens few times (e.g. BN usub) or none at all.
Take for example previous “hot” addresses from Ta-
ble 2—degrading the most used address from each rou-
tine does not necessarily give the best result. Overall
“hottest” addresses in Table 2 shows the result of choos-
ing the best strategy for our use case, where the addresses
degraded in every routine varies from multiple addresses
per routine to no addresses at all.

For our use case, we observe the best results with 6
degrading addresses across two degrading processes ex-
ecuting in different CPU cores. Additional addresses do
not provide any additional slow down, instead they im-
pact negatively the FLUSH+RELOAD technique.

4.4 Improving Key Recovery

Arguably the most significant contribution of [8] is they
show the LS sequence is sufficient to extract a certain
number of LSBs from nonces, even when it is not known
whether branch u or v gets taken. They give an algebraic
method to recover these LSBs, and utilize these partial
nonce bits in a lattice attack, using the formalization in
[21, 22]. The disadvantage of that approach is that it fixes
the number of known LSBs (denoted `) per equation [8,

USENIX Association 26th USENIX Security Symposium 91

Table 2: perf cache-misses and CPU clock cycle statis-
tics over 1,000 iterations for relevant routines called by
the BN mod inverse method.

Cache Clock CM CC
Target misses (CM) cycles (CC) CMBL CCBL
Baseline (BL) 13 211,324 1.0 1.0
BN rshift1 2,396 947,925 172.6 4.4
BN usub 489 364,399 35.2 1.7
BN mod inverse 956 540,357 68.9 2.5
BN uadd 855 485,088 61.6 2.2
bn add words 1,124 558,839 81.0 2.6
BN rshift 514 367,929 37.0 1.7
Previous “hot” 10,280 2,576,360 740.5 12.1
Overall “hottest” 15,910 3,817,748 1,146.2 18.0

Sec. 5]: “when a set of signatures are collected such that,
for each of them, [`] bits of the nonce are known, a set
of equations . . . can be obtained and the problem of find-
ing the private key can be reduced to an instance of the
[HNP].” Fixing ` impacts their results in two important
ways. First, since their lattice utilizes a fixed `, they fo-
cus on the ability to algebraically recover only a fixed
number of bits from the LS sequence. From [8, Tbl. 1],
our target implementation is similar to their “Standard-
M0” target, and they focus on ` ∈ {8,12,16,20}. For
example, to extract ` = 8 LSBs they need to query on
average 4 signatures, discarding all remaining signatures
that do not satisfy `≥ 8. Second, this directly influences
the number of signatures needed in the lattice phase.
From [8, Tbl. 2-3], for 256-bit n and ` = 8, they re-
quire 168 signatures. This is because they are discard-
ing three out of four signatures on average where ` < 8,
then go on to construct a d + 1-dimension lattice where
d = 168/4 = 42 from the signatures that meet the ` ≥ 8
restriction. The metric of interest from the attacker per-
spective is the number of required signatures.

In this section, we improve with respect to both
points—extracting a varying number of bits from every
nonce, subsequently allowing our lattice problem to uti-
lize every signature queried, resulting in a significantly
reduced number of required signatures.
Extracting nonce bits. Rather than focusing on the aver-
age number of required signatures as a function of a num-
ber of target LSBs, our approach is to examine the aver-
age number of bits extracted as a function of LS sequence
length. We empirically measured this quantity by gener-
ating βi uniformly at random from {1 . .n−1} for P-256
n, running the BEEA on βi and n to obtain the ground
truth LS sequence, and taking the first j operations from
this sequence. We then grouped the βi by these length- j
subsequence values, and finally determined the maximal
shared LSBs value of each group. Intuitively, this maps
any length- j subsequence to a known LSBs value. For
example, a sequence beginning LLS has j = 3, ` = 3,

a = 4 interpreted as a length-3 subsequence that leaks 3
LSBs with a value of 4.

We performed 226 trials (i.e. 1 ≤ i ≤ 226) for each
length 1 ≤ j ≤ 16 independently and Figure 6 contains
the results (see Table 6 in the appendix for the raw data).
Naturally as the length of the sequence grows, we are
able to extract more bits. But at the same time, in real-
ity for practical side-channels longer sequences are more
likely to contain trace errors (i.e. incorrectly inferred
LS sequences), ultimately leading to nonsensical lattice
problems for key recovery. So we are looking for the
right balance between these two factors. Figure 6 allows
us to draw several conclusions, including but not limited
to: (1) Sequences of length 5 or more allow us to ex-
tract a minimum of 3 nonce bits per signature; (2) Sim-
ilarly length 7 or more for a minimum of 4 nonce bits;
(3) The average number of bits extracted grows rapidly
at first, then the growth slows as the sequence length in-
creases. This observation pairs nicely with the nature
of side-channels: attempting to target longer sequences
(risking trace errors) only marginally increases the aver-
age number of bits extracted. From the lattice perspec-
tive, ` ≥ 3 is a practical requirement [21, Sec. 4.2] so
in that respect sequences of length 5 is the minimum to
guarantee that every signature can be used as an equation
for the lattice problem.

To summarize, the data used to produce Figure 6 al-
lows us to essentially build a dictionary that maps LS
sequences of a given length to an (`i,ai) pair, which we
now define and utilize.
Recovering private keys. We follow the formalization
of [21, 22] with the use of per-equation `i due to [4,
Sec. 4]. Extracted from our side-channel, we are left with
equations ki = 2`ibi +ai where `i and ai are known, and
since 0 < ki < n it follows that 0 ≤ bi ≤ n/2`i . Denote
bxcn modular reduction of x to the interval {0 . .n− 1}
and |x|n to the interval {−(n−1)/2 . .(n−1)/2}. Define
the following (attacker-known) values.

ti = bri/(2`isi)cn
ûi = b(ai−hi/si)/2`icn

It now follows that 0≤ bαti− ûicn < n/2`i . Setting

ui = ûi +n/2`i+1, we obtain

vi = |αti−ui|n ≤ n/2`i+1,

i.e. integers λi exist such that |αti− ui−λin| ≤ n/2`i+1

holds. The ui approximate αti since they are closer than
a uniformly random value from {1 . .n− 1}, leading to
an instance of the HNP [5]: recover α given many (ti,ui)
pairs.

Consider the rational d + 1-dimension lattice gener-

92 26th USENIX Security Symposium USENIX Association

 1

 3

 5

 7

 9

 11

 13

 15

 1 3 5 7 9 11 13 15

L
S

B
s

ex
tr

ac
te

d

Sequence length

max
mean

min

Figure 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. Error bars are one standard deviation on each side.
See Table 6 in the appendix for the raw data.

ated by the rows of the following matrix.

B =

2`1+1n 0 0

0 2`2+1n
. . .

...
...

...
. 0

...
0 . . . 0 2`d+1n 0

2`1+1t1 2`d+1td 1

Setting

~x = (λ1, . . . ,λd ,α)

~y = (2`1+1v1, . . . ,2`d+1vd ,α)

~u = (2`1+1u1, . . . ,2`d+1ud ,0)

establishes the relationship~xB−~u =~y. Solving the CVP
with inputs B and ~u yields ~x and hence α . We use the
embedding strategy [13, Sec. 3.4] to heuristically reduce
CVP approximations to Shortest Vector Problem (SVP)
approximations. Consider the rational d + 2-dimension
lattice generated by the rows of the following matrix.

B̂ =

[
B 0
~u n

]

There is a reasonable chance that lattice-reduced B̂ will
contain the short lattice basis vector (~x,−1)B̂ = (~y,−n),

revealing α . To extend the search space, we use the ran-
domization technique inspired by Gama et al. [12, Sec.
5], shuffling the order of ti and ui and multiplying by a
random sparse unimodular matrix between lattice reduc-
tions.
Empirical results. Table 3 contains our empirical re-
sults for various lattice parameters targeting P-256. As
part of our experiments, we were able to successfully
reproduce and verify the ` ∈ {8,12}, lgn ≈ 256 lattice
results of Cabrera Aldaya et al. [8] in our environment
for comparison. While the goal is to minimize the num-
ber of required signatures, this should be weighed with
observed HNP success probability, affecting search dura-
tion. From Figure 6 we focus on LS subsequence lengths
j ∈ {5,7} that yield `i nonce LSBs from ranges {3 . .5}
and {4 . .7}, respectively. Again this is in contrast to [8]
that fixes ` and discards signatures—this is the reason
their signature count is much higher than the d+2 lattice
dimension in their case, but equal in ours.

A relevant metric affecting success probability is the
total number of known nonce bits for each HNP instance.
Naturally as this sum approaches lgn one expects correct
solutions to start emerging. On the other hand, increas-
ing this sum demands querying more signatures, at the
same time increasing d and lattice methods become less
precise. For a given HNP instance, denote l =∑d

i=1 `i, i.e.
the total number of known nonce bits over all the equa-
tions for the particular HNP instance. Table 3 denotes µl
the mean value of l over all successful HNP instances—
intuitively tracking how many known nonce bits needed
in total to reasonably expect success.

We ran 200 independent trials for each set of param-
eters on a computing cluster with Intel Xeon X5650
nodes. We allowed each trial to execute at most four
hours, and we say successful trials are those HNP in-
stances recovering the private key within this allotted
time. Our lattice implementation uses Sage software
with BKZ [25] reduction, block size 30.

To summarize, utilizing every signature in our HNP
instances leads to a significant improvement over previ-
ous work with respect to both the number of required
signatures and amount of side-channel data required.

5 Attacking Applications

OpenSSL is a shared library and therefore any vulnera-
bility present in it can potentially be exploited from any
application linked against it. This is the case for the
present work and to demonstrate the feasibility of our
attack in a concrete real-life scenario, we focus on two
applications implementing two ubiquitous security pro-
tocols: TLS within stunnel and SSH within OpenSSH.

OpenSSL provides ECDSA functionality for both ap-
plications and therefore we mount our attack against

USENIX Association 26th USENIX Security Symposium 93

Table 3: P-256 ECDSA lattice attack improvements for
BEEA leakage. Empirical values are over 200 trials (4hr
max trial duration). Lattice dimension is d + 2. The
number of leaked LSBs per nonce is `. LS subsequence
length is j. The average total number of leaked nonce
bits per successful HNP instance is µl . CPU time is the
median.

Signa- Success CPU
Source tures d ` j µl Rate (%) Minutes
Prev. [8] 168 42 8 — 336.0 100.0 0.7
Prev. [8] 312 24 12 — 288.0 100.0 0.6
This work 50 50 {4 . .7} 7 249.7 14.0 79.5
This work 55 55 {4 . .7} 7 268.8 98.0 1.7
This work 60 60 {4 . .7} 7 293.4 100.0 0.7
This work 70 70 {3 . .5} 5 258.2 5.0 130.8
This work 80 80 {3 . .5} 5 286.1 94.5 13.2
This work 90 90 {3 . .5} 5 321.2 100.0 4.0

OpenSSL’s ECDSA running within them. More pre-
cisely, this section describes the tools and the setup fol-
lowed to successfully exploit the vulnerability within
these applications. In addition, we explain the relevant
messages collected for each application, later used for
private key recovery together with the trace data and the
signatures.

5.1 TLS

Stunnel8 is a popular portable open source software ap-
plication that forwards network connections from one
port to another and provides a TLS wrapper. Network ap-
plications that do not natively support TLS communica-
tion benefit from the use of stunnel. More precisely, stun-
nel can be used to provide a TLS connection between a
public port exposing a TLS-enabled network service and
a localhost port providing a non-TLS network service. It
links against OpenSSL to provide TLS functionality.

For our experiments, we used stunnel 5.39 compiled
from stock source and linked against OpenSSL 1.0.1u.
We generated a P-256 ECDSA certificate for the stunnel
service and chose the ECDHE-ECDSA-AES128-SHA TLS
1.2 cipher suite.

In order to collect digital signature and digest tuples,
we wrote a custom TLS client that connects to the stun-
nel service. Our TLS client initiates TLS connections,
collects the protocol messages and continues the hand-
shake until it receives the ServerHelloDone message,
then it drops the connection. The protocol messages
contain relevant information for the attack. The Clien-
tHello and ServeHello messages contain each a 32-
byte random field, in practice these bytes represent a
4-byte UNIX timestamp concatenated with a 28-byte
nonce. The Certificate message contains the P-256

8https://www.stunnel.org

ECDSA certificate generated for the stunnel service. The
ServerKeyExchange message contains ECDH key ex-
change parameters including the curve type (named -

curve), the curve name (secp256r1) and the Signa-

tureHashAlgorithm. Finally, the digital signature it-
self is sent as part of the ServerKeyExchange message.
The ECDSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, proposed by the client
in the ClientHello message and accepted by the server
in the SignatureHashAlgorithm field (explicit values
0x06, 0x03). Our TLS client saves the hash of the con-
catenated string and the DER-encoded ECDSA signature
sent by the server.

In order to achieve synchronization between the spy
and the victim processes, our spy process is launched
prior to the TLS handshakes, therefore it collects the
trace for each ECDSA signature performed during the
handshakes, then it stops when the ServerHelloDone

message is received. The process is repeated as needed
to build up a set of distinct trace, digital signature, and
digest tuples. Section 5.3 contains accuracy results for
several LS subsequence patterns for an stunnel victim.

5.2 SSH
OpenSSH9 is a widely used open source software suite to
provide secure communication over an insecure channel.
OpenSSH is a set of tools implementing the SSH net-
work protocol and it is typically linked against OpenSSL
to perform several cryptographic operations, including
digital signatures (excluding ed25519 signatures) and
key exchange.

For our experiments, we used OpenSSH 7.4p1 com-
piled from stock source and linked against OpenSSL
1.0.1u. The ECDSA key pair used by the server and tar-
geted by our attack is the default P-256 key pair gener-
ated during installation of OpenSSH.

Following a similar approach to Section 5.1, we wrote
a custom SSH client that connects to the OpenSSH server
to collect digital signatures and digest tuples. At the
same time, our spy process running on the server side
collects the timing signals leaked by the server during
the handshake.

Relevant to this work, the OpenSSH server was con-
figured with the ecdsa-sha2-nistp256 host key al-
gorithm and the default P-256 key pair. After the ini-
tial ClientVersion and ServerVersionmessages, the
protocol defines the Diffie-Hellman key exchange pa-
rameters, the signature algorithm and the hash function

9http://www.openssh.com/

94 26th USENIX Security Symposium USENIX Association

Client Server

PROTOCOL_VERSION

----->

PROTOCOL_VERSION

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

<-----

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_MSG_KEX_ECDH_INIT

[Q_C]

----->

SSH_MSG_KEX_ECDH_REPLY

[K_S, Q_S, Signature]

SSH_MSG_NEWKEYS

<-----

Application Data <----> Application Data

Figure 7: ECC SSH handshake flow with correspond-
ing parameters from all the messages to construct the di-
gest. Our spy process collects timing traces in parallel to
the server’s ECDSA sign operation, said digital signature
being included in a SSH MSG KEX ECDH REPLY field and
collected by our client.

identifiers in the SSH MSG KEXINIT message. To provide
host authentication by the client and the server, a 16-byte
random nonce is included in the SSH MSG KEXINIT mes-
sage. The SSH MSG KEX ECDH REPLY10 message con-
tains the server’s public host key K S (used to create and
verify the signature), server’s ECDH ephemeral public
key Q S (used to compute the shared secret K in combi-
nation with the client’s ECDH ephemeral public key Q C)
and the signature itself. The ECDSA signature is over the
hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT +

Server.SSH_MSG_KEXINIT +

K_S + Q_C + Q_S + K

Our SSH client was configured to use
ecdh-sha2-nistp256 and ecdsa-sha2-nistp256 as
key exchange and public key algorithms, respectively.

Similar to the previous case, our SSH client saves the
hash of the concatenated string and the raw bytes of the
ECDSA signature sent by the server. To synchronize the
spy and victim processes, our spy process is launched
prior to the SSH handshakes and it stops when the SSH -

MSG NEWKEYS message is received, therefore it collects

10https://tools.ietf.org/html/rfc5656

Table 4: Accuracy for length j = 5 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLL 5 0 77.9 73.3
SLLLL 4 1 99.8 98.0
LSLLL 4 2 99.3 98.9
SLSLL 3 3 98.9 97.2
LLSLL 4 4 98.0 96.7
SLLSL 3 5 95.8 95.5
LSLSL 3 6 85.5 97.2
SLSLS 3 7 99.2 97.8
LLLSL 4 8 93.3 92.5
SLLLS 4 9 94.4 94.6
LSLLS 4 10 81.1 93.5
LLSLS 4 12 96.4 96.7
LLLLS 5 16 89.8 85.0

the trace for each ECDSA signature performed during
the handshakes. All the protocol messages starting from
SSH MSG NEWKEYS and any client responses are not re-
quired by our attack, therefore the client drops the con-
nection and repeats the process as needed to build up a
set of distinct trace, digital signature, and digest tuples.
Section 5.3 contains accuracy results for several LS sub-
sequence patterns for an SSH server victim.

5.3 Attack Results

Procurement accuracy. Table 4 and Table 5 show the
empirical accuracy results for patterns of length j = 5
and j = 7, respectively. These patterns represent the
beginning of the LS sequence in the context of Open-
SSL ECDSA executing in real world applications (TLS
via stunnel, SSH via OpenSSH). From our empirical
results we note three trends: (1) Similar to previous
works [4, 24, 27], the accuracy of the subsequence de-
creases as ` increases due to the deviation in the right-
shift operation width. (2) The accuracy also decreases for
subsequences containing several contiguous right-shift
operations, e.g. first and last rows, due to the variable
width of right-shift operations within a single trace. (3)
SSH traces are slightly noisier than TLS traces; we spec-
ulate this is due to the computation of the ECDH shared
secret prior to the ECDSA signature itself. Using our
improved degradation technique (Section 4.3) we can re-
cover a with very high probability, despite the speed of
the modular inversion operation and the imperfect traces.
Key recovery. We close with a few data points
for our end-to-end attack, here focusing on TLS. In
this context, end-to-end means all steps from the at-
tacker perspective—i.e. launching the degrade processes,

USENIX Association 26th USENIX Security Symposium 95

Table 5: Accuracy for length j = 7 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLLLL 7 0 43.8 30.1
SLLLLSL 5 1 93.4 93.1
LSLLLLS 6 2 82.6 88.0
SLSLLSL 4 3 94.8 93.4
LLSLLLL 6 4 92.9 86.4
SLLSLSL 4 5 95.2 94.1
LSLSLLS 5 6 79.2 92.3
SLSLSLL 4 7 98.8 96.6
LLLSLLL 6 8 84.8 80.5
SLLLSLL 5 9 80.0 81.1
LSLLSLS 5 10 80.8 90.9
SLSLLLS 5 11 91.7 85.4
LLSLSLL 5 12 94.3 94.5
SLLSLLS 5 13 90.9 90.6
LSLSLSL 4 14 83.5 95.1
SLSLSLS 4 15 97.8 97.1
LLLLSLL 6 16 87.7 83.8
SLLLLLL 6 17 92.0 92.4
LSLLLSL 5 18 81.8 90.7
LLSLLSL 5 20 94.3 94.7
LSLSLLL 5 22 80.0 91.5
LLLSLSL 5 24 94.4 91.1
SLLLSLS 5 25 94.3 94.3
LSLLSLL 5 26 74.7 86.1
SLSLLLL 5 27 92.9 89.7
LLSLSLS 5 28 94.6 93.6
SLLSLLL 5 29 85.4 84.8
LLLLLSL 6 32 65.7 61.1
LSLLLLL 6 34 91.5 91.5
LLSLLLS 6 36 93.0 89.3
LLLSLLS 6 40 89.0 88.5
LLLLSLS 6 48 87.2 82.7
SLLLLLS 6 49 86.8 85.5
LLLLLLS 7 64 25.6 33.0

launching the spy process, and launching our custom
TLS client. Finally, repeating these steps to gather mul-
tiple trace and signature pairs, then running the lattice
attack for key recovery. That is, no steps in the attack
chain are abstracted away.

The experiments for Table 3 assume perfect traces.
However, as seen in Table 4 and Table 5, while we ob-
serve quite high accuracy, in our environment we are un-
able to realize absolutely perfect traces. Trace errors will
occur, and lattice methods have no recourse to compen-
sate for them. We resort to oversampling and randomized
brute force search to achieve key recovery in practice.

For the j = 5 case, we procured 150 signatures with

(potentially imperfect) trace data. Consulting Table 3,
we took 400 random subsets of size 80 from this set
and ran lattice attack instances on a computing cluster.
The first instance to succeed in recovering the private
key did so in roughly 8 minutes. Checking the ground
truth afterwards, 142 of these original 150 traces were
correct, i.e. ~0.18% of all possible subsets are error-free.
This successful attack is consistent with the probability
1− (1−0.0018)400 ≈ 51.4%.

Similarly for the j = 7 case, we procured 150 signa-
tures with (potentially imperfect) trace data. Consulting
Table 3, we took 400 random subsets of size 55 from this
set and ran lattice attack instances on a computing clus-
ter. The first instance to succeed in recovering the private
key did so in under a minute. Checking the ground truth
afterwards, 137 of these original 150 traces were correct,
i.e. ~0.19% of all possible subsets are error-free. This
successful attack is also consistent with the probability
1− (1−0.0019)400 ≈ 53.3%.

It is worth noting that with this naı̈ve strategy, it
is always possible to trade signatures for more offline
search effort. Moreover, it is possible to traverse the
search space by weighting trace data subsets according
to known pattern accuracy, e.g. explore patterns with ac-
curacy ≥ 95% sooner.

6 Conclusion

In this work, we disclose a new vulnerability in widely-
deployed software libraries that causes ECDSA nonce
inversions to be computed with the BEEA instead of a
code path with microarchitecture attack mitigations. We
design and demonstrate a practical cache-timing attack
against this insecure code path, leveraging our new per-
formance degradation metric. Combined with our im-
proved nonce bits recovery approach and lattice parame-
terization, this enable us to recover P-256 ECDSA pri-
vate keys from OpenSSL despite constant-time scalar
multiplication. As far as we are aware, this is the first
cache-timing attack targeting nonce inversion in Open-
SSL, and furthermore the first side-channel attack against
cryptosystems leveraging its constant-time P-256 scalar
multiplication methods. Our contributions traverse both
practice and theory, recovering keys with as few as 50
signatures and corresponding traces.

Stepping back from the concrete side-channel attack
we realized here, our improved nonce bit recovery ap-
proach coupled with tuned lattice parameters demon-
strates that even small leaks of BEEA execution can have
disastrous consequences. Observing as few as the first 5
operations in the LS sequence allows every signature to
be used as an equation for the lattice problem. Moreover,
our work highlights the fact that constant-time consider-
ations are ultimately about the software stack, and not

96 26th USENIX Security Symposium USENIX Association

necessarily a single component in isolation.
The rapid development of cache-timing attacks paired

with the need for fast solutions and mitigations led to
the inclusion of the BN FLG CONSTTIME flag in Open-
SSL. Over the years, the flag proved to be useful when
introducing new constant-time implementations, but un-
fortunately its usage is now beyond OpenSSL’s original
design. As new cache-timing attacks emerged, the us-
age of the flag increased throughout the library. At the
same time the programming error probability increased,
and many of those errors permeated to forks such as
LibreSSL and BoringSSL. The recent exploitation sur-
rounding the flag’s usage, this work included, highlights
it as a prime example of why failing securely is a fun-
damental concept in security by design. For example,
P-256 takes the constant-time scalar multiplication code
path by default, oblivious to the flag, while in stark con-
trast modular inversion relies critically on this flag being
set to follow the code path with microarchitecture attack
mitigations.

Following responsible disclosure procedures, we re-
ported the issue to the developers of the affected products
after our findings. We lifted the embargo in December
2016. Despite OpenSSL’s 1.0.1 branch being a standard
package shipped with popular Linux distributions such
as Ubuntu (12.04 LTS and 14.04 LTS), Debian (7.0 and
8.0), and SUSE, it reached EOL in January 2017. Back-
porting security fixes to EOL packages is a necessary and
challenging task, and to contribute we provide a patch to
mitigate our attack. OpenSSL assigned CVE-2016-7056
based on our work. See the appendix for the patch.

Acknowledgments
We thank Tampere Center for Scientific Computing
(TCSC) for generously granting us access to computing
cluster resources.

Supported in part by Academy of Finland grant
303814.

This research was supported in part by COST Action
IC1306.

The first author was supported in part by the Pekka
Ahonen Fund through the Industrial Research Fund of
Tampere University of Technology.

References
[1] ACIIÇMEZ, O., GUERON, S., AND SEIFERT, J. 2007. New branch

prediction vulnerabilities in OpenSSL and necessary software coun-
termeasures. In Cryptography and Coding, 11th IMA International
Conference, Cirencester, UK, December 18-20, 2007, Proceedings.
185–203.

[2] ALLAN, T., BRUMLEY, B. B., FALKNER, K. E., VAN DE POL,
J., AND YAROM, Y. 2016. Amplifying side channels through per-
formance degradation. In Proceedings of the 32nd Annual Confer-

ence on Computer Security Applications, ACSAC 2016, Los Ange-
les, CA, USA, December 5-9, 2016, S. Schwab, W. K. Robertson,
and D. Balzarotti, Eds. ACM, 422–435.

[3] ARAVAMUTHAN, S. AND THUMPARTHY, V. R. 2007. A par-
allelization of ECDSA resistant to simple power analysis attacks.
In 2007 2nd International Conference on Communication Systems
Software and Middleware. 1–7.

[4] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
2014. “Ooh aah... just a little bit” : A small amount of side chan-
nel can go a long way. In Cryptographic Hardware and Embedded
Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, L. Batina and M. Rob-
shaw, Eds. Lecture Notes in Computer Science, vol. 8731. Springer,
75–92.

[5] BONEH, D. AND VENKATESAN, R. 1996. Hardness of computing
the most significant bits of secret keys in Diffie-Hellman and related
schemes. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings. 129–142.

[6] BRUMLEY, B. B. AND HAKALA, R. M. 2009. Cache-timing tem-
plate attacks. In Advances in Cryptology - ASIACRYPT 2009, 15th
International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, M. Matsui, Ed. Lecture Notes in Computer Science,
vol. 5912. Springer, 667–684.

[7] BRUMLEY, B. B. AND TUVERI, N. 2011. Remote timing attacks
are still practical. In Computer Security - ESORICS 2011 - 16th
European Symposium on Research in Computer Security, Leuven,
Belgium, September 12-14, 2011. Proceedings. 355–371.

[8] CABRERA ALDAYA, A., CABRERA SARMIENTO, A. J., AND
SÁNCHEZ-SOLANO, S. 2016. SPA vulnerabilities of the binary
extended Euclidean algorithm. J. Cryptographic Engineering.

[9] CIPRESSO, T. AND STAMP, M. 2010. Software reverse engineer-
ing. In Handbook of Information and Communication Security.
659–696.

[10] FAN, S., WANG, W., AND CHENG, Q. 2016. Attacking Open-
SSL implementation of ECDSA with a few signatures. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. 1505–
1515.

[11] GALLANT, R. P., LAMBERT, R. J., AND VANSTONE, S. A.
2001. Faster point multiplication on elliptic curves with efficient
endomorphisms. In Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, J. Kilian, Ed. Lec-
ture Notes in Computer Science, vol. 2139. Springer, 190–200.

[12] GAMA, N., NGUYEN, P. Q., AND REGEV, O. 2010. Lattice
enumeration using extreme pruning. In Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riv-
iera, May 30 - June 3, 2010. Proceedings, H. Gilbert, Ed. Lecture
Notes in Computer Science, vol. 6110. Springer, 257–278.

[13] GOLDREICH, O., GOLDWASSER, S., AND HALEVI, S. 1997.
Public-key cryptosystems from lattice reduction problems. In Ad-
vances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
17-21, 1997, Proceedings, B. S. K. Jr., Ed. Lecture Notes in Com-
puter Science, vol. 1294. Springer, 112–131.

USENIX Association 26th USENIX Security Symposium 97

[14] GUERON, S. AND KRASNOV, V. 2015. Fast prime field elliptic-
curve cryptography with 256-bit primes. J. Cryptographic Engi-
neering 5, 2, 141–151.

[15] HOWGRAVE-GRAHAM, N. AND SMART, N. P. 2001. Lattice at-
tacks on digital signature schemes. Des. Codes Cryptography 23, 3,
283–290.

[16] KÄSPER, E. 2011. Fast elliptic curve cryptography in OpenSSL.
In Financial Cryptography and Data Security - FC 2011 Work-
shops, RLCPS and WECSR 2011, Rodney Bay, St. Lucia, February
28 - March 4, 2011, Revised Selected Papers, G. Danezis, S. Di-
etrich, and K. Sako, Eds. Lecture Notes in Computer Science, vol.
7126. Springer, 27–39.

[17] KOBLITZ, N. 1987. Elliptic curve cryptosystems. Mathematics
of Computation 48, 177, 203–209.

[18] MENEZES, A., VAN OORSCHOT, P. C., AND VANSTONE, S. A.
1996. Handbook of Applied Cryptography. CRC Press.

[19] MEYER, C. AND SCHWENK, J. 2013. SoK: Lessons learned
from SSL/TLS attacks. In Information Security Applications - 14th
International Workshop, WISA 2013, Jeju Island, Korea, August 19-
21, 2013, Revised Selected Papers, Y. Kim, H. Lee, and A. Perrig,
Eds. Lecture Notes in Computer Science, vol. 8267. Springer, 189–
209.

[20] MILLER, V. S. 1985. Use of elliptic curves in cryptography. In
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings. 417–426.

[21] NGUYEN, P. Q. AND SHPARLINSKI, I. E. 2002. The insecurity
of the Digital Signature Algorithm with partially known nonces. J.
Cryptology 15, 3, 151–176.

[22] NGUYEN, P. Q. AND SHPARLINSKI, I. E. 2003. The insecu-
rity of the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Des. Codes Cryptography 30, 2, 201–217.

[23] PERCIVAL, C. 2005. Cache missing for fun and profit. In BSD-
Can 2005, Ottawa, Canada, May 13-14, 2005, Proceedings.

[24] PEREIDA GARCÍA, C., BRUMLEY, B. B., AND YAROM, Y.
2016. “Make sure DSA signing exponentiations really are constant-
time”. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October
24-28, 2016. 1639–1650.

[25] SCHNORR, C. AND EUCHNER, M. 1994. Lattice basis reduc-
tion: Improved practical algorithms and solving subset sum prob-
lems. Math. Program. 66, 181–199.

[26] SINHA, V., KARGER, D. R., AND MILLER, R. 2006. Relo:
Helping users manage context during interactive exploratory visu-
alization of large codebases. In 2006 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2006), 4-8
September 2006, Brighton, UK. 187–194.

[27] VAN DE POL, J., SMART, N. P., AND YAROM, Y. 2015. Just a
little bit more. In Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San Francisco, CA,
USA, April 20-24, 2015. Proceedings, K. Nyberg, Ed. Lecture Notes
in Computer Science, vol. 9048. Springer, 3–21.

[28] YAROM, Y. AND FALKNER, K. 2014. FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel attack. In Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014., K. Fu and J. Jung, Eds. USENIX Asso-
ciation, 719–732.

[29] YAROM, Y., GENKIN, D., AND HENINGER, N. 2016.
CacheBleed: A timing attack on OpenSSL constant time RSA. In
Cryptographic Hardware and Embedded Systems - CHES 2016 -
18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, B. Gierlichs and A. Y. Poschmann, Eds.
Lecture Notes in Computer Science, vol. 9813. Springer, 346–367.

A Mitigation

Below is the fix for CVE-2016-7056 in uuencode format.

begin-base64 664 fix_CVE-2016-7056.patch
RnJvbSAyNDliY2YzMTQwNWUxNjIyZDA1ZWY2MGRjNWU3M2M1NGVmYTY0ZjNj
IE1vbiBTZXAgMTcgMDA6MDA6MDAgMjAwMQpGcm9tOiA9P1VURi04P3E/Q2Vz
YXI9MjBQZXJlaWRhPTIwR2FyYz1DMz1BRGE/PSA8Y2VzYXIucGVyZWlkYWdh
cmNpYUB0dXQuZmk+CkRhdGU6IEZyaSwgMTYgRGVjIDIwMTYgMTI6MDI6MTkg
KzAyMDAKU3ViamVjdDogW1BBVENIXSBFQ0RTQSB2dWxuZXJhYmxlIHRvIGNh
Y2hlLXRpbWluZyBhdHRhY2suIEJOX21vZF9pbnZlcnNlIGZhaWxzCiB0byB0
YWtlIGNvbnN0YW50LXRpbWUgcGF0aCwgdGh1cyBsZWFraW5nIG5vbmNlJ3Mg
aW5mb3JtYXRpb24uCgotLS0KIGNyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIHwg
MiArKwogMSBmaWxlIGNoYW5nZWQsIDIgaW5zZXJ0aW9ucygrKQoKZGlmZiAt
LWdpdCBhL2NyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKaW5kZXggNGM1ZmE2Yi4uNzJlN2MwNSAxMDA2NDQKLS0t
IGEvY3J5cHRvL2VjZHNhL2Vjc19vc3NsLmMKKysrIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKQEAgLTE0Nyw2ICsxNDcsOCBAQCBzdGF0aWMgaW50IGVj
ZHNhX3NpZ25fc2V0dXAoRUNfS0VZICplY2tleSwgQk5fQ1RYICpjdHhfaW4s
IEJJR05VTSAqKmtpbnZwLAogICAgICAgICAgICAgaWYgKCFCTl9hZGQoaywg
aywgb3JkZXIpKQogICAgICAgICAgICAgICAgIGdvdG8gZXJyOwogCisgICAg
ICAgIEJOX3NldF9mbGFncyhrLCBCTl9GTEdfQ09OU1RUSU1FKTsKKwogICAg
ICAgICAvKiBjb21wdXRlIHIgdGhlIHgtY29vcmRpbmF0ZSBvZiBnZW5lcmF0
b3IgKiBrICovCiAgICAgICAgIGlmICghRUNfUE9JTlRfbXVsKGdyb3VwLCB0
bXBfcG9pbnQsIGssIE5VTEwsIE5VTEwsIGN0eCkpIHsKICAgICAgICAgICAg
IEVDRFNBZXJyKEVDRFNBX0ZfRUNEU0FfU0lHTl9TRVRVUCwgRVJSX1JfRUNf
TElCKTsKLS0gCjIuNy40Cgo=
====

B Supplementary Empirical Data

Table 6 contains the raw data used to produce Figure 6.

Table 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. See Figure 6 for an illustration.

j Mean St. Dev. Min Max
1 1.00 0.00 1 1
2 1.50 0.50 1 2
3 2.25 0.43 2 3
4 2.87 0.60 2 4
5 3.56 0.61 3 5
6 4.22 0.70 3 6
7 4.89 0.73 4 7
8 5.43 0.93 4 8
9 5.88 1.15 4 9

10 6.23 1.40 4 10
11 6.52 1.64 4 11
12 6.73 1.87 4 12
13 6.91 2.07 4 13
14 7.04 2.24 4 14
15 7.15 2.40 4 15
16 7.23 2.53 4 16

98 26th USENIX Security Symposium USENIX Association

152

PUBLICATION
III

Cache-Timing Attacks on RSA Key Generation
A. C. Aldaya, C. Pereida García, L. M. Alvarez Tapia and B. B. Brumley

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.4 (2019), 213–242
doi: 10.13154/tches.v2019.i4.213-242

Publication reprinted with the permission of the copyright holders

https://doi.org/10.13154/tches.v2019.i4.213-242

Cache-Timing Attacks on RSA Key Generation
Alejandro Cabrera Aldaya1, Cesar Pereida García2,

Luis Manuel Alvarez Tapia1 and Billy Bob Brumley2

1 Universidad Tecnológica de la Habana (CUJAE), Habana, Cuba
{aldaya,lalvarezt89}@gmail.com

2 Tampere University, Tampere, Finland
{cesar.pereidagarcia,billy.brumley}@tuni.fi

Abstract. During the last decade, constant-time cryptographic software has quickly
transitioned from an academic construct to a concrete security requirement for
real-world libraries. Most of OpenSSL’s constant-time code paths are driven by
cryptosystem implementations enabling a dedicated flag at runtime. This process is
perilous, with several examples emerging in the past few years of the flag either not
being set or software defects directly mishandling the flag. In this work, we propose a
methodology to analyze security-critical software for side-channel insecure code path
traversal. Applying our methodology to OpenSSL, we identify three new code paths
during RSA key generation that potentially leak critical algorithm state. Exploiting
one of these leaks, we design, implement, and mount a single trace cache-timing
attack on the GCD computation step. We overcome several hurdles in the process,
including but not limited to: (1) granularity issues due to word-size operands to
the GCD function; (2) bulk processing of desynchronized trace data; (3) non-trivial
error rate during information extraction; and (4) limited high-confidence information
on the modulus factors. Formulating lattice problem instances after obtaining and
processing this limited information, our attack achieves roughly a 27% success rate
for key recovery using the empirical data from 10K trials.
Keywords: applied cryptography · public key cryptography · RSA · side-channel
analysis · timing attacks · cache-timing attacks · OpenSSL · CVE-2018-0737

1 Introduction
Side-channel analysis (SCA) continues to be a serious threat against the security of systems
and cryptography libraries. Specifically, microarchitecture attacks and cache-timing attacks
are gaining more traction due to the severe architecture flaws recently discovered in many
microprocessors [Koc+19, Lip+18]. Cache-timing attacks are attractive for attackers
and researchers due to the ability to perform them semi-remotely and without special
privileges. So far, practical cache-timing attacks have been developed against multiple
cryptosystems, including but not limited to DSA [PGBY16], ECDSA [PGB17], DH [GVY17]
and RSA [YGH16]. As a countermeasure against this type of attack, cryptography library
developers such as OpenSSL and forks integrate algorithms in their codebase that execute
in constant-time independently of the input values. During recent years, several researchers
discovered and exploited flaws in these mitigations.

SCA research focuses mainly on cryptographic operations such as encryption, decryption,
key exchange, and signature generation. All of them have in common the repeated use of
the private key as input during some step of the algorithm execution, thus being able to
observe and capture the leakage over several runs. In contrast, SCA research targeting
key generation seems to be neglected—we speculate due to two assumptions: (1) keys are
only generated once during the initial stage in a secure environment, isolated from any

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 4, pp. 213–242
DOI:10.13154/tches.v2019.i4.213-242

214 Cache-Timing Attacks on RSA Key Generation

possible threats; and (2) single trace attacks pose too many challenges, e.g. noise, and are
not feasible.

We motivate our work with a scenario where a malicious attacker is co-located with
a victim process generating RSA keys. In services such as Let’s Encrypt1, RSA key
generation is a common, regular and semi-predictable operation for web server automated
certificate renewal, often performed in shared cloud environments such as Amazon Web
Services (AWS), and Microsoft Azure. Recent numbers reported by Censys2 suggest Let’s
Encrypt is now the largest certificate issuer, therefore generating thousands of keys, and
with an adoption rate of more than 60% from websites using SSL/TLS, thus highlighting
the need for SCA-hardened key generation.

In this work, we present a methodology developed to identify the use of known
side-channel vulnerable functions in cryptography libraries such as OpenSSL. Using our
methodology, we disclose several vulnerabilities affecting the OpenSSL RSA key generation
implementation. Due to the impact of our attack, the OpenSSL security team issued
a security advisory and CVE-2018-0737. Moreover, we present the first practical single
trace cache-timing attack against the binary GCD step used during RSA key generation
leading to complete RSA private key recovery. The root cause of the vulnerability is the
GCD callee function not supporting the constant-time flag, compounded by the parent
function’s failure to enable it. More precisely, our attack focuses on the execution of the
non constant-time binary GCD algorithm to test the coprimality between the integers
p− 1 and q − 1, and the public exponent e. Finally, this work serves as a reminder that
cryptography libraries should strive for a secure by default approach, thus avoiding several
side-channel attacks that still might be lurking in the codebase.

Our contributions in this work are the following: (1) We develop a methodology to
identify insecure code paths through known side-channel vulnerable functions still in use
by cryptography libraries, and use it to identify and exploit a flaw in OpenSSL that allows
a practical single trace cache-timing attack against RSA key generation (Section 3.1);
(2) We combine several techniques from cache-timing attacks and power analysis to capture
traces during binary GCD execution and process them in order to obtain a sequence of
shift and subtraction operations, i.e. algorithm state, related with prime values p and q
(Section 3.4); (3) Building on existing RSA key recovery work, we propose a novel error
correction algorithm for noisy RSA primes that allows us to recover roughly 50% of bits
for each prime (Section 4); (4) We implement a lattice attack that factors RSA-2048 keys
knowing 522 bits of one prime. We perform an end-to-end attack for 10K independent
keys achieving roughly a 27% success rate, with room for improvement (Section 5).

2 Background
2.1 The RSA Cryptosystem
RSA is a public key cryptosystem invented in 1978 [RSA78]. An RSA public key is a
tuple of integers (N, e) where p and q are primes and N = pq holds, and furthermore
ed = 1 mod (p − 1)(q − 1) holds, implying both e and d are odd. For the remainder of
this paper, we restrict to standardized RSA-n that mandates for n-bit N both p and q
have bit-length n/2 and furthermore 216 < e < 2256 holds [Fip]. For efficiency reasons,
e = 65537 is the most common choice.

The private key is the tuple sk = (p, q, d, dp, dq, iq) where the latter three are Chinese
Remainder Theorem (CRT) values not relevant to this work. For well-chosen parameters,
recovering the private key from the public key is believed to be as hard as factoring

1https://letsencrypt.org/
2https://censys.io/certificates/report?q=tags%3Atrusted&field=parsed.issuer.organization.

raw&max_buckets=50

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 215

N [Hin10]. Regarding security, the current minimum recommended RSA key size is 2048
bits, implying that p and q are 1024-bit primes. Applications of RSA in cryptography
include public key encryption and digital signatures.

The secrecy of p and q is essential for RSA, moreover, partial knowledge of either
value can lead to polynomial-time factoring algorithms. In his groundbreaking work,
Coppersmith [Cop96] proved that knowing half of the bits from one prime suffices to factor
N in polynomial time, a critical point in our attack (see Section 5).

Algorithm 1: OpenSSL RSA key generation
Input: Key size n and public exponent e.
Output: Public and private key pair.

1 begin
2 while gcd(p− 1, e) 6= 1 do
3 p← rand n/2-bit prime /* Generate p */
4 while gcd(q − 1, e) 6= 1 do
5 q ← rand n/2-bit prime /* Generate q */
6 d← e−1 mod (p− 1)(q − 1) /* Priv exp */
7 dp← d mod (p− 1)
8 dq ← d mod (q − 1) /* CRT parameters */
9 iq ← q−1 mod p

10 return (N , e), (d, p, q, dp, dq, iq)

OpenSSL’s RSA key generation closely resembles Algorithm 1. The first steps aim at
generating random secret primes p and q, during which two loops ensure that (p− 1) and
(q − 1) are coprime with e. Steps 7-9 are not relevant to this work.

Algorithm 1 involves computing (at least) two GCDs and two modular inversions.
Binary GCD algorithms are a common implementation choice for both of these operations—
a description follows.

2.2 Binary GCD Algorithms
Stein [Ste67] proposed the binary greatest common divisor algorithm (binary GCD) in
1967. This algorithm computes the GCD of two integers a and b employing only right-
shift operations and subtractions (Algorithm 2). This approach is very attractive in
cryptography as it performs very well, especially with large inputs.

In OpenSSL, GCD computations use the function BN_gcd, a high level wrapper to the
function euclid that is one implementation of the binary GCD. Note however, that it
does not follow the classic algorithm structure (c.f. Algorithm 2). Regardless, its flow
can be analyzed using the classic variant since their equivalence can be easily verified. If
an adversary can distinguish a right-shift from a subtraction operation, the algorithm
state can be recovered [AGS07, ACSS17, PGB17]. We expand on this concept later in this
section.

Finally, it is worth noting that with respect to RSA key generation, Step 4 never
executes since one of the inputs is always odd.

2.3 Binary GCD: Side-Channel Analysis
The execution flow of Algorithm 2 is highly dependent of its inputs. In Algorithm 2 some
execution flow relevant steps are highlighted. The u-loop and v-loop are the loops that
remove all power-of-two divisors in variables u and v at each iteration. The sub-step
executes when both variables are odd, consisting of a single subtraction.

216 Cache-Timing Attacks on RSA Key Generation

Algorithm 2: Binary GCD
Input: Integers a and b such that 0 < a < b.
Output: Greatest common divisor of a and b.

1 begin
2 u← a, v ← b, i← 0
3 while even(u) and even(v) do
4 u← u/2, v ← v/2, i← i + 1
5 while u 6= 0 do
6 while even(u) do
7 u← u/2 /* u-loop */
8 while even(v) do
9 v ← v/2 /* v-loop */

10 if u ≥ v then
11 u← u− v /* sub-step */
12 else
13 v ← v − u

14 return v · 2i

Consistent with the existing literature [ACSS17, PGB17], we encode the execution
flow sequence of this algorithm with two symbols ‘L’ and ‘S’ representing right-shift and
subtraction, respectively. Another representation uses two variables Zi and Xi defined3

in [ACSS17] as follows: (1) Zi stores the number of right-shifts at iteration i. (2) Xi stores
a binary value to represent the result of the condition (Step 10 in Algorithm 2) at iteration
i. Xi=‘u’ means the condition was true while Xi=‘v’ the opposite.

Figure 1 shows an LS-sequence example of an execution flow. The sequence reads from
left to right: Z0 = 3, Z1 = 2, Z2 = 1, Z3 = 5, etc.

LLLSLLSLSLLLLLSL. . .LS
Figure 1: LS-encoded binary GCD execution flow example.

Regarding SCA, there are three different models for analyzing Algorithm 2 leakage.
Each model originally targets the Binary Extended Euclidean Algorithm (BEEA) for
computing modular inverses. However, they also apply to Algorithm 2 because the models
exploit the execution flow leakage w.r.t. variables u and v, and said flow is the same for
both algorithms when executed with the same input pair.

All-or-nothing. Acıiçmez, Gueron, and Seifert [AGS07] and Aravamuthan and Thumparthy
[AT07] independently proposed this model in 2007. It requires that the adversary knows
all Zi and Xi to recover algorithm inputs.

Partial. Aldaya, Cabrera Sarmiento, and Sánchez-Solano [ACSS17] recently proposed this
model, an algebraic approach that relates the number of known Zi, Xi with the number of
input bits that can be recovered. In comparison with the previous model, this approach
is more flexible as it can extract information from partial knowledge of the execution
flow. In this model, the number of recovered bits grows with the number of Zi and Xi

3Equivalent to SHIFTS[i] and SUBS[i] definition by Acıiçmez, Gueron, and Seifert [AGS07]

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 217

that an adversary knows. Our work employs this model (see Section 3.2 for this selection
rationale).

Look-up. Pereida García and Brumley [PGB17] proposed a model that also allows partial
recovery, but instead of an algebraic approach it employs a table look-up. The adversary
generates a table that relates every LS-sequence of a given length with the corresponding
partial input bits. This model performs better than the previous when the number of bits to
recover is small as it captures some algebraic equivalences not previously modeled. However,
it becomes impractical for recovering a large number of bits (i.e. longer LS-sequences). The
computational complexity (time and storage) for creating a table containing all possible
LS-sequences increases exponentially on the LS-sequence length.

2.4 The Flush+Reload Technique
This technique is a cache-based side-channel attack technique targeting the Last-Level
Cache (LLC) and used during our attack. Flush+Reload is a high resolution, high
accuracy and high signal-to-noise ratio technique that positively identifies accesses to
specific memory lines. It relies on cache sharing between processes, typically achieved
through the use of shared libraries or page de-duplication.

A round of attack consists of three phases: (1) The attacker evicts (i.e. flushes) the
target memory line from the cache. (2) The attacker waits some time so the victim has
an opportunity to access the memory line. (3) The attacker measures the time it takes
to reload the memory line. The latency measured in the last step tells whether or not
the memory line was accessed by the victim during the second step of the attack, i.e.
identifies cache-hits and cache-misses, in addition to information about the cache activity
for detecting spy preemptions.

Consult [YF14, All+16, PGBY16] for more information on the technique and discussions
about the challenges during attack setup due to processor optimizations and different
architectures.

2.5 Error Correction in RSA Keys
Following Section 2.1, an RSA private key is composed by a six element tuple sk = (p, q,
d, dp, dq, iq). The knowledge of any of these elements directly allows breaking the system.
In addition, these elements contain redundancy and are related through public information.
For example, as N = pq, the relation N ≡ pq mod 2n holds for every positive integer n.
Therefore the knowledge of the first n bits of p directly reveals the same amount on q.

Motivated by some implementation attacks such as side-channel and cold-boot attacks,
factoring N from a noisy version of sk is an active research line since the pioneering works
of Percival [Per05] and Heninger and Shacham [HS09].

The number of elements in a noisy version of sk depends on the data leak. For example,
Percival [Per05] assumes a noisy version of (dp, dq) whereas Heninger and Shacham [HS09]
consider different versions of noisy sk, such as (p, q, d, dp, dq) and (p, q). The number of
elements in the noisy sk is often denoted in literature as m.

Regarding this work, the case of m = 2 is particularly interesting since a Flush+
Reload attack allows an attacker to obtain a pair of noisy LS sequences related to p and
q, therefore we focus further related work analysis on the m = 2 case.

Another implementation attack property is the nature of errors that produces the noisy
sk—termed noise model by Henecka, May, and Meurer [HMM10]. They defined the noise
model of Percival [Per05] and Heninger and Shacham [HS09] works as the erasure model.
In these works, the adversary knows which bit positions contain valid data, and likewise
exactly at which bit position data is missing.

218 Cache-Timing Attacks on RSA Key Generation

On the other hand, Henecka, May, and Meurer [HMM10] proposed an algorithm for
correcting errors in RSA keys from noisy sk where some bits are flipped. Correcting errors
in this bit-flip model is more challenging than in the erasure model [HMM10], however
the authors showed that for m = 2 it is possible to achieve a success rate of 24% if the
probability of a single bit-flip is less than 0.084. Paterson, Polychroniadou, and Sibborn
[PPS12] also studied this error model but considering that a flip 0 → 1 has a different
probability than 1→ 0.

Kunihiro [Kun15] analyzed erasure and bit-flip models in a combined approach proposing
an algorithm and a theoretical analysis of the bounds on erasure and bit-flip rates to
succeed, improving the allowed bit-flip rate up to 0.11 in a scenario without erasures. For
a detailed survey on these approaches we suggest the reader to consult [Kun18].

In addition to these error correction algorithms, some authors employ multiple traces
to remove noise from sk. For example, in very different attack scenarios and completely
independent research, Irazoqui, Eisenbarth, and Sunar [IES16] and Schwarz et al. [Sch+17]
obtained an error rate of no more than 0.04 from a single trace attack. Then, combining
the same data leakage from five traces, they corrected all the errors in their respective
setting. RSA key error correction using multiple traces is an approach that only applies
when the attacker can capture multiple traces of the same operation leaking data.

2.6 Related Work
Attacks on RSA keys. Over the years, cryptanalysis of RSA keys has been performed
due to its widespread usage, its mathematical structure (i.e. CRT-based methods) and the
ease of generating low entropy keys. One classification of attacks against RSA keys is: (1)
only public key knowledge; (2) partial private key knowledge [Hin10].

The first category assumes an attacker only has knowledge of the public key (N, e),
attempting to use factoring methods such as Pollard p− 1 [Pol74], Pollard Rho [Pol75]
and sieving methods to recover the private factors p and q. This type of attack is bound
by the often sub-exponential, yet intractable, time complexity of the factoring methods,
requiring massive computation time and resources. Current research achieves factorization
of 768-bit RSA keys [Kle+10], therefore it has limited practical applicability and interest
for an attacker.

The second category exploits partial knowledge about the private and public keys to
perform attacks such as low exponent attacks [BM03, Wie90], side-channel attacks [YGH16,
Bau+14], and Coppersmith related attacks [Cop96, Cop97], considered a universal tool to
attack RSA keys with poorly chosen parameters or keys generated with poor entropy, i.e.
using a faulty implementation.

In 2012, two independent teams [Hen+12, Len+12] exploited poor entropy of RSA
keys in SSL certificates, SSH host keys, and PGP keys, thus allowing them to trivially
factorize keys by carrying out pairwise GCD computations to recover shared prime factors
among other RSA keys. Similarly in 2013, Bernstein et al. [Ber+13] analyzed the public
record of RSA keys in the “Citizen Digital Certificate” database of Taiwanese citizens.
The authors recovered 265 private keys by running a batch GCD computation followed by
Coppersmith’s method.

In 2017, Nemec et al. [Nem+17] discovered a critical vulnerability in the library used to
generate RSA keys for identity cards, passports and Trusted Platform Modules; allowing
factorization of 1024 and 2048-bit keys. Once again, this exploit was possible due to poor
entropy introduced by a special mathematical structure of the prime factors that not only
allowed key recovery using Coppersmith’s method but also detection of keys with this
special structure.

Microarchitecture attacks on RSA. In his seminal work, Percival [Per05] demonstrated
a cache-timing attack against RSA by identifying access to precomputed multipliers stored

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 219

in memory when using the Sliding Window Exponentiation (SWE) algorithm implemented
in OpenSSL version 0.9.7c. To mitigate this issue, the OpenSSL team added a “constant-
time” implementation of the modular exponentiation algorithm combining a fixed-window
exponentiation algorithm with a scatter-gather method [Bri+06], allowing to mask table
access to the multipliers. The scatter-gather method ensures the same cache lines are
always accessed, irrespective of the multiplier used.

In 2016, Yarom, Genkin, and Heninger [YGH16] showed that the previous scatter-
gather method implemented in OpenSSL still leaked timing information. In their work,
the authors exploited cache-bank conflicts by accessing the same offsets within a cache
line, these offsets depend on the multipliers used which are decided based on the private
key. The attack allows 4096-bit RSA key recovery after observing 16000 decryptions on a
HyperThreading architecture.

More recently, Bernstein et al. [Ber+17] performed 1024 and 2048-bit key recovery
in the Libgcrypt library when computing modular exponentiations using the left-to-right
sliding window method. More precisely, the authors demonstrated that the direction of the
sliding window matters since it leaks more or less information depending on the encoding
direction. Applying the Flush+Reload technique, paired with the algorithm by Heninger
and Shacham [HS09], the authors are able to efficiently reconstruct private keys using a
side-channel leak after recovering roughly 50% of the secret bits.

Acıiçmez, Gueron, and Seifert [AGS07] showed information leakage in OpenSSL 0.9.8a
during the modular inversion operation. When using the BEEA for modular inversion
during key generation, decryption, and blinding when employing the RSA-CRT variant,
these algorithms compute on secret values. Developing Simple Branch Prediction Analysis
(SBPA), the authors conjecture it is feasible to deduce the outcome of branch statements
using timings, recovering critical BEEA algorithm state, therefore leading to secret key
recovery.

Side-channel attacks on RSA key generation. The research available on SCA against
RSA key generation is limited and mostly focuses on leakages in physical devices. Finke,
Gebhardt, and Schindler [FGS09] performed an attack on a custom implementation
of a prime generation algorithm used for RSA key generation, analyzed using Simple
Power Analysis (SPA). In 2012, Vuillaume, Endo, and Wooderson [VEW12] presented
a Differential Power Analysis (DPA) template attack and fault attack on the Fermat
and Miller-Rabin tests on a secure microcontroller but the authors give no additional
information regarding their setup. Later on, Bauer et al. [Bau+14] analyzed the security of
prime generation algorithms and the sieving process. Targeting the divisibility phase, the
authors obtained more than half of the bits from the prime number generated with their
own implementation and then using Coppersmith’s technique they recovered 1024-bit RSA
keys. More recently, Aldaya et al. [Ald+17] analyzed the modular inversion operation used
during RSA private key generation, leading to full key recovery using SPA. This attack
differs from previous works because it focuses on alternative routines invoked during key
generation, instead of primality tests or prime number generation.

Moreover, recent independent work examines one of the three code paths analyzed in this
work (i.e. the BN_gcd function). Weiser, Spreitzer, and Bodner [WSB18] target RSA key
generation within an Intel SGX enclave by a noiseless controlled-channel page-fault attack.
Controlled-channel attacks [XCP15] are privileged attacks originating from a malicious
OS targeting SGX enclaves, aligned with the SGX threat model. The most important
differences compared to our work are: (1) cache-timing attacks are unprivileged and do
not require escalation to kernel space (i.e. a malicious OS); and (2) controlled-channels are
error-free, while cache-timing channels are far from that.

220 Cache-Timing Attacks on RSA Key Generation

3 RSA Key Generation: New Vulnerabilities

Originally introduced with OpenSSL 0.9.7 in 2005 following [Per05], the constant-time
flag is a boolean for BIGNUM variables handling secret information such as private keys,
secret prime values, nonces, and integer scalars. When the flag is set, and the executing
algorithm supports the flag, the code takes an early exit to the constant-time version of
the algorithm, otherwise continues executing the default insecure version. For the sake of
performance, OpenSSL defaults to non constant-time functions, assuming most operations
are not secret.

3.1 Insecure Code Paths: A Methodology

Two recent works exploit the insecure default behavior of OpenSSL’s constant-time flag.
Pereida García, Brumley, and Yarom [PGBY16] exploit the fact that, by design, the flag
does not propagate from the source to the destination during BIGNUM copy operations.
As a result, modular exponentiations during DSA sign operations took a side-channel
insecure modular exponentiation path. Pereida García and Brumley [PGB17] exploit the
failure to set the flag during ECDSA sign operations. In that case, the resulting scalar
multiplication function is oblivious to the flag and always followed a side-channel secure
path; the modular inversion function, however, requires this flag to follow its side-channel
secure path.

These examples demonstrate that constant-time flag handling is tricky, hence there
could be other vulnerable code paths believed to be safe. For tackling the problem of
detecting such potential vulnerable code paths we developed a semi-automated tool that
revises, with a single execution, multiple code paths, producing a report about them.
Our methodology consists of the following steps: (1) From existing work, we create
a list of previously known side-channel vulnerable functions within a library. (Here,
OpenSSL.) (2) The tool utilizes the debugger to automatically set break points at lines of
code, identified in the previous step, which should not be reached during security-critical
operations. (3) The tool runs several security-critical commands and generates a report
for calls hitting said break points.

Cryptography libraries such as OpenSSL support multiple architectures, compilation
options, and implementations of the same functionality. Therefore, our tooling allows to
perform exhaustive testing on the library, trying several combinations for vulnerable paths
and easing the workload for SCA.

Using our tooling, w.r.t. RSA key generation we identified the following subset of
known side-channel vulnerable functions of interest: (1) The function BN_gcd contains
highly input-dependent branches that can potentially be used as a side-channel attack
vector. Since the code has no early exit to a side-channel secure code path, i.e. does
not check the constant-time flag at all, we blacklist the function’s entry point. (2) The
function BN_mod_inverse executes a check for the constant-time flag at the beginning
of the function, and early exits to a side-channel secure path if it is set. If the flag is
not set, it continues to a side-channel insecure path. We blacklist the line immediately
following the early exit. (3) The function BN_mod_exp_mont is analogous to the above,
yet for modular exponentiation. Similarly, we blacklist the line immediately following the
early exit.

Figure 2 shows a visualization of our tooling, setting breakpoints on bn_gcd.c (Lines
120 and 238) and bn_exp.c (Line 418) based on the previously blacklisted lines. Our
tooling executes OpenSSL genpkey command to generate an RSA key, hitting the three
break points multiple times, and reporting their corresponding call stacks. Naturally,
hitting the break points does not guarantee a vulnerability—a deeper analysis follows.

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 221

INFO: Parsing source code at: ./openssl-1.0.2k #2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:329
... #3 ... in BN_generate_prime_ex (...) at bn_prime.c:199
INFO: Breakpoints file generated: triggers.gdb #4 ... in rsa_builtin_keygen (...) at rsa_gen.c:150
... ...
INFO: Monitor target command line INFO: Insecure code executed!
TOOL: gdb --batch --command=triggers.gdb --args Breakpoint 2, BN_gcd (...) at bn_gcd.c:120

openssl-1.0.2k/apps/openssl genpkey -algorithm RSA 120 int ret = 0;
-out private_key.pem -pkeyopt rsa_keygen_bits:2048 #0 BN_gcd (...) at bn_gcd.c:120

... #1 ... in rsa_builtin_keygen (...) at rsa_gen.c:154
INFO: Setting breakpoints... ...
Breakpoint 1 at ...: file bn_exp.c, line 418. INFO: Insecure code executed!
Breakpoint 2 at ...: file bn_gcd.c, line 120. Breakpoint 3, BN_mod_inverse (...) at bn_gcd.c:238
Breakpoint 3 at ...: file bn_gcd.c, line 238. 238 bn_check_top(a);
... #0 BN_mod_inverse (...) at bn_gcd.c:238
INFO: Insecure code executed! #1 ... in BN_MONT_CTX_set (...) at bn_mont.c:450
Breakpoint 1, BN_mod_exp_mont (...) at bn_exp.c:418 #2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:319
418 bn_check_top(a); #3 ... in BN_generate_prime_ex (...) at bn_prime.c:199
#0 BN_mod_exp_mont (...) at bn_exp.c:418 #4 ... in rsa_builtin_keygen (...) at rsa_gen.c:171
#1 ... in witness (...) at bn_prime.c:356 ...

Figure 2: Testing the proposed methodology tool.

Insecure exponentiation code path. The Miller-Rabin primality test [Rab80] is the
most common implementation of Algorithm 1, Lines 3 and 5. It involves choosing a
random “witness” base b then computing bx mod p where p is the candidate prime and
the relation 2kx = p− 1 holds. Indeed, OpenSSL’s is a straightforward implementation of
these steps. Looking at the call stack for the BN_mod_exp_mont break point, the function
BN_is_prime_fasttest_ex implements iterating this test for different b values to obtain
prime confidence after sufficient successful trials. It carries out each trial by calling
the function witness that performs the modular exponentiation, unfortunately calling
BN_mod_exp_mont without setting BN_FLG_CONSTTIME. The algorithm continues with a
classical sliding window exponentiation, potentially leaking partial information on x hence
p. Note that the sliding window code path is known to be vulnerable to cache-timing
attacks and was first exploited by Percival [Per05], nevertheless this leak is not relevant
for our attack.

Insecure inversion code path. Related to the previous code path, as the function name
BN_mod_exp_mont suggests, the implementation uses Montgomery arithmetic for effi-
ciency. The Montgomery setup phase occurs in BN_MONT_CTX_set, computing the inverse
of 2w modulo p for w-bit architectures. Examining the call stack, the function calls
BN_mod_inverse without setting BN_FLG_CONSTTIME, potentially leaking critical binary
GCD algorithm state. However, in this case our terse analysis reveals the operands are
not {2w, p} but {2w, p mod 2w}, implemented by copying the least significant word of p
to a temporary BIGNUM. While all leaks are bad, some are worse than others—this is a
nominal leak on the least significant word of p.

Insecure GCD code path. The shallowest call stack is for BN_gcd, called directly by
rsa_builtin_keygen (Line 154). The function computes the GCD of e and p − 1 to
ensure that e is invertible mod(p− 1)(q − 1). The value p− 1 should remain secret, hence
hitting this break point represents a potential side-channel attack vector. This is the code
path we target in the remainder of this paper due to its novelty compared to insecure
exponentiation.

Root cause analysis. From these results, we deduce modular inversions in OpenSSL’s
RSA key generation at Steps 6 and 9 of Algorithm 1 have side-channel mitigations in place,
yet GCD computations in Steps 2 and 4 lack such protection, and likewise for primality
testing. The work of Acıiçmez, Gueron, and Seifert [AGS07] induced the secure path code
change, yet the impact of the academic result did not fully propagate throughout the

222 Cache-Timing Attacks on RSA Key Generation

entirety of the RSA key generation implementation. We speculate this is a result of a
simplification in Acıiçmez, Gueron, and Seifert [AGS07, Sec. 2.1]: the pseudocode for key
generation abstracts away the prime generation loop, and assumes a priori coprimality
of e with p − 1 and q − 1 to compute d at Step 6. This allowed the authors to focus
theoretical analysis on the impact of modular inversion leaks across various cryptosystems,
while undoubtedly being aware of GCD and modular inversion execution flows having
essentially the same branching characteristics. Alas, typical engineers are less inclined
to such cryptographic subtleties—evidenced by this code path remaining vulnerable to
microarchitecture side-channel attacks.

The tool. Subsequent to our work, Gridin et al. [Gri+19] expanded our methodology
and tooling into a full-fledged Continuous Integration (CI) tool named Triggerflow4. It
offers a different approach compared to static program analysis tools [DK17, Doy+15,
Ant+17], and dynamic program analysis tools [Wan+17, Wic+18, Wei+18]. Rather than
automated detection of security vulnerabilities and leakage quantification, our tool works
in a white-box model where it complements other tools and assists developers to find
undesired execution flows—such as non constant-time algorithm executions—and reports
them back to the developers for further analysis. See [Gri+19] for more information about
the goals, uses, and limitations of the tool.

3.2 Theoretical Leakage Analysis
Pereida García and Brumley [PGB17] demonstrate it is possible to recover some Zi

from OpenSSL modular inversion operations (BEEA) with cache timings during ECDSA
signature generations. We are left with the following open question: Is it possible to
similarly recover binary GCD algorithm state?

Aldaya et al. [Ald+17] analyzed RSA key generation with respect to SCA of GCD-
based algorithms. The analysis focuses on the modular inversion at Step 6 of Algorithm 1,
exploiting the fact that BEEA inputs have very different bit-lengths. The product (p−
1)(q − 1) has 2048 bits for modern RSA key sizes, while the other input e has only 17 bits
commonly.

Our vulnerability similarly exploits a large bit-length difference between inputs: the
same e, but instead p−1 and q−1 having 1024 bits. As processing p and q are very similar
regarding GCD computation, we use the prime p to present our analysis. Furthermore, we
select the partial bit-recovery model (see Section 2.3) because (1) we will be working with
noisy LS-sequences later in our full attack, thus partial recovery reduces noise influence;
(2) covered later in this section, we will utilize a factoring method that inputs incomplete
p; and (3) we need to recover hundreds of bits so the look-up model is intractable.

The large bit-length difference between p− 1 and e implies that during several binary
GCD iterations the condition u ≥ v will be true, giving the adversary partial execution
flow information a priori (i.e. Xi=‘u’ for some iterations i). This situation holds until u
(initialized to p− 1) stores a value of roughly the same bit-length as v (initialized to e).
Therefore it divides u by two roughly lg (N)/2− lg e times.

According to the Zi definition, at each iteration u loses Zi bits. Therefore the number
of iterations t that should execute before u has roughly the same bit-length as v is the
minimum t that satisfies (1).

n =
t∑

i=1
Zi ≥ lg (N)/2− lg e (1)

Hence, the following question arises: how many bits can be recovered in this setting?
4Freely available, open source: https://gitlab.com/nisec/triggerflow

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 223

Partial recovery. Applying the partial model, we obtain a bit-recovery equation as
follows. Assume the adversary obtains all Zi, and t is the first iteration for which u < v
(i.e. Xi=‘u’ ; 0 < i < t). The values of u and v just before the sub-step for iterations i < t
are the following:

u1 = p− 1, v1 = vi = e, ui+1 = ui − vi

2Zi+1

The invariant ui − vi ≡ 0 mod 2 holds for all iterations, since both variables are odd
just before the sub-step. Expanding for i < t:

ut − vt =

p− 1
2Z1

− e

2Z2
− e

2Z3

. . .

− e

2Zt
− e ≡ 0 mod 2

thus solving for p yields (2) for bit recovery, where n from (1) is the number of recovered
bits from p.

p ≡ e(2Z1 + 2Z1+Z2 + · · ·+ 2n) + 1 mod 2n+1 (2)

In summary, for RSA-2048 n is roughly 1024 − 17 = 1007 bits. However, due to
Coppersmith [Cop96] an adversary only needs lg(N)/4 = 512 bits of one prime to factor
an RSA-2048 N , depicted in Figure 3. For either NIST compliant value of e, the number
of bits recovered is far beyond the Coppersmith bound.

Coppersmith bound
512

e = 2 - 1 e = 2 +1

1023
NIST

256

768 1007

16

0

Figure 3: RSA-2048 bit-recovery bounds of n for different e.

We now have our requirements for a successful attack—the adversary must obtain (at
least) the first tc noise-free Zi to factor N :

n =
tc∑

i=1
Zi ≥ lg(N)/4

where tc is the minimum iteration for which n reaches the Coppersmith bound.

3.3 A Single Trace Attack: Roadmap
Previously in this section, we uncovered three side-channel insecure code paths traversed
during RSA key generation. Subsequently focusing on the BN_gcd code path, we then gave
a theoretical analysis on the GCD algorithm as implemented in OpenSSL to describe what
kind of side-channel information we can extract, and rough bounds for how much (noise-
free) information we need to leverage that to recover the private key by factoring N . The
remainder of this paper is dedicated to describing the methods, techniques and problems
faced when trying to recover the necessary information from the side-channel leakage in
order to achieve full private RSA key recovery from a single trace. The roadmap for our
end-to-end attack is as follows: (1) We capture cache-timing traces from BN_gcd executions
during RSA key generation, then—leveraging signal processing techniques—extract the
portions corresponding to p−1 and q−1, apply digital filters and extract their corresponding
(noisy) LS-sequences (Section 3.4); (2) Building upon previous work, we design and

224 Cache-Timing Attacks on RSA Key Generation

implement an error correction algorithm for these sequences—leveraging number theoretic
constraints imposed by RSA—to extract partial bits of one factor of N (Section 4); (3) Said
algorithm yields an ordered list of candidates for partial factors; we then derive lattice
parameters for factoring with Coppersmith’s method, and create lattice instances with
said candidates, iteratively executing them until the result yields complete factorization of
N (Section 5).

Attack setup. Our attack setup consists of an Intel Core i5-2400 Sandy Bridge 3.10 GHz
(32 nm) with 8 GB of memory running 64-bit Ubuntu 16.04 LTS “Xenial” with hardware
prefetching and Turbo Boost disabled. All the cores share a 12-way 6 MB unified LLC.
The system does not feature HyperThreading.

We tested our attack against OpenSSL 1.0.2k—the latest release and LTS version at
the time of our experiments—with debugging symbols on the executable. We use the
debugging symbols to map source code to memory addresses, allowing us to find the
“hot” memory addresses for the degrading attack and probing accurately the sequence of
operations mentioned previously. Note, however, debugging symbols are not a requirement
for the attack as this information can be obtained through reverse engineering. We passed
the shared configuration option to compile OpenSSL as a shared object.

3.4 From Timings to Sequence of Operations
The GCD algorithm implemented in OpenSSL is highly dependent on its inputs during
execution, thus we use the well-known Flush+Reload technique to probe cache lines
in code routines BN_rshift1 and BN_sub. By probing these two routines, we are able
to distinguish two branches executed by the GCD algorithm, namely right-shifts and
subtractions. Unfortunately this is not enough to recover meaningful data, since we need
to know the exact Zi values (i.e. number of right-shifts executed between subtractions)
in order to identify bits. Due to tight loop execution during these operations, our probe
misses some of the accesses.

To that end, to get better resolution we pair the Flush+Reload technique with
the performance degradation attack [All+16] which targets different cache lines in the
same previous routines to slow down the execution. Moreover, we apply the profiling
approach [PGB17] to easily identify the best memory addresses to probe and degrade.
Adapted to our strategy, this provides a good starting point to recover a sequence of
operations.

Granularity. Due to the nature of the GCD algorithm, the granularity of the BN_rshift1
and BN_sub operations captured in a trace vary throughout the execution of the algorithm.
As the input values to the function are processed, their bit length decreases and this
behavior is reflected in the trace. Typically, when a GCD operation begins, a single
right-shift operation spans over several data points (i.e. cache-hits) in the trace, while at
the end of the execution the same right-shift operation registers fewer points, sometimes
even only one point. This represents a challenge later in our attack during the horizontal
analysis, when we need to extract the sequence of right-shift and subtraction operations
from the p and q traces (i.e. Zi), since operations can be easily misclassified due to high
data point variation for each operation within a single GCD execution.

Traces. The contents of a typical trace (see Figure 4, top), from high to low abundance,
is roughly: (1) noise and/or BN_mod_exp_mont executions during primality testing, not
targeted by our probes but nonetheless consuming CPU cycles; (2) short BN_mod_inverse
executions setting up Montgomery arithmetic, with the same underlying right-shifts and
subtracts as BN_gcd that our probes target; (3) longer BN_gcd executions for testing

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 225

coprimality. We are only interested in the latter, yet manually isolating the part of the
trace that corresponds to the real BN_gcd executions for p− 1 and q− 1 is time consuming
and not feasible at a large scale.

Unlike other side-channel scenarios where attackers have oracle access to trigger the
cryptographic operation, i.e. they can start side-channel signal acquisition (e.g. launch
the spy) roughly at the same time as they start their query (e.g. initiate a protocol run
or call an API), our case is very different. In our case, we have no control over when key
generation takes place, leaving us with extremely long traces, and the challenging task
of extracting a minuscule partial trace from abundant data—looking for a needle in a
haystack. We turn to signal processing-based power analysis techniques to tackle this
issue.

Templates. Inspired by SPA and template attacks [CRR02] and related (yet less statisti-
cal) cache-based techniques [BH09, GSM15], we create a template by manually adjusting
Flush+Reload parameters in our spy process, then inspecting and trimming a trace
that looks visually correct, i.e. no clear preemptions of the spy or the victim process.

Correlation and matching. Motivated by statistical methods such as Horizontal Corre-
lation Analysis [Cla+10], we leverage the Pearson correlation coefficient to find the best
match for these templates within full traces, automating the process. Once we create our
template and acquire our trace, we compute the moving Pearson correlation between the
template and full trace, then extract the peaks, i.e. discrete indices that exhibit highest
correlation between the template and the side-channel data. This automates the GCD
identification step, allowing us to extract the sequences for p and q.

Horizontal analysis. Finally, to overcome the granularity issues previously mentioned, we
use a dynamic horizontal analysis approach to recover the sequence of operations executed
by the GCD algorithm. Our dynamic horizontal analysis works as follows: first we take as
input the processed trace which has been aligned to the first subtraction operation and
trimmed to a specific length, avoiding noise as much as possible. Then, we take small
chunks of the trace containing n windows of subtraction and right-shift operations, recall
that each subtraction is followed by at least one right-shift operation. After that, we
compute the Euclidean distance between the subtraction operations in those n windows.
We sort the resulting distances from shortest to longest and then we consider the shortest
distance as a single right-shift operation (i.e. Zi = 1), thus using it as basis to determine the
number of right-shift operations in the rest of windows. After calculating all the right-shift
counts in those n windows, we proceed to the next chunk and repeat the process. We
continue until all the operations in the trace have been calculated, resulting in a tentative
and noisy LS sequence of operations (i.e. Zi candidates).

Figure 4 illustrates our method in action using a real trace and template. The top
most plot is the filtered partial trace, containing two GCD runs for p and q—note the
narrower peaks corresponding to executions of BN_mod_inverse during the primality
test, also leaking secret information on the prime values due to yet another flag not set
(see Section 3.1). The third plot is the moving Pearson correlation coefficient between the
template (second plot) and the trace (first plot), with two extremely distinguishable peaks
that identify the locations of the two GCD operations. The second plot aligns the template
at maximum correlation for visualization purposes; and finally, the bottom plot shows a
closer view of the sequence of operations performed during a single GCD operation. As
seen, our technique is remarkably effective.

As mentioned previously, the accuracy of the operations in the trace decreases dramat-
ically by the end of the GCD execution. The trace contains errors introduced by several
factors such as victim preemptions, spy preemptions, as well as noise created by other

226 Cache-Timing Attacks on RSA Key Generation

T
ra

ce

L
at

en
cy

 (
fi

lt
er

ed
)

T
em

p
la

te

L
at

en
cy

 (
fi

lt
er

ed
)

-0.4

-0.2

 0

 0.2

 0.4

 0 50000 100000 150000 200000 250000

C
o
rr

e
la

ti
o
n

 100

 200

 300

 284400 284500 284600 284700 284800 284900 285000 285100 285200 285300

T
ra

ce
,
L

at
en

cy

Time (samples)

subtraction probe
shift probe

Figure 4: Visualization of the moving Pearson correlation in action. From top to bottom:
filtered trace, aligned template trace, Pearson correlation, and raw trace (zoomed).

processes and microarchitecture components. To overcome this, Section 4 details an error
correction algorithm developed to find potential correct LS sequence candidates that later
are converted to bits and used as input values to perform the lattice attack explained
in Section 5.

4 Error Correction in noisy LS Sequences
In order to design an algorithm for correcting the errors in an LS sequence, we characterize
the nature of them. As discussed in Section 3.3, cache-timing attacks like Flush+Re-
load provide noisy data due to variances in the execution environment, interruptions,
preemptions, task scheduling, etc. Therefore LS sequence extraction from the raw traces
is not error free and contains errors with overwhelming probability.

After analyzing many of the traces with known inputs, we identified the following
classes of errors: (1) Wrong number of ‘L’ symbols between two ‘S’ symbols (due to Zi

estimation error). (2) Missing ‘S’ symbols (less frequent). (3) Extra ‘S’ symbols (much
less frequent). (4) Victim preemption: observed as a small gap (i.e. window of cache
misses) in the middle of operations but fixable by removing this window during trace
processing. (5) Spy preemptions: observed as a hole in the trace exhibited by the timing
information from the Flush+Reload attack. They are detectable but unfortunately
operations during the preemption window are completely lost.

4.1 Leakage Data: Error Modeling
From the Flush+Reload attack, we obtain pairs (Zp

i , Zq
i) for p and q respectively. With

this information, we obtain two recovery equations according to (2), where wlog. n1 and
n2 are greater than some n. Thus, we have sufficient (noisy) Zi for both primes to recover

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 227

their first n bits.

p ≡ ex1 + 1 mod 2n1+1 , x1 = (2Zp
1 + 2Zp

1 +Zp
2 + · · ·+ 2n1)

q ≡ ex2 + 1 mod 2n2+1 , x2 = (2Zq
1 + 2Zq

1 +Zq
2 + · · ·+ 2n2)

(3)

Therefore, the Zi for a prime p (resp. q) defines set bits in the binary representation of
x1 (resp. x2). Hence for every value of n we can check if (4) holds.

N ≡ (ex1 + 1)(ex2 + 1) mod 2n (4)

This relation is very similar to that employed by Heninger and Shacham [HS09] for the
m = 2 case. In their work, errors are in the bit positions of p and q directly while in our
case they are instead in the bit positions of a divisor of p− 1 and q − 1. Irrespective of
this difference, it leads to a similar error correction algorithm constructed for correcting
some errors.

Regarding existing noise models, our data might have some form of erasures due to spy
preemption. However, while erasure model considers missing data, at the same time it
requires knowing where the missing bits are and they should be distributed at random.
Spy preemption fulfills the first condition but it implies a consecutive missing bits/symbols
instead of random. On the other hand this model does not consider insertions and deletions.

At the same time, the bit-flip model by Henecka, May, and Meurer [HMM10] does not
apply to our case as the largest error source is due to insertions and deletions of zeros
between consecutive ones in the binary representation of x1 and x2. It is worth noting that
these insertions and deletions generate some bit-flips on p and q. However, we verified that
even a small insertion/deletion rate of 0.08 implies a bit-flip rate on p and q of about 0.5
due to an avalanche effect. Hence, obtained p and q from their noisy Zi look like random
data.

In this regard, the solution to bit-flip noise model by Henecka, May, and Meurer
[HMM10] is tightly coupled to the Hamming distance as a metric for filtering out wrong
solutions. The algorithm proposed in [HMM10] could be an option to address our noise
model, but requires selecting a proper distance metric. We identified the weighted Leven-
shtein distance as a possible good distance candidate, as it allows assigning different weights
for each operations per symbol. Then, it is possible to assign operation per symbol weights
to fit a specific noise model. While this is a plausible approach, changing the distance
metric inhibits us from using the theoretical and experimental results from [HMM10] to
get an estimate on expected success rates. For this reason, we defer this approach to future
work and implement an error correction algorithm that does not depend on an specific
distance metric.

Inci et al. [Inc+16] use another interesting approach to correct errors in RSA keys.
They developed an algorithm that fixes some errors in a noisy version of dp and dq (i.e.
m = 2 case). Their noise model has some similarities with ours, however they considered
that dp is almost error-free, while in our case we cannot make this assumption. In addition,
not much is said about the error rate supported by this algorithm nor its success probability
under any error rate.

However, despite that erasure and bit-flip noise models do not apply directly to our
scenario, we borrow the core ideas from Heninger and Shacham [HS09] and Henecka, May,
and Meurer [HMM10] to build an error correction algorithm that handles the most common
errors in our noise model: insertions and deletions of zeros in the binary representation of
x1 and x2.

This relaxed noise model selection is not arbitrary. Our intuition is to use this starting
approach as a building block for fixing other error sources. Also, it allows getting a first
lower bound on the success rate of the attack and then scaling it (if needed) to support
other errors (for example errors in ‘S’). In addition, avoiding some specific error handling

228 Cache-Timing Attacks on RSA Key Generation

like spy preemption allows using this correction algorithm in other scenarios for correcting
these types of errors in other elements of sk.

4.2 Error Correction Algorithm
Our algorithm follows the Expand-and-Prune approach [HMM10] as shown in Algorithm 3.
The algorithm iterates over all bits from i ≤ n. It processes a set of candidates Ci at every
iteration i, starting from a single candidate with the noisy x1, x2. At each iteration, each
candidate resulting from the previous iteration expands to several candidates. Then, to
avoid candidate space explosion, it prunes these candidates based on rules controlled by the
algorithm parameters. Therefore, the configuration parameters of the Prune procedure
manage the search space growth rate while aiming to increase the probability that the
correct solution survives through iterations.

Algorithm 3: Error correction algorithm
Input: N , e, Zp

i , Zq
i , n, config parameters

Result: Set of n-bit candidates for x1 and x2

1 begin
2 x1, x2 ← Using Zp

i , Zq
i according to (3)

3 C0 ← {(x1, x2)}
4 for i = 1 to n− 1 do
5 Ei ← ∅
6 foreach c ∈ Ci−1 do
7 Ei = Ei ∪ Expand(c, i)
8 Ci ← Prune(Ei, params)
9 return Cn−1

Expand. To expand a given candidate c at some bit i (i.e. c[i]), consider the selected bit
as a branch in a tree. If we construct a search tree, then the possibilities for the bits at
any level give rise to new branches in said tree. The tree at any level i contains all the
partial solutions x1, x2 up to the i-th LSB. At any level i there are at most six possible
branching candidates that can fulfill (4), listed in Table 1.

Table 1: Possible branching candidates.

Possibilities Description
(x1, x2) (4) holds without changes to x1 or x2

(x1 − 0, x2) Remove a zero at position i from x1; no changes to x2
(x1 + 0, x2) Insert a zero at position i in x1; no changes to x2
(x1, x2 − 0) Remove a zero at position i from x2; no changes to x1
(x1, x2 + 0) Insert a zero at position i in x2; no changes to x1

mult A combination of changes in both x1 and x2

One interesting feature of this algorithm is that even if (4) holds without changing x1
and x2, it still tests the remaining possibilities, including errors that occur at the same
index i in x1 and x2—a situation not detected using (4).

Figure 5 illustrates the expansion and pruning procedure for three consecutive iterations
of a candidate c starting at bit i showing the possible candidates. Here we used ∅ to
represent the candidates that did not generate valid solutions. Note how in the first

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 229

expansion, four possible branching candidates fulfilled (4), however, some of them did not
generate viable solutions afterwards or were pruned.

c[i]

(x1; x2)

(x1 + 0; x2)

(x1; x2) (x1 + 0; x2)

(x1; x2 − 0) mult

∅

(x1 + 0; x2)

∅

(x1; x2 − 0)

(x1 + 0; x2)

mult

(x1 − 0; x2) (x1; x2 + 0)

(x1; x2) (x1 − 0; x2) (x1; x2 + 0) mult

mult

Figure 5: Expansion process for candidate c[i]. Pruned solutions are in red.

The candidate pool grows exponentially. We now turn to restricting the number of
potential candidates (i.e. the partial solutions) at any level so that finding the correct one
is possible through exhaustive search among all solutions within a certain feasible limit,
examining situations that control the branching behavior of the tree.

Prune. The pruning process applies a set of filters to the expanded candidates Ei. The
filter spectrum is very wide and selecting the best for a given noise model is a challenging
task. In this regard, contrary to [HMM10] we implemented a set of filters in a combined
approach—the most novel feature of this algorithm.

Candidates in Ei are grouped based on the total amount of changes (i.e. potential
errors) made in both x1 and x2 until iteration i (see Table 1 for the list of possible changes),
allowing us to sort the potential candidates based on this parameter.

The most important filters relate to the number of groups (g) to keep and the maximum
number of candidates in each group (G). Denote emin as the minimum number of changes
made in all candidates in Ei, ex the number of changes in x1 or x2, and emult the number
of multiple changes up to iteration i. We define the filters as follows: (1) Max changes
over minimum: Keep the candidate if ex1 + ex2 + emult ≤ emin + g holds. (2) Max
candidates: Sort each group based on (ex1 + ex2 + emult, emult), and keep the first G
candidates. (3) Consecutive changes: Discard sequences having more than a fixed number
of consecutive changes, following the heuristic that higher change densities should be less
probable than lower ones—therefore it should be more likely that the correct solution has
a smaller change density. (4) Max changes (hard threshold): Candidates that exceed a
maximum number of changes threshold are discarded (ex1 + ex2 + emult ≥ eth), helping to
detect very unlikely solutions—those with an extremely high number of changes.

We selected the parameters of these filters to keep the probability of pruning the correct
solution low, while at the same time keeping the computational requirements affordable
for the attacker. In general terms, the adversary can profile the target environment—
generating a set of known RSA keys and collecting information about the number of errors,
their distribution, etc. for selecting these parameters. We followed this approach for 100
independent RSA-2048 keys and tuned these parameters for our attack environment. We
analyzed the number of groups between 5 and 10 and the number of candidates in each
group between 5000 and 15000. We set the number of consecutive changes filter to three
and based on the observed error rates it is very unlikely that a candidate has more than
150 errors at any iteration, therefore we set the hard threshold to this value.

After this characterization, we observed that 37 traces of 100 fit our reduced noise
model: only errors in the number of zeros between ones of x1 and x2. We recovered at
least 512 bits from 30 of the test traces, therefore our correction algorithm worked for

230 Cache-Timing Attacks on RSA Key Generation

80% of the traces it can handle (reduced noise model). However, as we used these same
traces to tune the filter parameters, this value should not be taken as a measure of the
success rate of our algorithm as it is biased. Section 5.1 shows the experimental results for
10K independent traces, and from this large set we extracted the estimate that our error
correction algorithm recovers at least 512 bits for 73% of the traces that met our reduced
noise model (see Section 5.1 for more details).

It is worth noting that these success rates and handled error rates are incompatible with
other works (e.g. [HMM10]) due to different noise models with respect to previous work.
However, we point out that the multiple filter approach that we follow in our algorithm
could be an interesting option for addressing other noise models, where initial experiments
suggest that some previous works would be improved.

Candidates enumeration. One important feature of our algorithm is the way it enumer-
ates candidates for checking factors of N (i.e. next stage of our end-to-end attack). As
described above, each Ci consists of a fixed number of groups g with at most G possible
candidates in each group. The naïve approach would be to search all possible candidates
in each group until finding the solution. However, based on empirical data, we found that
the real solution tends towards the first position of a group. In this case, it makes more
sense to consume the candidates using a round robin approach, giving a higher priority to
the highest ranked candidates in each group.

5 Factoring with Partial Information: Endgame
In his groundbreaking work, Coppersmith [Cop96] proposed a method to find small
solutions of univariate modular equations with modulus having unknown factorization.
This result finds many uses in cryptography (mainly in cryptanalysis) as several times in
real-world applications an attacker has access to an oracle that gives partial information
of a secret and the problem of recovering the remaining part is modeled as a univariate
modular equation.

Side-channel attacks play very nicely the oracle role as they often only reveal a (minority)
fraction of secret bits. Also, as in our scenario even if it is theoretically possible to fully
recover the primes from side-channel traces, it is preferable to only partially recover them
to reduce noise influence.

Coppersmith’s result has several implications on RSA security. For excellent surveys
about its impact, we refer readers to [NV10, Hin10]. One of these applications is factoring N
when half the bits of one prime are known—either the most or the least significant half. The
lattice-based solution to this application has been extensively covered in literature [NV10,
Hin10, Nem+17]. However, for the sake of completeness Appendix A contains a full
description of this procedure and its parametrization in terms of how many bits of p are
needed to factor an RSA-2048 modulus. To summarize, we estimate that 522 bits of p are
sufficient to compromise RSA-2048 with high probability.

5.1 Results: End-to-End Attack
To consolidate the attack and validate the successfulness of our techniques and the attack
overall, we used the following setup: a core executing 10K RSA key generations using
OpenSSL genpkey command, while degrading the performance in two additional cores
and finally executing the spy process on the last core, thus collecting 10K traces. Once
we collected the traces, and using templates and the Pearson correlation coefficient, we
extracted and aligned the GCD operations for p− 1 and q − 1. Out of those 10K traces,
566 traces were useless due to two main reasons: (1) key generation execution took more
time than expected due to failed primality tests; or (2) spy/victim were preempted for a

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 231

long period of time; thus the spy missed capturing one or both of the GCD operations in
any of those cases. We were able to perform horizontal analysis on the remaining 9434
traces to extract a tentative LS sequence of operations, i.e. Zi values, aiming to recover a
minimum of 522 bits per prime value.

We then offloaded the data for these 9434 trials to a cluster for analysis, containing
roughly 1500 nodes mixed between Intel E5-2680 (Sandy Bridge), E5-2670 (Sandy Bridge),
and E5-2630 (Haswell) cores. In all the stages that follow, we limited per-job execution
times to 4 CPU hours. Table 3 shows computation effort statistics, where a single attack
run takes less than 2 CPU hours on average, making it very affordable in practice.

The LS sequences contain errors that the subsequent lattice attack cannot tolerate—
error correction is required to recover sufficient bits. Our lattice attack can factor RSA-2048
knowing 522 bits of a prime, hence we configured our error correction algorithm to recover
the same number of bits. Following the algorithm tuning process (see Section 4.2) we
selected the set of pruning filter parameters shown in Table 2.

Table 2: Parameters for error correction algorithm.

Parameter Value
Max changes over minimum 10
Max candidates per group 15000
Consecutive changes 3
Max changes (hard threshold) 150

On the cluster, we launched the algorithm for the 9434 traces that contained tentative
LS sequences using Table 2 parameters. For each of the 9434 traces, we also analyzed the
ground truth correct sequence to collect data about the probability of recovering a given
amount of bits up to 552. Figure 6 (Left) shows the resulting survival probability curve.

This survival curve gives an idea about the error correcting algorithm behavior for
our large data set. One of the most relevant results is the probability of recovering at
least 522 bits: 27.89% (2632 of 9434). At the same time, the probability is quite close to
that of 512 bits: 29.17%. This small difference confirms the estimation made during the
lattice attack parameter optimization: correcting errors up to 522 bits is not significantly
more challenging than the 512 bits case. Therefore in our setting, improving lattice attack
parameters to Coppersmith’s bound (512 bits) will not significantly increase the error
correction success rate.

Of interest, Figure 6 (Left) shows an abrupt probability drop at the start of the
curve. We analyzed it closely and confirmed that roughly 30% of the traces have a spy
preemption just at the beginning, resulting in incomplete traces. It seems there is a bias
in our environment that increases the probability of spy preemption at the start of a GCD
execution, yet not in the middle. We are investigating the reasons behind this bias, but
the fact that the Figure 6 (Left) curve does not contain another abrupt drop confirms our
bias hypothesis.

After this analysis, our error correction algorithm was able to recover 522 bits for
2632 traces. One interesting metric is the number of errors considering both LS sequences
(i.e. p and q) that it handled per key, and Figure 6 (Middle) shows the boxplots of the
aggregate number of errors in both LS sequences for recovering various bit quantities. The
data suggest the number of errors successfully handled is diverse—for example, recovering
522 bits (rightmost boxplot), this metric ranges from 24 to 108. It implies that our error
correction algorithm with Table 2 parameters recovered 522 bits in 2632 traces with error
rates that range from 24/(2 · 522) = 0.02 to 108/(2 · 522) = 0.10, since we require 522 bits
of each prime (i.e. p and q).

Of these 9434 instances, we successfully recovered 2285 private keys after 12875 lattice
trials; Figure 6 (Right) “Computed” depicts these data points. This represents just over

232 Cache-Timing Attacks on RSA Key Generation

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 200 300 400 500

S
u
rv

iv
al

 p
ro

b
ab

il
it

y

Recovered bits

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

E
rr

o
rs

Bit length

 0.6

 0.7

 0.8

 0.9

 0 25 50 75 100 125 150 175

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Lattice iterations

Computed
Projected

Figure 6: Left: bit recovery survival plot. Middle: number of errors successfully handled
by our error correction algorithm. Right: Lattice iterations for successful instances.

Table 3: Cluster computation effort in CPU minutes across phases and CPUs.

Error correction phase Lattice phase
CPU Median Mean Dev. Median Mean Dev.

E5-2670 103.0 103.7 41.2 6.2 6.7 1.7
E5-2680 92.3 90.4 36.1 4.3 4.3 0.3
E5-2630 100.0 95.0 40.1 6.8 7.3 1.8

45 days of CPU time. The remaining 7149 instances break down as follows, which we
analyzed using the ground truth private keys. For 347 instances, the partial prime factor
remained amongst the candidates, yet had a poor ranking, hence the number of lattice
iterations needed exceeding our fixed allowed time (4 h); Figure 6 (Right) “Projected”
depicts these data points. In these cases, we verified the lattice output at that future
iteration indeed yields the intended factor. The remaining 6802 instances failed to retain
the correct candidate. To find a solution, the error correction algorithm with round-robin
enumeration achieved an impressive median of one lattice iteration for successful instances.

End-to-end attack summary. From a large data set of 9434 independent traces, our
end-to-end attack achieves a success rate of 27.89%. The error correction algorithm was
able to fix/recover 522 bits for 2632 traces. At the same time, the lattice attack succeeded
for all these 2632 traces, showing the robustness of our lattice attack parameters for 522
bits (Table 4).

6 Conclusion
In this work, we proposed a methodology to analyze cryptographic software for traversal
of known side-channel insecure code paths. Applying our methodology to RSA key
generation in OpenSSL uncovered three new vulnerabilities, one of which we designed an
end-to-end cache-timing attack around, leading to key recovery with good probability and
modest computational effort. The attack chain consisted of (1) gathering timings with
a combination of Flush+Reload and performance degradation; (2) locating the trace
segments of interest (two specific GCD executions) within abundant data; (3) transforming
these traces into noisy LS-sequences representing GCD algorithm state; (4) executing our
error correction algorithm, resulting in a ranked list of partial prime factor candidates;
(5) formulating lattice problems for these candidates that recover the unknown portion;
(6) testing if the result yields a prime factor of the RSA modulus N , hence the private
key. Executing 10K trials and moving the analysis to a cluster, we achieved roughly a 27%
success rate for full key recovery. We close with lessons learned from our work.

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 233

Lesson 1: Secure by default. Similar to two recent works [PGBY16, PGB17], two of the
vulnerabilities our methodology uncovered are due to insecure default behavior—failure
to set a particular flag that, by early exit, diverts the code through algorithms with
SCA mitigations. Had the logic been inverted, taking the secure paths by default would
have prevented these vulnerabilities. For OpenSSL, these new vulnerabilities continue an
unfortunate trend of insecure by default failures that went undetected during unit testing.

Lesson 2: Knowledge transfer. Our end-to-end attack exploits only one of the three
vulnerabilities our methodology uncovered. The function we targeted is oblivious to
the constant-time flag, hence having it set or clear has no effect on our attack. Our
root cause analysis (Section 3.1) suggests that the mitigations mainlined as a result of
pioneering academic work [AGS07] failed to consider RSA key generation as a whole, and
the similarities between GCD computation (which we exploited) and modular inversion with
respect to branching behavior went unnoticed when these mitigations were independently
developed. This disconnect demonstrates the critical importance of engineers working
side-by-side with cryptographers to ensure that academic results reach their intended
impact on real-world products.

Affected versions and responsible disclosure. The issues presented in this paper affected
OpenSSL versions 1.1.0-1.1.0h and 1.0.2-1.0.2o. Following responsible disclosure procedures,
we reported these issues to OpenSSL and provided fixes, subsequently merged into the
1.0.2 and 1.1.0 branches after the embargo lifted. OpenSSL 1.1.1 did not exist at that
time, thus it was never impacted. OpenSSL assigned CVE-2018-0737 based on our work.

Acknowledgments
We would like to thank to Matúš Nemec for sharing his results. We thank Tampere Center
for Scientific Computing (TCSC) for generously granting us access to computing cluster
resources. Supported in part by Academy of Finland grant 303814. The second author
was supported in part by a Nokia Foundation Scholarship and by the Pekka Ahonen Fund
through the Industrial Research Fund of Tampere University of Technology. This article is
based in part upon work from COST Action IC1403 CRYPTACUS, supported by COST
(European Cooperation in Science and Technology). This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 804476).

References
[ACSS17] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento, and Santiago

Sánchez-Solano. “SPA vulnerabilities of the binary extended Euclidean al-
gorithm”. In: J. Cryptographic Engineering 7.4 (2017), pp. 273–285. doi:
10.1007/s13389-016-0135-4. url: https://doi.org/10.1007/s13389-
016-0135-4.

[AGS07] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. “New Branch Prediction
Vulnerabilities in OpenSSL and Necessary Software Countermeasures”. In:
Cryptography and Coding, 11th IMA International Conference, Cirencester,
UK, December 18-20, 2007, Proceedings. Ed. by Steven D. Galbraith. Vol. 4887.
Lecture Notes in Computer Science. Springer, 2007, pp. 185–203. doi: 10.
1007/978-3-540-77272-9_12. url: https://doi.org/10.1007/978-3-
540-77272-9_12.

234 Cache-Timing Attacks on RSA Key Generation

[Ald+17] Alejandro Cabrera Aldaya et al. “Side-channel analysis of the modular in-
version step in the RSA key generation algorithm”. In: I. J. Circuit Theory
and Applications 45.2 (2017), pp. 199–213. doi: 10.1002/cta.2283. url:
https://doi.org/10.1002/cta.2283.

[All+16] Thomas Allan et al. “Amplifying side channels through performance degra-
dation”. In: Proceedings of the 32nd Annual Conference on Computer Se-
curity Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9,
2016. Ed. by Stephen Schwab, William K. Robertson, and Davide Balzarotti.
ACM, 2016, pp. 422–435. doi: 10 . 1145 / 2991079 . 2991084. url: http :
//doi.acm.org/10.1145/2991079.2991084.

[Ant+17] Timos Antonopoulos et al. “Decomposition instead of self-composition for
proving the absence of timing channels”. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. Ed. by Albert Cohen and
Martin T. Vechev. ACM, 2017, pp. 362–375. doi: 10.1145/3062341.3062378.
url: https://doi.org/10.1145/3062341.3062378.

[AT07] Sarang Aravamuthan and Viswanatha Rao Thumparthy. “A Parallelization
of ECDSA Resistant to Simple Power Analysis Attacks”. In: Proceedings of
the Second International Conference on COMmunication System softWAre
and MiddlewaRE (COMSWARE 2007), January 7-12, 2007, Bangalore, India.
Ed. by Sanjoy Paul, Henning Schulzrinne, and G. Venkatesh. IEEE, 2007. doi:
10.1109/COMSWA.2007.382592. url: https://doi.org/10.1109/COMSWA.
2007.382592.

[Bau+14] Aurélie Bauer et al. “Side-Channel Attack against RSA Key Generation
Algorithms”. In: Cryptographic Hardware and Embedded Systems - CHES 2014
- 16th International Workshop, Busan, South Korea, September 23-26, 2014.
Proceedings. Ed. by Lejla Batina and Matthew Robshaw. Vol. 8731. Lecture
Notes in Computer Science. Springer, 2014, pp. 223–241. doi: 10.1007/978-
3-662-44709-3_13. url: https://doi.org/10.1007/978-3-662-44709-
3_13.

[Ber+13] Daniel J. Bernstein et al. “Factoring RSA Keys from Certified Smart Cards:
Coppersmith in the Wild”. In: Advances in Cryptology - ASIACRYPT 2013 -
19th International Conference on the Theory and Application of Cryptology
and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings,
Part II. Ed. by Kazue Sako and Palash Sarkar. Vol. 8270. Lecture Notes in
Computer Science. Springer, 2013, pp. 341–360. doi: 10.1007/978-3-642-
42045-0_18. url: https://doi.org/10.1007/978-3-642-42045-0_18.

[Ber+17] Daniel J. Bernstein et al. “Sliding Right into Disaster: Left-to-Right Sliding
Windows Leak”. In: Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture
Notes in Computer Science. Springer, 2017, pp. 555–576. doi: 10.1007/978-
3-319-66787-4_27. url: https://doi.org/10.1007/978-3-319-66787-
4_27.

[BH09] Billy Bob Brumley and Risto M. Hakala. “Cache-Timing Template Attacks”.
In: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference
on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings. Ed. by Mitsuru Matsui. Vol. 5912.
Lecture Notes in Computer Science. Springer, 2009, pp. 667–684. doi: 10.
1007/978-3-642-10366-7_39. url: https://doi.org/10.1007/978-3-
642-10366-7_39.

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 235

[BM03] Johannes Blömer and Alexander May. “New Partial Key Exposure Attacks on
RSA”. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings. Ed. by Dan Boneh. Vol. 2729. Lecture Notes in Computer Science.
Springer, 2003, pp. 27–43. doi: 10.1007/978- 3- 540- 45146- 4_2. url:
https://doi.org/10.1007/978-3-540-45146-4_2.

[Bri+06] Ernie Brickell et al. “Software mitigations to hedge AES against cache-based
software side channel vulnerabilities”. In: IACR Cryptology ePrint Archive
2006.52 (2006). url: http://eprint.iacr.org/2006/052.

[Cla+10] Christophe Clavier et al. “Horizontal Correlation Analysis on Exponentiation”.
In: Information and Communications Security - 12th International Conference,
ICICS 2010, Barcelona, Spain, December 15-17, 2010. Proceedings. Ed. by
Miguel Soriano, Sihan Qing, and Javier López. Vol. 6476. Lecture Notes in
Computer Science. Springer, 2010, pp. 46–61. doi: 10.1007/978-3-642-
17650-0_5. url: https://doi.org/10.1007/978-3-642-17650-0_5.

[Cop96] Don Coppersmith. “Finding a Small Root of a Univariate Modular Equation”.
In: Advances in Cryptology - EUROCRYPT ’96, International Conference on
the Theory and Application of Cryptographic Techniques, Saragossa, Spain,
May 12-16, 1996, Proceeding. Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes
in Computer Science. Springer, 1996, pp. 155–165. doi: 10.1007/3-540-
68339-9_14. url: https://doi.org/10.1007/3-540-68339-9_14.

[Cop97] Don Coppersmith. “Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities”. In: J. Cryptology 10.4 (1997), pp. 233–260. doi: 10.
1007/s001459900030. url: https://doi.org/10.1007/s001459900030.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In:
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar.
Vol. 2523. Lecture Notes in Computer Science. Springer, 2002, pp. 13–28.
doi: 10.1007/3-540-36400-5_3. url: https://doi.org/10.1007/3-540-
36400-5_3.

[DK17] Goran Doychev and Boris Köpf. “Rigorous analysis of software countermea-
sures against cache attacks”. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017. Ed. by Albert Cohen and Martin T.
Vechev. ACM, 2017, pp. 406–421. doi: 10.1145/3062341.3062388. url:
https://doi.org/10.1145/3062341.3062388.

[Doy+15] Goran Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache
Side Channels”. In: ACM Trans. Inf. Syst. Secur. 18.1 (2015), 4:1–4:32. doi:
10.1145/2756550. url: https://doi.org/10.1145/2756550.

[FGS09] Thomas Finke, Max Gebhardt, and Werner Schindler. “A New Side-Channel
Attack on RSA Prime Generation”. In: Cryptographic Hardware and Embedded
Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings. Ed. by Christophe Clavier and Kris Gaj.
Vol. 5747. Lecture Notes in Computer Science. Springer, 2009, pp. 141–155. doi:
10.1007/978-3-642-04138-9_11. url: https://doi.org/10.1007/978-3-
642-04138-9_11.

[Fip] Digital Signature Standard (DSS). FIPS PUB 186-4. National Institute of
Standards and Technology, 2013. doi: 10.6028/NIST.FIPS.186-4. url:
https://doi.org/10.6028/NIST.FIPS.186-4.

236 Cache-Timing Attacks on RSA Key Generation

[Gri+19] Iaroslav Gridin et al. “Triggerflow: Regression Testing by Advanced Execution
Path Inspection”. In: Detection of Intrusions and Malware, and Vulnerability
Assessment - 16th International Conference, DIMVA 2019, Gothenburg, Swe-
den, June 19-20, 2019, Proceedings. Ed. by Roberto Perdisci et al. Vol. 11543.
Lecture Notes in Computer Science. Springer, 2019, pp. 330–350. doi: 10.
1007/978-3-030-22038-9_16. url: https://doi.org/10.1007/978-3-
030-22038-9_16.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache Template At-
tacks: Automating Attacks on Inclusive Last-Level Caches”. In: 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015. Ed. by Jaeyeon Jung and Thorsten Holz. USENIX Associa-
tion, 2015, pp. 897–912. url: https : / / www . usenix . org / conference /
usenixsecurity15/technical-sessions/presentation/gruss.

[GVY17] Daniel Genkin, Luke Valenta, and Yuval Yarom. “May the Fourth Be With
You: A Microarchitectural Side Channel Attack on Several Real-World Appli-
cations of Curve25519”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham et al.
ACM, 2017, pp. 845–858. doi: 10 . 1145 / 3133956 . 3134029. url: http :
//doi.acm.org/10.1145/3133956.3134029.

[Hen+12] Nadia Heninger et al. “Mining Your Ps and Qs: Detection of Widespread
Weak Keys in Network Devices”. In: Proceedings of the 21th USENIX Se-
curity Symposium, Bellevue, WA, USA, August 8-10, 2012. Ed. by Ta-
dayoshi Kohno. USENIX Association, 2012, pp. 205–220. url: https://
www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/heninger.

[Hin10] M. Jason Hinek. Cryptanalysis of RSA and its variants. Chapman & Hall/CRC
Cryptography and Network Security. CRC Press, 2010. isbn: 978-1-4200-
7518-2. doi: 10.1201/9781420075199. url: https://doi.org/10.1201/
9781420075199.

[HMM10] Wilko Henecka, Alexander May, and Alexander Meurer. “Correcting Errors
in RSA Private Keys”. In: Advances in Cryptology - CRYPTO 2010, 30th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings. Ed. by Tal Rabin. Vol. 6223. Lecture Notes in Computer Science.
Springer, 2010, pp. 351–369. doi: 10.1007/978-3-642-14623-7_19. url:
https://doi.org/10.1007/978-3-642-14623-7_19.

[How97] Nick Howgrave-Graham. “Finding Small Roots of Univariate Modular Equa-
tions Revisited”. In: Cryptography and Coding, 6th IMA International Confer-
ence, Cirencester, UK, December 17-19, 1997, Proceedings. Ed. by Michael Dar-
nell. Vol. 1355. Lecture Notes in Computer Science. Springer, 1997, pp. 131–142.
doi: 10.1007/BFb0024458. url: https://doi.org/10.1007/BFb0024458.

[HS09] Nadia Heninger and Hovav Shacham. “Reconstructing RSA Private Keys from
Random Key Bits”. In: Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings. Ed. by Shai Halevi. Vol. 5677. Lecture Notes in Computer
Science. Springer, 2009, pp. 1–17. doi: 10.1007/978-3-642-03356-8_1. url:
https://doi.org/10.1007/978-3-642-03356-8_1.

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 237

[IES16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Cross Processor Cache
Attacks”. In: Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016. Ed. by Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang. ACM,
2016, pp. 353–364. doi: 10.1145/2897845.2897867. url: http://doi.acm.
org/10.1145/2897845.2897867.

[Inc+16] Mehmet Sinan Inci et al. “Cache Attacks Enable Bulk Key Recovery on
the Cloud”. In: Cryptographic Hardware and Embedded Systems - CHES
2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-
19, 2016, Proceedings. Ed. by Benedikt Gierlichs and Axel Y. Poschmann.
Vol. 9813. Lecture Notes in Computer Science. Springer, 2016, pp. 368–388. doi:
10.1007/978-3-662-53140-2_18. url: https://doi.org/10.1007/978-3-
662-53140-2_18.

[Kle+10] Thorsten Kleinjung et al. “Factorization of a 768-Bit RSA Modulus”. In:
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Ed. by Tal Rabin.
Vol. 6223. Lecture Notes in Computer Science. Springer, 2010, pp. 333–350. doi:
10.1007/978-3-642-14623-7_18. url: https://doi.org/10.1007/978-3-
642-14623-7_18.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In:
2019 IEEE Symposium on Security and Privacy, SP 2019, Proceedings, 20-29
May 2019, San Francisco, California, USA. IEEE, 2019, pp. 19–37. doi: 10.
1109/SP.2019.00002. url: https://doi.org/10.1109/SP.2019.00002.

[Kun15] Noboru Kunihiro. “An Improved Attack for Recovering Noisy RSA Secret Keys
and Its Countermeasure”. In: Provable Security - 9th International Conference,
ProvSec 2015, Kanazawa, Japan, November 24-26, 2015, Proceedings. Ed. by
Man Ho Au and Atsuko Miyaji. Vol. 9451. Lecture Notes in Computer Science.
Springer, 2015, pp. 61–81. doi: 10.1007/978- 3- 319- 26059- 4_4. url:
https://doi.org/10.1007/978-3-319-26059-4_4.

[Kun18] Noboru Kunihiro. “Mathematical Approach for Recovering Secret Key from Its
Noisy Version”. In: Mathematical Modelling for Next-Generation Cryptography.
Vol. 29. Math. Ind. (Tokyo). Springer, Singapore, 2018, pp. 199–217. doi:
10.1007/978-981-10-5065-7. url: https://doi.org/10.1007/978-981-
10-5065-7.

[Len+12] Arjen K. Lenstra et al. “Public Keys”. In: Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and Ran Canetti.
Vol. 7417. Lecture Notes in Computer Science. Springer, 2012, pp. 626–642. doi:
10.1007/978-3-642-32009-5_37. url: https://doi.org/10.1007/978-3-
642-32009-5_37.

[Lip+18] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In:
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. Ed. by William Enck and Adrienne Porter Felt.
USENIX Association, 2018, pp. 973–990. url: https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp.

[LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. “Factoring polynomials
with rational coefficients”. In: Math. Ann. 261.4 (1982), pp. 515–534. issn:
0025-5831. doi: 10.1007/BF01457454. url: https://doi.org/10.1007/
BF01457454.

238 Cache-Timing Attacks on RSA Key Generation

[Nem+17] Matús Nemec et al. “The Return of Coppersmith’s Attack: Practical Factoriza-
tion of Widely Used RSA Moduli”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017. Ed. by Bhavani M. Thuraising-
ham et al. ACM, 2017, pp. 1631–1648. doi: 10.1145/3133956.3133969. url:
http://doi.acm.org/10.1145/3133956.3133969.

[NV10] Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm - Survey
and Applications. Information Security and Cryptography. Springer, 2010.
isbn: 978-3-642-02294-4. doi: 10.1007/978-3-642-02295-1. url: https:
//doi.org/10.1007/978-3-642-02295-1.

[Per05] Colin Percival. “Cache Missing for Fun and Profit”. In: BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings. 2005. url: http://www.daemonology.
net/papers/cachemissing.pdf.

[PGB17] Cesar Pereida García and Billy Bob Brumley. “Constant-Time Callees with
Variable-Time Callers”. In: 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by En-
gin Kirda and Thomas Ristenpart. USENIX Association, 2017, pp. 83–98.
isbn: 978-1-931971-40-9. url: https : / / www . usenix . org / conference /
usenixsecurity17/technical-sessions/presentation/garcia.

[PGBY16] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. ““Make Sure
DSA Signing Exponentiations Really are Constant-Time””. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl
et al. ACM, 2016, pp. 1639–1650. doi: 10.1145/2976749.2978420. url:
http://doi.acm.org/10.1145/2976749.2978420.

[Pol74] J. M. Pollard. “Theorems on factorization and primality testing”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society 76.3 (1974),
pp. 521–528. doi: 10.1017/S0305004100049252.

[Pol75] J. M. Pollard. “A Monte Carlo method for factorization”. In: BIT Numeri-
cal Mathematics 15.3 (1975), pp. 331–334. issn: 1572-9125. doi: 10.1007/
BF01933667. url: https://doi.org/10.1007/BF01933667.

[PPS12] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. “A
Coding-Theoretic Approach to Recovering Noisy RSA Keys”. In: Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings. Ed. by Xiaoyun Wang and Kazue Sako.
Vol. 7658. Lecture Notes in Computer Science. Springer, 2012, pp. 386–403. doi:
10.1007/978-3-642-34961-4_24. url: https://doi.org/10.1007/978-3-
642-34961-4_24.

[Rab80] Michael O. Rabin. “Probabilistic algorithm for testing primality”. In: J.
Number Theory 12.1 (1980), pp. 128–138. issn: 0022-314X. doi: 10.1016/
0022-314X(80)90084-0. url: https://doi.org/10.1016/0022-314x(80)
90084-0.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Comm. ACM 21.2 (1978),
pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url: https:
//doi.org/10.1145/359340.359342.

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 239

[Sch+17] Michael Schwarz et al. “Malware Guard Extension: Using SGX to Conceal
Cache Attacks”. In: Detection of Intrusions and Malware, and Vulnerability
Assessment - 14th International Conference, DIMVA 2017, Bonn, Germany,
July 6-7, 2017, Proceedings. Ed. by Michalis Polychronakis and Michael Meier.
Vol. 10327. Lecture Notes in Computer Science. Springer, 2017, pp. 3–24. doi:
10.1007/978-3-319-60876-1_1. url: https://doi.org/10.1007/978-3-
319-60876-1_1.

[Ste67] Josef Stein. “Computational problems associated with Racah algebra”. In:
Journal of Computational Physics 1.3 (1967), pp. 397–405. issn: 00219991. doi:
10.1016/0021-9991(67)90047-2. url: https://doi.org/10.1016/0021-
9991(67)90047-2.

[VEW12] Camille Vuillaume, Takashi Endo, and Paul Wooderson. “RSA Key Generation:
New Attacks”. In: Constructive Side-Channel Analysis and Secure Design -
Third International Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings. Ed. by Werner Schindler and Sorin A. Huss. Vol. 7275.
Lecture Notes in Computer Science. Springer, 2012, pp. 105–119. doi: 10.
1007/978-3-642-29912-4_9. url: https://doi.org/10.1007/978-3-642-
29912-4_9.

[Wan+17] Shuai Wang et al. “CacheD: Identifying Cache-Based Timing Channels in
Production Software”. In: 26th USENIX Security Symposium, USENIX Se-
curity 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by Engin
Kirda and Thomas Ristenpart. USENIX Association, 2017, pp. 235–252. url:
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/wang-shuai.

[Wei+18] Samuel Weiser et al. “DATA - Differential Address Trace Analysis: Find-
ing Address-based Side-Channels in Binaries”. In: 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. Ed. by William Enck and Adrienne Porter Felt. USENIX Associa-
tion, 2018, pp. 603–620. url: https : / / www . usenix . org / conference /
usenixsecurity18/presentation/weiser.

[Wic+18] Jan Wichelmann et al. “MicroWalk: A Framework for Finding Side Channels in
Binaries”. In: Proceedings of the 34th Annual Computer Security Applications
Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM,
2018, pp. 161–173. doi: 10.1145/3274694.3274741. url: https://doi.org/
10.1145/3274694.3274741.

[Wie90] Michael J. Wiener. “Cryptanalysis of short RSA secret exponents”. In: IEEE
Trans. Information Theory 36.3 (1990), pp. 553–558. doi: 10.1109/18.54902.
url: https://doi.org/10.1109/18.54902.

[WSB18] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single Trace Attack
Against RSA Key Generation in Intel SGX SSL”. In: Proceedings of the 2018
on Asia Conference on Computer and Communications Security, AsiaCCS
2018, Incheon, Republic of Korea, June 04-08, 2018. Ed. by Jong Kim et
al. ACM, 2018, pp. 575–586. doi: 10.1145/3196494.3196524. url: http:
//doi.acm.org/10.1145/3196494.3196524.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems”. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 640–656. doi:
10.1109/SP.2015.45. url: https://doi.org/10.1109/SP.2015.45.

240 Cache-Timing Attacks on RSA Key Generation

[YF14] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. USENIX Association, 2014, pp. 719–732. isbn: 978-1-931971-15-7. url:
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/yarom.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA”. In: Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings. Ed. by Benedikt Gierlichs
and Axel Y. Poschmann. Vol. 9813. Lecture Notes in Computer Science.
Springer, 2016, pp. 346–367. doi: 10.1007/978-3-662-53140-2_17. url:
https://doi.org/10.1007/978-3-662-53140-2_17.

A Lattice Construction and Parametrization
Coppersmith’s method reduces the modular equation problem i.e. f(x) = 0 mod p to
an equation over the integers i.e. g(x) = 0 with roots easily found by algorithms like
Berlekamp-Zassenhaus. This transformation employs lattice reduction algorithms such as
LLL [LLL82] assuming the original modular equation root is small [Cop96].

Following Coppersmith’s approach, Howgrave-Graham [How97] revisited the lattice
construction and proposed a new method to build a lattice that allows obtaining a g(x) = 0
from the original modular equation f(x) = 0 mod p. Howgrave-Graham lattice construction
is often preferred due to its simplicity and numerous practical advantages [How97, NV10].

Factoring N knowing LSBs of p. Assume we know wlog. the n LSBs of a prime p that
is a factor of N , i.e. p is expressed as

p = p̃2n + p0

where p0 is the known portion and p̃ the only unknown. Hence p̃ is a small root of the
polynomial

f(x) = x2n + p0 mod p |p̃| ≤ X

and in this case, small meaning that p̃ is bound by some known constant X. Coppersmith
approach requires f(x) to be monic. To achieve that, define b = 2−n mod N , where
b2n = 1 + kN for some integer k, then express f(x) as follows.

f(x) = x + bp0 mod p |p̃| ≤ X (5)

Coppersmith-Howgrave-Graham approach aims to solve (5) by reducing this univariate
modular equation to an equation over the integers, visualized below.

f(x0) = 0 mod p ⇒ fi(x0) = 0 mod pm ⇒ B
LLL⇒ g(x0) = 0︸ ︷︷ ︸

Coppersmith-Howgrave-Graham

From the monic polynomial f(x), build a set of d = m + t polynomials fi(x) over pm

according to the Howgrave-Graham approach, such that these fi(x) have the same root
x0 = p̃ modulo pm as f(x) modulo p [How97]. Said polynomials are as follows.

fi(x) = N ifm−i(x) i = 0, 1, · · · , m− 1
fm+i(x) = xifm(x) i = 0, 1, · · · , t− 1

A. C. Aldaya, C. P. García, L. M. Alvarez Tapia, B. B. Brumley 241

The next step builds a lattice B from the fi(x) for 0 ≤ i < d. Following Howgrave-
Graham [How97] the basis vectors of B are the coefficient vectors of fi(xX). Then,
lattice-reduced B should yield a g(x) over the integers if the Coppersmith-Howgrave-
Graham conditions are respected or heuristically relaxed—we expand later. The small
root bound X defines these conditions and the lattice dimension d = m + t, therefore we
select them such that we can factor N knowing n bits of p.

A.1 Lattice Parametrization
Three parameters control the effectiveness and efficiency of this method: X, m and t, where
the latter two control the lattice dimension (d = m + t) hence the amount of information
in it. This dimension dictates the running time of LLL, therefore the goal is to minimize
m and t considering that the attacker should run it for each candidate resulting from the
error correction phase.

To validate the Coppersmith-Howgrave-Graham approach, we used a public SageMath
implementation5. The objective of this validation is to obtain—for n, a given number of
LSBs—which parameter set (X, m, t) yields the right solution with very high probability
while minimizing the runtime as much as possible. This approach is very similar to that
of Nemec et al. [Nem+17], where the authors fixed the bound X and optimize m and
t—however we also tweak X to get some runtime improvements.

One of the main tasks for using Coppersmith-Howgrave-Graham method is selecting
the bound X of the unknown root. Recalling Section 2.1, N of an RSA-2048 key has
exactly 2048 bits by forcing the two MSBs of p and q to be set, i.e. they have exactly
1024 bits. Hence for RSA-2048, the inequality (6) holds, where the ordering of p and q is
arbitrary.

q <
√

N < p < 21024 < 2
√

N < N (6)
Considering that we know the n LSBs of p, we divide (6) by 2n to obtain bounds for p̃.

q

2n
<

√
N

2n
< p̃ <

21024

2n
<

2
√

N

2n
<

N

2n

This results in the bound X = 2
√

N
2n that should work for both primes. However, in

practice the Coppersmith conditions are slightly pessimistic, hence in our analysis we also
consider X =

√
N

2n .

Optimizing parameters. We aim at finding the parameters that solve the partial factoriza-
tion problem given n LSBs of a prime p. We are interested in obtaining this parametrization
for different values of n, starting from Coppersmith bound for RSA-2048: 512 to 552
bits. The optimization process is as follows: (1) for each n, X, m and t we generate 100
RSA-2048 keys using OpenSSL and try to recover the remaining bits of both primes; (2)
filter out those sets (X, m, t) that do not achieve 100% success rate; (3) choose the set
that minimizes m + t for each n.

It is worth noting that each lattice test implies recovering the same key with p and
with q. This is due to the fact that in our attack scenario (see Section 3.3), the adversary
is unaware if the known LSBs correspond to the larger or smaller prime, hence does not
know if the bound is respected.

For all values of n, the bound X =
√

N
2n provides highly probable solutions and sometimes

the lattice dimension shrinks by one. At first glance, this lattice reduction might seem
insignificant. But, for example, with n = 522 it implies a runtime reduction of roughly
40 s. Indeed this is quick for a single lattice run, but when the number of candidates to
test is high (i.e. after error correction) every second counts.

5D. Wong, function coppersmith_howgrave_univariate [link]

242 Cache-Timing Attacks on RSA Key Generation

Table 4 summarizes the results of this characterization process for X =
√

N
2n . One

important aspect is that, for either value of X, we could not achieve the Coppersmith
bound (n = 512). However, as pointed out in Section 5.1 our simulations suggest that the
probability of recovering/correcting 512 bits is roughly the same as 522 bits, i.e. n = 522
is adequate in our setting.

We executed this parametrization on Sage 8.1 running on Ubuntu 16.04 on an Intel
i7-3770 3.4 GHz. The running times in Table 4 correspond to the average of 100 lattice
runs, dominated by the execution of LLL (Sage 8.1 default).

Table 4: Lattice attack characterization.

n m t time (s)
522 26 27 133.0
532 13 14 3.0
542 9 10 0.7
552 6 7 0.2

PUBLICATION
IV

Triggerflow: Regression Testing by Advanced Execution Path
Inspection

I. Gridin, C. Pereida García, N. Tuveri and B. B. Brumley

Detection of Intrusions and Malware, and Vulnerability Assessment - 16th
International Conference, DIMVA 2019, Gothenburg, Sweden, June 19-20, 2019,
Proceedings. Ed. by R. Perdisci, C. Maurice, G. Giacinto and M. Almgren. 2019,

330–350
doi: 10.1007/978-3-030-22038-9_16

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1007/978-3-030-22038-9_16

Triggerflow: Regression Testing by Advanced
Execution Path Inspection

Iaroslav Gridin, Cesar Pereida García, Nicola Tuveri, and Billy Bob Brumley

Tampere University, Tampere, Finland
{iaroslav.gridin,cesar.pereidagarcia,nicola.tuveri,billy.brumley}@tuni.fi

Abstract. Cryptographic libraries often feature multiple implementa-
tions of primitives to meet both the security needs of handling private
information and the performance requirements of modern services when
the handled information is public. OpenSSL, the de-facto standard free
and open source cryptographic library, includes mechanisms to differen-
tiate the confidential data and its control flow, including run-time flags,
designed for hardening against timing side-channels, but repeatedly acci-
dentally mishandled in the past. To analyze and prevent these accidents,
we introduce Triggerflow, a tool for tracking execution paths that, as-
sisted by source annotations, dynamically analyzes the binary through
the debugger. We validate this approach with case studies demonstrat-
ing how adopting our method in the development pipeline would have
promptly detected such accidents. We further show-case the value of the
tooling by presenting two novel discoveries facilitated by Triggerflow: one
leak and one defect.

Keywords: software testing · regression testing · continuous integration
· dynamic program analysis · applied cryptography · side-channel analysis
· OpenSSL

1 Introduction

Attacks based on Side-Channel Analysis (SCA) are ubiquitous in microarchitec-
tures and recent research [22, 20] suggest that they are much harder to mitigate
than originally believed due to flawed system microarchitectures. Constant-time
programming techniques are arguably the most effective and cheapest counter-
measure against SCA. Functions implemented following this approach, execute
and compute results time-independent from the secret inputs, thus avoiding in-
formation leakage.

Implementing constant-time code requires a highly specialized and ever grow-
ing skill set such as SCA techniques, operating systems, compilers, signal pro-
cessing, and even hardware architecture; thus it is a difficult and error-prone
task. Unfortunately, code is not always easily testable for SCA flaws due to code
complexity and the difficulty of creating the tests themselves. Moreover, cryp-
tography libraries tend to offer several versions of a single algorithm to be used
in particular cases depending on the users’ needs, thus amplifying the confusion
and the possibility of using SCA vulnerable functions.

2 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

To that end, we present Triggerflow, a tool that allows to selectively track
code paths during program execution. The approach used by Triggerflow is ele-
gant in its simplicity: it reports code paths taken by a given program according
to the annotations defined by the user. This enables designing simple regres-
sion tests to track control flow skew. Moreover, the tool is extendable and can
be integrated in the Continuous Integration (CI) development pipeline, to au-
tomatically test code paths in new builds. Triggerflow can be used both as a
stand-alone tool to continuously test for known flaws, and as a support tool for
other SCA tools when the source code is available. It easily allows examining
code execution paths to pinpoint code flaws and regressions.

We motivate our work and demonstrate Triggerflow’s effectiveness by adapt-
ing it to work with OpenSSL due to its rich history of known SCA attacks,
its wide usage in the Internet, and its rapid and constant development stage.
We start by back-testing OpenSSL’s previously known and exploited code flaws,
where our tool is able to easily find and corroborate the vulnerabilities. Addition-
ally, using Triggerflow we identify new bugs and SCA vulnerabilities affecting
the most recent OpenSSL 1.1.1a version.

In summary, Section 2 discusses previous problems and pitfalls in OpenSSL
that led to side-channel attacks. Section 3 describes the Triggerflow tool and
Section 4 its application in a CI setting. We analyze in Section 5 the new bugs
and vulnerabilities affecting OpenSSL, and in Section 6 we back-test known
OpenSSL SCA vulnerabilities to validate the tool’s effectiveness. Section 7 looks
at related work. In Section 8 we discuss the limitations of our tool, and finally
we conclude in Section 9.

2 Background

2.1 The OpenSSL BN_FLG_CONSTTIME Flag

In 2005, OpenSSL started considering SCA in their threat model, introducing
code changes in OpenSSL version 0.9.7. The (then new) RSA cache-timing at-
tack by Percival [25] allowed an attacker to recover secret exponent bits during
the sliding-window exponentiation algorithm on systems supporting simultane-
ous multi-threading (SMT). As a countermeasure to this attack, the OpenSSL
team adopted two important changes: Commit 3 introduced the constant-time
exponentiation flag and BN_mod_exp_mont_consttime, a fixed-window modu-
lar exponentiation function; and Commit 4 implemented exponent padding. By
combining these countermeasures, OpenSSL aimed for SCA resistant code path
execution when performing secret key operations during DSA, RSA, and Diffie-
Hellman (DH) key exchange, with the goal of performing exponentiation reason-
ably independent of the exponent weight or length.

The concept is to set the BN_FLG_EXP_CONSTTIME flag on BIGNUM variables
containing secret information: e.g. private keys, secret prime values, nonces, and
integer scalars. Once set, the flag drives access to the constant-time security crit-
ical modular exponentiation function supporting the flag. Due to performance

Triggerflow: Regression Testing by Advanced Execution Path Inspection 3

reasons, OpenSSL kept both functions: the constant-time version and the non
constant-time version of the modular exponentiation operation. The library de-
faults to the non constant-time function since it assumes most operations are
not secure critical, thus they can be done faster, but upon entry to the non
constant-time function the input BN variables are checked for the flag and if
the program detects the flag is set, it takes an early exit to the constant-time
function, otherwise it continues the insecure code path.

As research and attacks on SCA improved, Acıiçmez et al. [1] demonstrated
new SCA vulnerabilities in OpenSSL. More precisely, the authors showed that
the default BN division function, and the Binary Extended Euclidean algorithm
(BEEA) function—used in OpenSSL to perform modular inversion operations—
are highly dependent on their input values, therefore they leak enough informa-
tion to perform a cache-timing attack. This discovery forced the introduction
of Commit 14, implementing the BN_div_no_branch and BN_mod_inverse_no-
_branch functions, offering a constant-time implementation for the respective
operations. Moreover, BN_FLG_EXP_CONSTTIME was renamed to BN_FLG_CONST-
TIME to reflect the fact that it offered protection not only to the modular expo-
nentiation function, but to other functions as well.

2.2 Flag Exploitation

During the last three years, the BN_FLG_CONSTTIME flag has received a fair
amount of attention due to its flawed effectiveness as an SCA countermeasure
in OpenSSL. Pereida García et al. [27] showed the issues of having an insecure-
by-default approach in OpenSSL by exploiting a flaw during DSA signature
generation due to a flag propagation issue. Performing a Flush+Reload [39]
attack, the authors fully recover DSA private keys.

Following the previous work, Pereida García and Brumley [26] identified yet
another flaw in OpenSSL, this time involving the BN_mod_inverse function.
Failure to set the flag allowed the authors to successfully perform a cache-timing
attack using Flush+Reload to recover secret keys during ECDSA P-256 sig-
nature generation in SSH and TLS protocols.

Building on top of the previous works, two research teams [35, 3] discovered
independently several SCA flaws in OpenSSL. On the one hand, Aldaya et al. [3]
developed and used a simple but effective methodology to find vulnerable code
paths in OpenSSL. The authors tracked SCA vulnerable functions in OpenSSL
using GDB by placing breakpoints on them. They executed the RSA key gen-
eration command, hitting the breakpoints and thus reveling flaws in OpenSSL’s
RSA key generation implementation. On the other hand, [35] analyzed the RSA
key generation implementation and also discovered calls to the SCA vulnerable
GCD function. In both cases, the authors noticed a combination of non constant-
time functions in use, failure to set flags, and flags not propagated to BIGNUM
variables caused OpenSSL to leak key bits. Moreover, both works demonstrate
that it is possible to retrieve enough key bits to fully recover an RSA key after a
single SCA trace using different cache techniques and threat models (page-level
or Flush+Reload).

4 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

The previous works highlight a clear and serious issue surrounding the constant-
time flag. The developers need to identify all the possible security critical cases in
OpenSSL where the flag must be set in order to prevent SCA attacks, which has
proven to be a laborious and clearly error-prone task. Even if done thoroughly
and correctly, the developers must still ensure code changes do no introduce
regressions surrounding the flag.

3 Tracking Execution Paths with Triggerflow

OpenSSL’s regression-testing framework has significantly improved over time,
notably following the HeartBleed vulnerability. Nevertheless, the framework has
its limitations, with real-world constraints largely imposed by portability require-
ments weighed against engineering effort. With respect to the BN_FLG_CONST-
TIME flag, the testing framework does not provide a mechanism to track function
calls or examine the call stack. This largely contributes to the root cause of the
previously discussed vulnerabilities surrounding the BN_FLG_CONSTTIME flag: the
testing framework cannot accommodate a reasonable regression test in these in-
stances.

With this motivation, our work began by designing Triggerflow1: a tool for
tracking execution paths. After marking up the source code with special com-
ments, its purpose is to detect when code hits paths of interest. We wrote Trig-
gerflow in Ruby2 and it uses GDB3 for inspecting code execution. In support of
Open Science [18], Triggerflow is free and open source, distributed under MIT
license.

We chose GDB since it provides all the required functionality: an established
interface for choosing trace points and inspecting the program execution, as well
as a machine-readable interface4. Additionally, GDB supports a wide variety of
platforms, architectures, and languages.

Architecture. The high level concept of Triggerflow is as follows.

1. The inputs to Triggerflow are: a directory with annotated source code, in-
structions to build it, commands to run and debug, and optionally patches
to apply before building.

2. Triggerflow scans the source code for special keywords, which are typically
placed in comments near related lines of code, and builds a database of
annotations.

3. Triggerflow commences the build, then runs the given commands (triggers)
under GDB, instructed to set breakpoints at all points of interest.

4. When GDB reports hitting a breakpoint, Triggerflow inspects the backtrace
supplied by GDB, makes decisions based on the backtrace and stored anno-
tations, and possibly logs the code path that led to it.

1 https://gitlab.com/nisec/triggerflow
2 https://www.ruby-lang.org/en/
3 https://www.gnu.org/software/gdb/
4 https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html

Triggerflow: Regression Testing by Advanced Execution Path Inspection 5

In addition to verbose raw logging, Triggerflow provides output in Graphviz
DOT format, allowing easy conversion to PDF, image, and other formats.

Annotations. Using marked up source code allows leveraging existing tools
for merging code changes to (semi)automatically update annotations to reflect
codebase changes. It is best when annotations are maintained in the original
code, and updated by the author of related changes, but for the purposes of
code analysis by a third party, Triggerflow also supports storing annotations
separately, in form of patches that define annotation context. Our tool currently
supports four different annotations, described below and illustrated in Figure 1.

1. TRIGGERFLOW_POI is a point of interest and it is always tracked. The Trig-
gerflow tool reports back every time the executing code steps into it.

2. TRIGGERFLOW_POI_IF is a conditional point of interest, thus it is condition-
ally tracked. The Triggerflow tool reports back every time the code annotated
is stepped into and the given expression evaluates to true.

3. TRIGGERFLOW_IGNORE is an ignore annotation that allows to safely ignore
specific code lines resulting in code execution paths that are not interesting
(false positives).

4. TRIGGERFLOW_IGNORE_GROUP is a group ignore annotation that allows to
safely ignore a specific code execution path if and only if every line marked
with the same group ID is stepped into.

1 /* code before */
2 if(a % 2 == 0) // TRIGGERFLOW_POI
3 /* code after */

1 if(something) {
2 a = publickey; //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

3 }
4 call_suspicious_code(a) //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

1 /* code before */
2 call_suspicious_code(a) //

TRIGGERFLOW_POI_IF a.private()↪→
3 /* code after */

1 int call_suspicious_code(int a) {
2 // TRIGGERFLOW_POI
3 /* something interesting with a */
4 }
5 call_suspicious_code(public_key) //

TRIGGERFLOW_IGNORE↪→

Fig. 1. Annotations currently supported by Triggerflow.

3.1 Annotating OpenSSL

Using the known vulnerable code paths previously discussed in Section 2.2, we
created a set of annotations for OpenSSL with the intention to track potential
leakage during secure critical operations in different public key cryptosystems
such as DSA, ECDSA, RSA, as well as high-level CMS routines.

Following a direct approach, as Figure 2 illustrates we placed TRIGGERFLOW-
_POI annotations to track the code path execution of the most prominent infor-
mation-leaking functions previously exploited. We placed an annotation in the

6 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

BN_mod_exp_mont function immediately after the early exit to its constant-time
counterpart. In the BN_mod_inverse function, we placed a similar annotation
after the early exit. We added an annotation at the top of the non constant-
time BN_gcd function since it is known for being previously used during security
critical operations but this function does not have an exit to a constant-time
implementation, i.e., it is oblivious to the BN_FLG_CONSTTIME.

On the ECC code we annotated the ec_wNAF_mul function. This function
implements wNAF scalar multiplication, a known SCA vulnerable function ex-
ploited several times in the past [12, 8, 28, 4, 2]. Similar to the previous cases,
upon entry to this function, an early exit is available to a more SCA secure Mont-
gomery ladder scalar multiplication ec_scalar_mul_ladder, thus we added the
annotation immediately after the early exit.

The strategy to annotate BN_div varies depending on the OpenSSL branch.
For branches up to and including 1.1.0, the function checks the flag on BN
operands and assigns no_branch = 1 if it detects the flag. Hence we annotate
with a no_branch != 1 conditional breakpoint. The master and 1.1.1 branches
recently applied SCA hardening to its callee bn_div_fixed_top to make it obliv-
ious to the flag. The corner case is when the number of words in BN operands
are not equal, and inside the resulting data-dependent control flow we add an
unconditional point of interest annotation.

Ideally, the previous annotations should never be reached, since we assume
OpenSSL follows a constant-time code path during the execution of these secure
critical operations. Yet one of the most security-critical parts of the process is
marking false positive annotations. To give an idea of the scope of such marking,
with the above described point of interest annotations applied to the OpenSSL
1.1.0 branch, and no ignore annotations, Triggerflow identifies 84 potentially
errant code paths, provided with only a basic set of 25 triggers.

4 Continuous Integration

As previously discussed, our main motivation for Triggerflow is the need to test
for regressions in OpenSSL surrounding the BN_FLG_CONSTTIME flag. From the
software quality perspective, and given the previously exploited vulnerabilities
discussed later in Section 6, there is a clear need for an automated approach
that accounts for the time dimension and a rapidly changing codebase. Seem-
ingly small and insignificant changes can suddenly shift codepaths, and when
PRs are proposed and merged we want to be automatically informed. Using
code marked up for Triggerflow allows establishing CI, automatically testing
code for introducing unsafe codepaths. We propose (and deploy) the following
approach to establish an automatic CI pipeline using Triggerflow and GitLab’s
infrastructure, illustrated in Figure 3.

– Create a special Git repository containing Triggerflow configuration, trigger
list, annotations in form of Quilt5 patch queue, and a submodule containing

5 https://savannah.nongnu.org/projects/quilt

Triggerflow: Regression Testing by Advanced Execution Path Inspection 7

1 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar,↪→

2 size_t num, const EC_POINT *points[],
const BIGNUM *scalars[],↪→

3 BN_CTX *ctx)
4 {
5 /* ... */
6 if ((scalar == NULL) && (num == 1)) {
7 return ec_scalar_mul_ladder(group, r,

scalars[0], points[0], ctx);↪→
8 }
9 }

10
11 if (scalar != NULL) { /* TRIGGERFLOW_POI */

1 int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const
BIGNUM *num,↪→

2 const BIGNUM *divisor, BN_CTX *ctc
x)

3 {
4 /* ... */
5 div_n = sdiv->top;
6 num_n = snum->top;
7
8 if (num_n <= div_n) {
9 /* TRIGGERFLOW_POI */

10 /* caller didn't pad dividend -> no
constant-time guarantee... */↪→

1 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM
*in_b, BN_CTX *ctx)↪→

2 {
3 BIGNUM *a, *b, *t; /* TRIGGERFLOW_POI */

1 BIGNUM *BN_mod_inverse(BIGNUM *in,
2 const BIGNUM *a, const BIGNUM

*n, BN_CTX *ctx)↪→
3 {
4 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
5 BIGNUM *ret = NULL;
6 int sign;
7
8 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
9 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {

10 return BN_mod_inverse_no_branch(in, a, n, ctx);
11 }
12
13 bn_check_top(a); /* TRIGGERFLOW_POI */

1 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const
BIGNUM *p,↪→

2 const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *in_mont)↪→

3 {
4 /* ... */
5 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
6 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
7 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)

{
8 return BN_mod_exp_mont_consttime(rr, a, p, m,

ctx, in_mont);↪→
9 }

10
11 bn_check_top(a); /* TRIGGERFLOW_POI */

Fig. 2. Top left: a TRIGGERFLOW_POI annotation in the wNAF scalar multiplication
function after the early exit. Middle left: a TRIGGERFLOW_POI annotation during BN_div
execution. Bottom left: a TRIGGERFLOW_POI annotation in OpenSSL’s insecure BN_gcd
function. Top right: a TRIGGERFLOW_POI annotation in OpenSSL’s BN_mod_inverse
function after the early exit. Bottom right: a TRIGGERFLOW_POI annotation in BN_mod-
_exp_mont after the early exit.

Get next unrebased commit

Rebase CI repo on it

Conflicts?Await manual intervention

OpenSSL upstream

CI repo

Push to CI repo, trigger build
Yes No

Fig. 3. CI flow illustrated.

8 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

code to test (in our case, OpenSSL). This repository is hosted on a GitLab
instance and includes the description of the testing process in GitLab format,
.gitlab.yml.

– Two runners are established on separate machines, connected to the GitLab
instance. A runner is automated testing software which creates a container
and runs testing routines according to rules in .gitlab.yml. We maintain
two runners with different architectures, x86_64 and aarch64. The runners
are based in our infrastructure. When new code is pushed into the GitLab
repository and .gitlab.yml is present, runners execute the tests and report
status back to GitLab, where results are then reviewed.

– A separate software (repatcher) is continuously monitoring main OpenSSL
code repository for updates and adapting annotations to changed code. If
changes can be applied automatically, repatcher6 pushes updated code to
GitLab where it is tested. Otherwise, a human is notified to resolve conflicts
and update the patches manually. After that, repatcher’s work automatically
continues. Repatcher is based in our infrastructure.

This process is independent of any support from the original developers. Of
course, a better approach is to have developers themselves integrate and maintain
Triggerflow annotations upstream, or potentially enforce them at compile time.

Unfortunately, successful deployment of such a CI pipeline depends on code
being buildable on every upstream commit, which is sometimes not the case
with OpenSSL. Still, with minimal manual inspection it makes a great automatic
testing setup: Figure 4 illustrates our CI testing OpenSSL’s master branch us-
ing Triggerflow. The results of our CI system instance are public7, monitoring
master, 1.1.1 and 1.1.0 branches of OpenSSL.

Average build of OpenSSL on our runners takes 85 s on x86_64 (440 s on
aarch64), and Triggerflow takes average of 26 s to run our set of triggers on
x86_64 (92 s on aarch64).

Status Pipeline Commit Stages

 00:07:42
 1 hour ago

 00:07:52
 1 hour ago

 00:07:46
 1 hour ago

 passed

patched/mas… f3b5c690
[master:c8147d37ccaaf28c…

 passed #1494 by
 patched/mas… 81d96fbd

[master:fe16ae5f95fa86ddb…

 passed #1493 by
 patched/mas… 9fb8e7df

[master:0b76ce99aaa5678b…

#1495 by
latest

Fig. 4. GitLab CI running: Triggerflow testing OpenSSL code.

6 https://gitlab.com/nisec/repatcher
7 https://gitlab.com/nisec/openssl-triggerflow-ci

Triggerflow: Regression Testing by Advanced Execution Path Inspection 9

5 New Bugs and Vulnerabilities

With the tooling in place, our first task was to examine functionality issues that
could arise with applying the annotation patches to a shifting codebase. The EC
module recently underwent a quite heavy overhaul regarding SCA security [33].
We used that as a case study, and in this section we present two discoveries
facilitated by Triggerflow: one leak and one software defect.

5.1 A New Leak

We started from Commit 1 and the Triggerflow unit test in question is ECDSA
signing in ecdsa_ossl.c. The test passed at that commit, hence the tooling
proceeded with subsequent commits. They all passed unit testing, until reaching
Commit 2. The purpose of said commit was to fix a regression in the padding
of secret scalar inputs in the timing-resistant elliptic curve scalar multiplication,
using the group cardinality rather than the generator order, supporting cryp-
tosystems where the distinction is relevant (e.g., ECDH and cofactor variants).
Figure 5 illustrates the failed unit test.

openssl dgst -sha512
-sign key.pem -out

data.sig data

ecdsa_sign_setup()
crypto/ec/ecdsa_ossl.c:115

EC_POINT_get_aff-
ine_coordinates_GFp()
crypto/ec/ec_lib.c:768

int_bn_mod_inverse()
crypto/bn/bn_gcd.c:161

Fig. 5. Insecure flow: projective to affine point conversion (abridged).

The fix. In this case, what the tooling is telling us is that the code is travers-
ing the insecure modular inversion path when converting from projective to
affine coordinates. Examining this function, it has always been oblivious to the
constant-time flag, yet academic results suggest that said conversion should be
protected [24, 23]. Put another way, Commit 2 is not the culprit—the function
is insecure by design. Instead of simply enabling the flag, we chose8 to add a
field_inv function pointer inside the EC_METHOD structure, alongside existing
pointers for other finite field operations such as field_mul and field_sqr. This
allowed us to unify the finite field inversion across the EC module, instead of
each function meticulously enabling the constant-time flag when calling BN_mod-
_inverse. Once unified, we can ensure default SCA hardening through a single
interface. We provided three different implementations for this pointer for three
different EC_METHOD instances:

1. EC_GFp_mont_method is the default for prime curves and pre-computes a
Montgomery arithmetic structure for finite field arithmetic. This is conve-
nient for inversion via FLT, which is modular exponentiation with a fixed
exponent and variable base—benefiting generously from the Montgomery

8 https://github.com/openssl/openssl/pull/8254

10 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

arithmetic. Hence our field_inv implementation is a straightforward ver-
sion of FLT in this case.

2. EC_GFp_simple_method is a fallback method that contains much of the boil-
erplate code pointed to by several other EC_METHOD implementations. For
example, those that implement their own custom arithmetic, such as NIST
curves that use Mersenne-like primes. Here, no Montgomery structure is
guaranteed to exist. Hence our field_inv implementation is blinding, com-
puting a−1 = b/(ab) with b chosen uniformly at random and the ab term
inverted via BN_mod_inverse.

3. EC_GF2m_simple_method is the only method for binary curves present in the
OpenSSL codebase. Here field_inv is a simple wrapper around BN_GF2m-
_mod_inv, which is already SCA-hardened with blinding.

With these SCA-hardened field_inv function pointers in place, we then
transitioned all finite field inversions in the EC module from BN_mod_inverse
and BN_GF2m_mod_inv to our new pointer, including that of the projective to
affine conversion. After these changes, Triggerflow unit tests were successful.

5.2 A New Defect

The previous unit test failure is curious in the sense that Commit 2 was essen-
tially unrelated to projective to affine conversion. As stated above, that conver-
sion has always been oblivious to the constant-time flag. We were left with the
question of how such a change could trigger an insecure behavior in an unrelated
function.

Using the debugger to compare the internal state when executing EC_POINT-
_get_affine_coordinates_GFp in Commit 2 and its parent, we discovered that,
until the latter, a temporary variable storing one of the inputs to BN_mod-
_inverse was flagged as constant-time even if the flag was not explicitly set
with the dedicated function. The temporary variable in question was obtained
through a BN_CTX object, a buffer shared among various functions that sim-
ulates a hardware stack to store BIGNUM variables, minimizing costly memory
allocations—we defer to [13] for more details on the internals of the BN_CTX
object.

In this case, the BN_CTX object is created in the top level function implement-
ing signature generation for the ECDSA cryptosystem, and is shared among most
of its callees and descendants; the analysis led to discover that the BN_CTX buffer
retained the state of BN_FLG_CONSTTIME for each stored BIGNUM variable, allow-
ing functions to alter the value of BN_FLG_CONSTTIME, and thus occasionally the
execution flow, of subsequently called functions sharing the same BN_CTX.

The fix. This long-standing defect raises several concerns:

– as in the case that led to its discovery, retrieving a BIGNUM variable from
the BN_CTX with BN_FLG_CONSTTIME unexpectedly set, might lead to unin-
tentional execution of a timing-resistant code-path. This could be perceived
as a benign effect, but hides unexpected risks as it generates false negatives

Triggerflow: Regression Testing by Advanced Execution Path Inspection 11

during security analysis. Moreover, changes as trivial as getting one more
temporary variable from the shared BN_CTX—or even just changing the or-
der by which temporary variables are retrieved—can influence the execution
flow of seemingly unrelated functions, eluding manual analysis and defying
developer expectations;

– a BIGNUM variable with BN_FLG_CONSTTIME unexpectedly set could reach
function implementations that execute in variable time and should never
be called with confidential inputs marked with BN_FLG_CONSTTIME. Such
functions diligently check for API abuse and raise exceptions at run time:
this defect can then result in unexpected application crashes or potentially
expose to bug attacks;

– automated testing is made fragile, in part for the false negatives already
mentioned, but additionally because the test suite becomes not representa-
tive of external application usage of the library, as different usage patterns
of a shared BN_CTX in unrelated functions lead to different execution paths.
Finally, the generated failure reports could be misleading as changes in un-
related functions might end up triggering errors in other modules.

The fix itself was relatively straightforward, and consisted in unconditionally
clearing BN_FLG_CONSTTIME every time a BIGNUM variable is retrieved from a
BN_CTX9.

What is remarkable is how Triggerflow assisted in the discovery of a defect
that had been unnoticed for over a decade, automating the interaction with the
debugger to pinpoint which revisions triggered the anomalous behavior.

6 Validation

In order to validate our work, we present next a study of the known flaws briefly
discussed in Section 2.2 that led to several SCA attacks, security advisories,
and significant manpower downstream to address these issues. We present these
flaws as case studies, briefly discussing the root cause, security implications, and
the results of running our tooling against an annotated OpenSSL. We separate
the cases by cryptosystem and at the same we (mostly) follow the chronological
discovery of these flaws.

As part of the validation, we used the same OpenSSL versions as in the
original attacks. To that end, we forked OpenSSL branches on the respective
versions and then, we applied the set of annotations previously discussed in
Section 3.1. This approach allowed us to quickly back test and validate the
effectiveness of our tooling to detect potential leakage in OpenSSL.

The list of cases presented here is not exhaustive but serves three purposes:

1. it gives insight to the types of flaws that our Triggerflow is able to find;
2. it shows it is not a trivial task to do, let alone automate; and

9 https://github.com/openssl/openssl/pull/8253

12 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

3. it demonstrates the fragility of the BN_FLG_CONSTTIME countermeasure in-
troduced 14 years ago and the need of a secure-by-default approach in cryp-
tography libraries such as OpenSSL.

Moreover, the flaws and vulnerabilities presented in this section and in Sec-
tion 5 demonstrate the effectiveness and efficiency of integrating Triggerflow to
the development pipeline. Maintaining annotations, either as separate patches
or integrated in the code base, might be seen as tedious or error-prone but the
automation benefits outweigh the disadvantages. On the one hand, maintaining
annotations does not require deep and specialized understanding of the code,
compared to manually finding and triggering all the possible vulnerable code
paths across several platforms, CPUs, and versions. On the other hand, a mis-
placed annotation does not introduce flaws nor vulnerabilities, since they are
used only for testing and reporting purposes.

6.1 DSA

The DSA signature generation implementation in OpenSSL has arguably the
longest and most troubled history of SCA issues. In 2016, a decade after BN-
_FLG_CONSTTIME and the constant-time exponentiation function countermea-
sures were introduced, Pereida García et al. [27] discovered that the constant-
time path was not taken due to a flag propagation issue. The authors noticed
that BN_copy effectively copies the content from a BIGNUM variable to another
but it fails to copy the existing flags, thus flags are not propagated and the
constant-time flag must be set again. This issue left the DSA signature genera-
tion vulnerable to cache-timing attacks for more than a decade. To test this issue,
we pointed Triggerflow at our annotated OpenSSL_1_0_2k branch, resulting in
Figure 6 and therefore correctly reporting the flaw.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:285

BN_mod_exp_mont()
bn_exp.c:421

Fig. 6. Triggerflow detecting CVE-2016-2178, the flawed CVE-2005-0109 fix
(abridged).

The authors provided a fix for this issue in Commit 5, but at the same time
they introduced a new flaw in the modular inversion operation during DSA sig-
nature generation. This new vulnerability was enabled due to a missing constant-
time flag in one of the input values to the BN_mod_inverse function. At that
time, the flaw was confined to the development branch, subsequently promptly
fixed in Commit 6, thus it did not affect users. Figure 7 shows the result of
pointing Triggerflow to OpenSSL in Commit 5, detecting the flawed fix.

Later in 2018, Weiser et al. [36] found additional SCA vulnerabilities in DSA.
The authors exploited a timing variation due to the BIGNUM structure to re-

Triggerflow: Regression Testing by Advanced Execution Path Inspection 13

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:291

BN_mod_inverse()
bn_gcd.c:241

Fig. 7. Triggerflow detecting the flawed CVE-2016-2178 fix (abridged).

cover DSA private keys, an unrelated issue to the BN_FLG_CONSTTIME flag. How-
ever, the fix provided for this issue in Commit 8 was incomplete, and moreover
it introduced a new SCA flaw, once again due to not setting a flag properly.
Triggerflow detected this flaw (see Figure 8) in the OpenSSL_1_1_1 branch, later
fixed in Commit 9 but again only present briefly in development branches.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:259

BN_mod_exp_mont()
crypto/bn/bn_exp.c:317

Fig. 8. Triggerflow detecting the flawed CVE-2018-0734 fix (abridged).

In the same work, the authors discovered that every time the library loads
a DSA private key, it calculates the corresponding public key following a non
constant-time code path due to a missing flag, and therefore is also vulnera-
ble to SCA attacks. In fact, Triggerflow previously detected this vulnerability
while back-testing Commit 5, suggesting that this issue was long present in the
codebase and could have been detected earlier. This issue was recently fixed in
Commit 7.

6.2 ECDSA

OpenSSL’s ECDSA implementation has also been affected by SCA leakage.
Pereida García and Brumley [26] discovered that the BN_FLG_CONSTTIME flag
was not set at all during ECDSA P-256 signature generation. More specifically,
the modular inversion operation was performed using the non constant-time path
in the BN_mod_inverse function, thus leaving the scalar k vulnerable to SCA
attacks.

openssl dgst -sha512 -sign
key.pem -out data.sig data

ecdsa_sign_setup()
ecs_ossl.c:182

BN_mod_inverse()
bn_gcd.c:238

Fig. 9. Triggerflow detecting CVE-2016-7056 (abridged).

Similar to the previous case and in order to back-test this issue, we pointed
Triggerflow to the annotated OpenSSL_1_0_1u branch and then we generated

14 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

ECDSA signatures, triggering the breakpoints. The tool reported back an inse-
cure usage of the modular inversion function as shown in Figure 9. The flag was
not set in the nonce k prior to the modular inversion operation. Surprisingly, this
issue is still present in the OpenSSL 1.0.1 branch although the authors provided
a patch for it, mainlined by the vast majority of vendors. It is worth mentioning
the OpenSSL 1.0.1 branch reached EOL around the same time as the work—we
assume that is the reason the OpenSSL team did not integrate it.

6.3 RSA

In 2018, two independent works [35, 3] discovered several SCA flaws during RSA
key generation in OpenSSL. OpenSSL’s RSA key generation is a fairly complex
implementation due to the use of several different algorithms during the process.
It requires the generation of random integers; testing the values for primality;
computing the greatest common divisor and the least common multiple, using
secret values as input. For all of the previous reasons, it is not trivial to implement
a constant-time RSA key generation algorithm. Both research works identified
missing flags, flags set in the wrong variable, and a direct call to the non constant-
time function BN_gcd as the culprits enabling the attacks.

openssl genpkey
-algorithm RSA -out
key.pem -pkeyopt

rsa_keygen_bits:1024

pkey_rsa_keygen()
rsa_pmeth.c:749

BN_MONT_CTX_set()
bn_mont.c:450

witness()
bn_prime.c:356

rsa_builtin_keygen()
rsa_gen.c:154

BN_mod_inverse()
bn_gcd.c:241

BN_mod_exp_mont()
bn_exp.c:422

BN_gcd()
bn_gcd.c:125

Fig. 10. Triggerflow detecting CVE-2018-0737 (abridged).

During back testing we used an annotated OpenSSL_1_0_2k branch, and we
pointed the Triggerflow tool at it. It successfully reported all the vulnerabilities
discovered by the authors. The authors submitted a total of four commits to
OpenSSL codebase to fully mitigate this issue—see Commit 10, Commit 11,
Commit 12, and Commit 13 for more details.

7 Related Work

The Triggerflow framework differs from other existing tools in being a tool to
assist the development process rather than a system for automated detection
and quantification of security vulnerabilities, and aims at being more general
purpose and not restricted to the field of cryptographic applications. As such, it
should be viewed as complementary rather than alternative to the approaches
listed below.

Triggerflow: Regression Testing by Advanced Execution Path Inspection 15

Programming languages. Various works propose and analyze the option of
using specialized programming languages to achieve constant-time code genera-
tion and verification [10, 14], while others analyze the challenges [7] or opportu-
nities [31] of translating human-readable code into machine instructions through
compilers when dealing with cryptographic software and the need for SCA resis-
tant implementations. They differ from this work in the goal: our evaluation is
not based on a lack of timing-resistant implementations, but rather in assisting
the development process and making sure that insecure paths are not executed,
by mistake, with confidential inputs.

Black box testing. These practices are based on statistical analysis to estimate
the SCA leakage. dudect [29] applies this methodology measuring the timing of
the system under test for different inputs.

Static program analysis. These techniques refers to the analysis of the source
code [5, 38, 30] (building on the capabilities of the LLVM project to perform
the analysis) or annotated machine code [9] of a program to quantify leakages.
An alternative to this approach is represented by CacheAudit [17, 16] based on
symbolic execution, which is usually applied to smaller software or individual
algorithms as it requires more resources. BLAZER [6] and THEMIS [15] employ
static analysis to detect side-channels in Java bytecode programs. BLAZER in-
troduces a decomposition technique associated with taint tracking to discover
timing channels (or prove their absence) in execution branches tainted by se-
cret inputs. THEMIS combines lightweight static taint analysis with precise
relational verification to verify the absence of timing or response size side-
channels. Similar in spirit as it uses lightweight taint tracking, Catalyzr [32]
is a closed-source, commercial tool to detect potential leakage by filtering con-
ditional branches and array accesses after marking sensitive inputs; the authors
apply their tooling to the C-language MbedTLS library. All of these methods
share with Triggerflow the requirement of access to the source code of the tested
software (either direct or reasonably decompiled).

Dynamic program analysis. These techniques detect, measure, and accu-
rately locate microarchitecture leakage during the execution of the code in the
system. ctgrind [21], based on Valgrind memcheck, monitors control flow and
memory accesses for dependencies on secret data. Previous work [37, 36] uses
Dynamic Binary Instrumentation, adding instrumentation at run-time to col-
lect metadata and measurements directly to the binary code without altering
the execution flow of the program, independently providing extensible frame-
works with high accuracy and supporting leakage models for the most relevant
microarchitecture attacks. Relevant recent works employ symbolic execution to
detect side-channel leaks. CacheD [34] is a hybrid approach that combines DBI,
symbolic execution, taint tracking, and constraint solving, while the more re-
cent CaSym [11] employs cache-aware IR symbolic execution; both works then
combine different cache models to detect cache-based timing channels. SPEC-
TECTOR [19] uses similar symbolic execution techniques in combination with
speculative non-interference models to detect speculative execution leaks and

16 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

optimization opportunities in the strategies used by compilers to implement
hardening measures.

Triggerflow is similar to Dynamic Program Analysis techniques with respect
to performing the evaluation when the software is actively running on the target
system. Although limited by requiring access to the source code, Triggerflow can
leverage this property and avoid any instrumentation: the tested binary is exactly
the one generated by the build process of the target, with the only requirement
of not stripping the debug symbols, to aid GDB in mapping function names and
the memory addresses of the routines included in the target software.

8 Limitations

Triggerflow requires access to the sources of the target software, and to annotate
it with markup comments as described in Section 3. Preferably, Triggerflow an-
notations should be maintained directly in the codebase of the upstream target
project, but Triggerflow includes support for versioning of annotation patches
for the analysis of third-party projects. Additionally, it is worth stressing that
Triggerflow does not automatically detect where to annotate the target code—
this goes beyond the tool capabilities. Instead, it relies on developer expertise to
annotate the execution paths of interest. As such, source code access is a limit
only for the analysis of closed-source third-party projects, which fall out of the
immediate scope of Triggerflow as an aid tool for the development process.

Triggerflow depends on the availability of GDB and Ruby on the target plat-
form, and is limited to the executables that can be debugged through GDB. This
is arguably a minor concern, with the only remarkable exception that debugging
through GDB inside a virtualized container usually requires overriding the de-
fault set of system call restrictions that is meant to isolate the supervisor from
the container, raising security concerns when running Triggerflow for third-party
CI and partially limiting the selection of available CI platforms.

The tools developed during this work can also be applied to other software
projects, not just OpenSSL. Triggerflow can work with any language GDB sup-
ports and is useful for analyzing and testing execution paths through any com-
plex project that meets the minimal requirements.

A case study. To substantiate the above claims and demonstrate the flexibility
of Triggerflow, we annotated the ECC portion of golang10. The documentation
states the P384 (pseudo-)class for NIST P-384 curve operations is not constant-
time. Indeed, the ScalarMult method is textbook double-and-add scalar mul-
tiplication. We placed a TRIGGERFLOW_POI annotation inside this method, and
used a golang ECDSA signing application as a trigger. Figure 11 shows the
result, confirming Triggerflow is not restricted to OpenSSL or the C language.

10 https://golang.org/pkg/crypto/elliptic/

Triggerflow: Regression Testing by Advanced Execution Path Inspection 17

main.main()
harness_ecdsa.go:33

crypto/ecdsa.Sign()
crypto/ecdsa/ecdsa.go:212

crypto/elliptic.(*Curve-
Params).ScalarBaseMult()

crypto/elliptic/elliptic.go:272

crypto/elliptic.(*Curve-
Params).ScalarMult()

crypto/elliptic/elliptic.go:255

Fig. 11. Triggerflow detecting an insecure scalar multiplication path in golang.

9 Conclusion

Triggerflow complements the results offered by any of the analysis techniques
described in Section 7: in large software projects like OpenSSL, pinpointing the
location of a detected leak might not be sufficient. Similarly to other crypto-
graphic libraries, OpenSSL often includes several implementations of the same
primitive, many of which are designed for performance and safe to use only
when all the inputs are public. When a leak is detected in one of these func-
tions, developers are challenged with the task of discovering why and how secret
data reached the insecure code path, rather than altering the location where the
leakage is reported. As demonstrated in Sections 5 and 6, Triggerflow can be suc-
cessfully and efficiently used to aid developers in these situations and, through
CI, prevent regressions in the handling of secret data.

Considering the high number of valid combinations of supported platforms
and build-time options for OpenSSL, and that the available implementations
and control flow depend on these specific combinations, Triggerflow is a good
solution to aid developers by exhaustively automating the BN_FLG_CONSTTIME
tests and prevent future regressions similar to the ones described in this work.

In the context of using Triggerflow with OpenSSL to monitor BN_FLG_CONST-
TIME, it should be mentioned that, security-wise, a secure-by-default approach
would be desirable: i.e., all BIGNUM are considered constant-time unless the pro-
grammer explicitly marks them as public, so that when alternatives exist, the
default implementation of each algorithm is the timing-resistant one, and in-
secure but more efficient ones need to be enabled explicitly and after careful
examination. On the other hand, such change has the potential for being disrup-
tive for existing applications, and is therefore likely to be rejected or implemented
over a long period of time to meet the project release strategy.

Future work. On top of continued development of the tool as discussed, we
plan to expand on this work in the future to widen the coverage of the OpenSSL
library and of the project apps and their options, by setting more triggers and
point of interest across multiple architectures and build-time options. In parallel,
to further demonstrate the capabilities of the tool we plan to apply a similar
methodology to other security libraries and cryptographic software, aiming at
uncovering, fixing, and testing related timing leaks.

Responsible disclosure. All PRs submitted as a result of this work were co-
ordinated with the OpenSSL security team. Following the GitHub PR URLs,
readers will find more extensive discussions of the security implications of the
identified leak and defect. To briefly summarize: (1) the leakage during pro-
jective to affine conversion does not appear to be exploitable with recent SCA

18 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

hardening to the EC module—we speculate it can only be utilized in combina-
tion with some other novel leak, by which time the larger additional leak would
likely be enough independently; (2) while we were able to implement a straw
man application to demonstrate the BN_CTX defect (reaching unintended code
paths and inducing function failures), we were unable to locate a real-world
OpenSSL-linking application matching our PoC characteristics, nor any tech-
nique to exploit the defect within the OpenSSL library itself. We also filed a
report with CERT, summarizing our security findings.

Acknowledgments. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 804476).

References

1. Acıiçmez, O., Gueron, S., Seifert, J.: New branch prediction vulnerabilities in
OpenSSL and necessary software countermeasures. In: Cryptography and Cod-
ing, 11th IMA International Conference, Cirencester, UK, December 18-20, 2007,
Proc. LNCS, vol. 4887, pp. 185–203. Springer (2007), https://doi.org/10.1007/
978-3-540-77272-9_12

2. Aldaya, A.C., Brumley, B.B., ul Hassan, S., Pereida García, C., Tuveri, N.: Port
contention for fun and profit. In: 2019 IEEE Symposium on Security and Privacy,
SP 2019, Proc., 20-22 May 2019, San Francisco, California, USA. pp. 1037–1054.
IEEE (2019), https://doi.org/10.1109/SP.2019.00066

3. Aldaya, A.C., Pereida García, C., Alvarez Tapia, L.M., Brumley, B.B.: Cache-
timing attacks on RSA key generation. IACR Cryptology ePrint Archive 2018(367)
(2018), https://eprint.iacr.org/2018/367

4. Allan, T., Brumley, B.B., Falkner, K.E., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Proc., 32nd Annual Conference on
Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA, December
5-9, 2016. pp. 422–435. ACM (2016), http://doi.acm.org/10.1145/2991079.2991084

5. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016. pp. 53–70. USENIX Association
(2016), https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/almeida

6. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: De-
composition instead of self-composition for proving the absence of timing channels.
In: Proc., 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 362–375.
ACM (2017), https://doi.org/10.1145/3062341.3062378

7. Balakrishnan, G., Reps, T.W.: WYSINWYX: what you see is not what you execute.
ACM Trans. Program. Lang. Syst. 32(6), 23:1–23:84 (2010), https://doi.org/10.
1145/1749608.1749612

8. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah... Just a Little Bit”:
A small amount of side channel can go a long way. In: Cryptographic Hardware
and Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proc. LNCS, vol. 8731, pp. 75–92. Springer (2014),
https://doi.org/10.1007/978-3-662-44709-3_5

Triggerflow: Regression Testing by Advanced Execution Path Inspection 19

9. Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations by
abstract interpretation. In: Computer Security - ESORICS 2017 - 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September 11-15,
2017, Proc., Part I. LNCS, vol. 10492, pp. 260–277. Springer (2017), https://doi.
org/10.1007/978-3-319-66402-6_16

10. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R.,
Parno, B., Rane, A., Setty, S.T.V., Thompson, L.: Vale: Verifying high-
performance cryptographic assembly code. In: 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
pp. 917–934. USENIX Association (2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/bond

11. Brotzman, R., Liu, S., Zhang, D., Tan, G., Kandemir, M.: CaSym: Cache aware
symbolic execution for side channel detection and mitigation. In: 2019 IEEE Sym-
posium on Security and Privacy, SP 2019, Proc., 20-22 May 2019, San Fran-
cisco, California, USA. pp. 364–380. IEEE (2019), https://doi.org/10.1109/SP.
2019.00022

12. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Advances in
Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proc. LNCS, vol. 5912, pp. 667–684. Springer (2009), https://doi.org/
10.1007/978-3-642-10366-7_39

13. Brumley, B.B., Tuveri, N.: Cache-timing attacks and shared contexts. In: Con-
structive Side-Channel Analysis and Secure Design - 2nd International Workshop,
COSADE 2011, Darmstadt, Germany, February 24-25, 2011. Proc. pp. 233–242
(2011), https://tutcris.tut.fi/portal/files/15671512/cosade2011.pdf

14. Cauligi, S., Soeller, G., Brown, F., Johannesmeyer, B., Huang, Y., Jhala, R., Stefan,
D.: Fact: A flexible, constant-time programming language. In: IEEE Cybersecurity
Development, SecDev 2017, Cambridge, MA, USA, September 24-26, 2017. pp. 69–
76. IEEE Computer Society (2017), https://doi.org/10.1109/SecDev.2017.24

15. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
Quantitative Cartesian Hoare Logic. In: Proc., 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017. pp. 875–890. ACM (2017), https://doi.org/10.1145/3133956.
3134058

16. Doychev, G., Köpf, B.: Rigorous analysis of software countermeasures against cache
attacks. In: Proc., 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp.
406–421. ACM (2017), https://doi.org/10.1145/3062341.3062388

17. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015), https://doi.org/10.1145/2756550

18. Gridin, I., Pereida García, C., Tuveri, N., Brumley, B.B.: Triggerflow. Zenodo (Apr
2019), https://doi.org/10.5281/zenodo.2645805

19. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: SPECTEC-
TOR: principled detection of speculative information flows. CoRR abs/1812.08639
(2018), http://arxiv.org/abs/1812.08639

20. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-
ploiting speculative execution. In: 2019 IEEE Symposium on Security and Privacy,
SP 2019, Proc., 20-22 May 2019, San Francisco, California, USA. pp. 19–37. IEEE
(2019), https://doi.org/10.1109/SP.2019.00002

20 I. Gridin, C. Pereida García, N. Tuveri, B. B. Brumley

21. Langley, A.: ctgrind—checking that functions are constant time with Valgrind.
https://github.com/agl/ctgrind (2010)

22. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,
J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown:
Reading kernel memory from user space. In: 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018.
pp. 973–990. USENIX Association (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

23. Maimut, D., Murdica, C., Naccache, D., Tibouchi, M.: Fault attacks on projective-
to-affine coordinates conversion. In: Constructive Side-Channel Analysis and Se-
cure Design - 4th International Workshop, COSADE 2013, Paris, France, March
6-8, 2013, Revised Selected Papers. LNCS, vol. 7864, pp. 46–61. Springer (2013),
https://doi.org/10.1007/978-3-642-40026-1_4

24. Naccache, D., Smart, N.P., Stern, J.: Projective coordinates leak. In: Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proc. LNCS, vol. 3027, pp. 257–267. Springer (2004), https://doi.org/10.1007/
978-3-540-24676-3_16

25. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proc. (2005), http://www.daemonology.net/papers/
cachemissing.pdf

26. Pereida García, C., Brumley, B.B.: Constant-time callees with variable-time callers.
In: 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. pp. 83–98. USENIX Association (2017), https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia

27. Pereida García, C., Brumley, B.B., Yarom, Y.: “Make sure DSA signing exponen-
tiations really are constant-time”. In: Proc., 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 1639–1650. ACM (2016), http://doi.acm.org/10.1145/2976749.2978420

28. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Topics in
Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference
2015, San Francisco, CA, USA, April 20-24, 2015. Proc. LNCS, vol. 9048, pp. 3–21.
Springer (2015), https://doi.org/10.1007/978-3-319-16715-2_1

29. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
Design, Automation & Test in Europe Conference & Exhibition, DATE 2017,
Lausanne, Switzerland, March 27-31, 2017. pp. 1697–1702. IEEE (2017), https:
//doi.org/10.23919/DATE.2017.7927267

30. Rodrigues, B., Pereira, F.M.Q., Aranha, D.F.: Sparse representation of implicit
flows with applications to side-channel detection. In: Proc., 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18,
2016. pp. 110–120. ACM (2016), http://doi.acm.org/10.1145/2892208.2892230

31. Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C: controlling
side effects in mainstream C compilers. In: 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018.
pp. 1–15. IEEE (2018), https://doi.org/10.1109/EuroSP.2018.00009

32. Takarabt, S., Schaub, A., Facon, A., Guilley, S., Sauvage, L., Souissi, Y., Mathieu,
Y.: Cache-timing attacks still threaten IoT devices. In: Codes, Cryptology and
Information Security - Third International Conference, C2SI 2019, Rabat, Morocco,
April 22-24, 2019, Proc. - In Honor of Said El Hajji. LNCS, vol. 11445, pp. 13–30.
Springer (2019), https://doi.org/10.1007/978-3-030-16458-4_2

Triggerflow: Regression Testing by Advanced Execution Path Inspection 21

33. Tuveri, N., ul Hassan, S., Pereida García, C., Brumley, B.B.: Side-channel analysis
of SM2: A late-stage featurization case study. In: Proc., 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018. pp. 147–160. ACM (2018), https://doi.org/10.1145/3274694.3274725

34. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: Cached: Identifying cache-
based timing channels in production software. In: 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
pp. 235–252. USENIX Association (2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/wang-shuai

35. Weiser, S., Spreitzer, R., Bodner, L.: Single trace attack against RSA key gener-
ation in Intel SGX SSL. In: Proc., 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018, Incheon, Republic of Korea, June 04-08,
2018. pp. 575–586. ACM (2018), http://doi.acm.org/10.1145/3196494.3196524

36. Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., Sigl, G.: DATA -
differential address trace analysis: Finding address-based side-channels in binaries.
In: 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. pp. 603–620. USENIX Association (2018), https://www.
usenix.org/conference/usenixsecurity18/presentation/weiser

37. Wichelmann, J., Moghimi, A., Eisenbarth, T., Sunar, B.: MicroWalk: A framework
for finding side channels in binaries. In: Proc., 34th Annual Computer Security
Applications Conference, ACSAC 2018, San Juan, PR, USA, December 03-07,
2018. pp. 161–173. ACM (2018), https://doi.org/10.1145/3274694.3274741

38. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proc., 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July
16-21, 2018. pp. 15–26. ACM (2018), https://doi.org/10.1145/3213846.3213851

39. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Proc., 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014. pp. 719–732. USENIX Association (2014), https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

A OpenSSL Commits

1. fe2d3975880e6a89702f18ec58881307bf862542
2. a766aab93a282774e63ba918d0bb1c6680a5f292
3. 46a643763de6d8e39ecf6f76fa79b4d04885aa59
4. 0ebfcc8f92736c900bae4066040b67f6e5db8edb
5. 621eaf49a289bfac26d4cbcdb7396e796784c534
6. b7d0f2834e139a20560d64c73e2565e93715ce2b
7. 6364475a990449ef33fc270ac00472f7210220f2

8. a9cfb8c2aa7254a4aa6a1716909e3f8cb78049b6
9. 00496b6423605391864fbbd1693f23631a1c5239

10. e913d11f444e0b46ec1ebbf3340813693f4d869d
11. 8db7946ee879ce483f4c81141926e1357aa6b941
12. 54f007af94b8924a46786b34665223c127c19081
13. 6939eab03a6e23d2bd2c3f5e34fe1d48e542e787
14. bd31fb21454609b125ade1ad569ebcc2a2b9b73c

208

PUBLICATION
V

Side-Channel Analysis of SM2: A Late-Stage Featurization Case
Study

N. Tuveri, S. ul Hassan, C. Pereida García and B. B. Brumley

Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC
2018, San Juan, PR, USA, December 03-07, 2018. 2018, 147–160

doi: 10.1145/3274694.3274725

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1145/3274694.3274725

Side-Channel Analysis of SM2:
A Late-Stage Featurization Case Study

Nicola Tuveri
Tampere University of Technology

Tampere, Finland
nicola.tuveri@tut.fi

Sohaib ul Hassan
Tampere University of Technology

Tampere, Finland
sohaibulhassan@tut.fi

Cesar Pereida García
Tampere University of Technology

Tampere, Finland
cesar.pereidagarcia@tut.fi

Billy Bob Brumley
Tampere University of Technology

Tampere, Finland
billy.brumley@tut.fi

ABSTRACT
SM2 is a public key cryptography suite originating from Chinese
standards, including digital signatures and public key encryption.
Ahead of schedule, code for this functionality was recently main-
lined in OpenSSL, marked for the upcoming 1.1.1 release. We per-
form a security review of this implementation, uncovering various
deficiencies ranging from traditional software quality issues to
side-channel risks. To assess the latter, we carry out a side-channel
security evaluation and discover that the implementation hits every
pitfall seen for OpenSSL’s ECDSA code in the past decade. We carry
out remote timings, cache timings, and EM analysis, with accom-
panying empirical data to demonstrate secret information leakage
during execution of both digital signature generation and public
key decryption. Finally, we propose, implement, and empirically
evaluate countermeasures.

KEYWORDS
software engineering; applied cryptography; public key cryptog-
raphy; side-channel analysis; timing attacks; cache-timing attacks;
power analysis; TVLA; SM2; OpenSSL
ACM Reference Format:
Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brum-
ley. 2018. Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study.
In 2018 Annual Computer Security Applications Conference (ACSAC ’18), De-
cember 3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3274694.3274725

1 INTRODUCTION
SM21 is a suite of elliptic curve public key cryptosystems, stan-
dardized as a part of Chinese commercial cryptography mandates.
Support for SM2 in OpenSSL landed in the public GitHub reposi-
tory through pull request (PR) #4793,2 created in November 2017
1https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
2https://github.com/openssl/openssl/pull/4793

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6569-7/18/12.
https://doi.org/10.1145/3274694.3274725

by external contributors. During the review process, in January
2018, the OpenSSL team assigned the PR to the Post-1.1.1 milestone,
marking functionality intended to be merged after the upcoming
1.1.1 release of OpenSSL.

Due to this, SM2 support was excluded from the two alpha re-
leases for OpenSSL 1.1.1. But inMarch 2018, just before the release of
the first 1.1.1 beta—and the associated feature freeze—the OpenSSL
development team decided to merge the PR into the 1.1.1 beta devel-
opment cycle, to have a chance to work on it and possibly include
SM2 support as part of the upcoming minor release rather than
waiting for the next one.3 Considering that new features can only be
added with a new minor release and that the current one (OpenSSL
1.1.0) was released on August 2016, it is likely that a similar—if
not longer—development cycle might be required before the SM2
functionality could be added to OpenSSL. The SM2 functionality
has thus been part of the beta development cycle since the release
of OpenSSL 1.1.1-pre3 (beta 1).

At the time of beta 1 release, the release timetable4 for OpenSSL
1.1.1 envisioned four beta releases, aiming at 15th May 2018 as the
first possible final release date. As such, the addition of SM2 sup-
port into the active development branch occurred at an extremely
late stage to be included in the upcoming release cycle, giving a
remarkably short window for public review before the final release.

The original release timeline was later5 updated, waiting for the
final publication of TLS 1.3 as RFC 8446, adding more beta releases,
and eventually shifting the final release date for OpenSSL 1.1.1 to
September 11, 2018.

Motivation and goal. The first contribution of our work, our initial
security review revealed that the late-stage featurization process
resulted in various deficiencies, ranging from code quality issues to
traditional software defects, and hinted at significant side-channel
analysis (SCA) risks based on previous SCA results targeting ECC
within OpenSSL. The goal of this research consists in empirically
verifying these SCA deficiencies, and then responsibly mitigate
them, aiming at intersecting the upcoming OpenSSL 1.1.1 release
to ensure these vulnerabilities do not affect released versions of the
library.

3https://github.com/openssl/openssl/pull/4793#pullrequestreview-104954310
4https://mta.openssl.org/pipermail/openssl-project/2018-March/000372.html
5https://github.com/openssl/web/pull/55

147

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

Furthermore, taking SM2 as a case study, we criticize the cur-
rent status of the project. It demonstrates that implementing new
functionality without reintroducing previously fixed vulnerabilities
proves to be unnecessarily challenging, requiring intimate familiar-
ity with internal details of lower level library modules (e.g. where,
when, and how constant-time flags must be re-/enabled, which
codepaths in the lower EC and BIGNUM modules require to use im-
plementations with SCA mitigations, etc.). Hence, as a secondary
goal, we also aim at reviewing the abstraction level at which current
SCA countermeasures are implemented, and push for a secure-by-
default approach—within the boundaries the project enforces for
a minor release—so that future implementations will by default
benefit from them.

Structure and our contributions. Section 2 reviews relevant back-
ground and previous work. We present our security analysis related
to the integration of the SM2 functionality in the OpenSSL code-
base in Section 3, offering an overview of the issues uncovered. In
Section 4, Section 5, and Section 6, respectively, we evaluate SCA
defects in the SM2 implementation related to remote timings, cache
timings and EM analysis. We propose, implement and empirically
evaluate appropriate mitigations in Section 7. Finally, we conclude
in Section 8.

2 BACKGROUND
This section describes SM2, various SCA techniques that potentially
apply to SM2 implementations, and summarizes previous work on
SM2 implementation attacks.

2.1 SM2: Chinese Cryptography Standards
SM2 consists of a digital signature scheme (SM2DSA), a public key
encryption scheme (SM2PKE), and a key agreement protocol. In
this work, we restrict to SM2DSA and SM2PKE.

Elliptic curves and SM2. While the RFC contains cryptosystem test
vectors for several different curves in simplified Weierstrass form
(over both prime and binary fields), one required curve6 consists of
all the (x,y) points (x,y ∈ GF (p)) satisfying the equation

E : y2 = x3 + ax + b

overGF (p) along with the point-at-infinity (group identity element).
The domain parameters are consistent with legacy ECC, setting p a
256-bit Mersenne-like prime, a = −3 ∈ GF (p), both b ∈ GF (p) and
generator pointG ∈ E seemingly random, and prime group order n
(i.e. co-factor h = 1) slightly below 2256.

SM2DSA digital signatures. The user’s private-public keypair is
(dA,QA) where dA is chosen uniformly from [1 . .n − 1) and QA =

[dA]G holds. Denote ZA the personalization string (hash) andm
the message. Digital signatures compute as follows.

(1) Compute the digest h = H (ZA ∥ m).
(2) Select a secret nonce k uniformly from [1 . .n).
(3) Compute (x,y) = [k]G.
(4) Compute r = h + x mod n.
(5) Compute s = (1 + dA)−1(k − rdA) mod n.
(6) If any of r = 0, s = 0, or s = k hold, retry.

6OID 1.2.156.10197.1.301

(7) Return the SM2 digital signature (r , s).
Hash function H can be any “approved” function, including SM37
standardized in a parallel effort. Verification is not relevant to this
work, hence we omit the description.

SM2PKE public key encryption. SM2PKE is roughly analogous to
ECIES [2, Sec. 5.1]. Denote the ciphertext C = C1 ∥ C2 ∥ C3 where,
at a high level,C1 represents the sender’s ephemeral Diffie-Hellman
public key (point), C2 is the One-Time-Pad (OTP) ciphertext (with
length |C2 |), and C3 is the authentication tag. The recipient with
private-public keypair (dB ,QB) recovers the plaintext from C as
follows.

(1) Convert C1 to a point on E. If C1 is not on the curve or does
not have order n, return an error.

(2) Compute (x,y) = [dB]C1, the shared ECDH point.
(3) Compute z = KDF (x ∥ y, |C2 |), the OTP key; |z | = |C2 |.
(4) Computem′ = z ⊕ C2, i.e. OTP decryption.
(5) Compute t ′ = H (x ∥ m′ ∥ y), the purported tag.
(6) If t ′ , C3 holds, return an error.
(7) Return the plaintextm′.

Encryption is not relevant to this work, hence we omit the descrip-
tion.

2.2 Remote Timing Attacks
Timing attacks exploit differences in the time required by a specific
implementation to perform an operation on different inputs. In
the case of hardware or software cryptosystem implementations, if
there is a correlation between the timing of an operation and some
secret inputs, the leaked information might be used to mount an
attack to recover secret material.

In his seminal work, Kocher [49] introduces a number of simple
timing attacks on modular exponentiation and modular reduction
implementations, affecting implementations of public key cryp-
tosystems with a static key such as RSA and static Diffie-Hellman
or DSA implementations that precompute the ephemeral part.

Brumley and Boneh [22, 23] demonstrate that timing attacks
apply also to general software systems, defying contemporary com-
mon belief, by devising a timing attack against the OpenSSL im-
plementation of RSA decryption—exploiting time dependencies
introduced by the Montgomery reduction and the multiplication
routines—and ultimately retrieving the complete factorization of the
key pair modulus. Moreover, they demonstrate that such attacks are
practical even in a remote scenario, mounting a real-world attack
through a client timing RSA decryptions during SSL handshakes
with an OpenSSL server. The attack is effective when performed
between two processes running on the same host, across co-located
virtual machines, and in local networks. They analyze three possi-
ble defenses, favoring RSA blinding, and as a consequence several
cryptographic libraries, including OpenSSL, enable RSA blinding
by default as a countermeasure.8

Acıiçmez et al. [5] further improve the original attack, by tar-
geting Montgomery Multiplications in the table initialization phase

7https://tools.ietf.org/html/draft-oscca-cfrg-sm3-02
8The issue uncovered by their work was tracked in the public CVE dictionary with the
id CVE-2003-0147, and, addressing it, OpenSSL issued a Security Advisory (17 March
2003), and CERT issued vulnerability note VU#997481.

148

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

of the sliding window algorithm used to perform the RSA expo-
nentiation in OpenSSL, rather than the exponentiation phase itself,
increasing the number of multiplications that leak timing infor-
mation used to retrieve one of the secret prime factors of RSA
moduli.

Chen et al. [26] build on these two attacks, improving the suc-
cess rate through an error detection and correction strategy, thus
reducing the number of queries required to mount a successful
attack and affecting the total time of the attack and its detectability.

Brumley and Tuveri [21] present another end-to-end remote tim-
ing attack: it similarly demonstrates full key recovery in local and
remote scenarios, and targets the OpenSSL Montgomery’s ladder
implementation for scalar multiplication on elliptic curves over
binary fields. The Montgomery ladder algorithm is often recom-
mended as a countermeasure to side-channel attacks due to a fixed
sequence of curve operations, that does not depend on the values
of individual bits in the secret scalar, while still being computation-
ally fast with no large memory overhead. Nonetheless, the attack
exploits exactly the regularity feature of the algorithm, as it creates
a direct linear correlation between the binary logarithm (i.e. the bit
length) of the secret scalar and the number of iterations (and thus
curve operations) in the ladder.

The authors exploit this vulnerability by mounting an attack
that collects several measures of the wall-clock execution time of
a partial TLS handshake, using an ECDHE_ECDSA ciphersuite over
a binary curve. The collected measures are heavily dominated by
the EC scalar multiplication of the ECDSA signature generation,
implemented using theMontgomery ladder, and thus can be directly
correlated with the bit length of the secret scalar (the ephemeral
nonce of the ECDSA signature generation algorithm). A second,
offline, post-processing phase then uses this partial knowledge to
recover the full secret key through a lattice attack.

The proposed countermeasure, adopted by OpenSSL, is based on
conditionally padding the nonce before the actual scalar multipli-
cation, to always work on scalars of fixed length (i.e. adding once
or twice the group order to the scalar yields an equivalent scalar
with the topmost bit set) which in turn fixes the number of curve
operations in the ladder and the associated execution time.9

Timing measurement noise heavily affects the success rate of
the described attacks, usually resulting in the attacks being unfea-
sible over a wireless link and having severely limited feasibility
over a WAN connection due to both decreased accuracy and the
total time of the attacks (which is generally further increased to
compensate the noise by collecting more samples). However, more
recent results [32] address the latter scenario, studying the statis-
tical distribution of latency over different network environments
and designing specialized filters to significantly reduce the effect of
jitter (i.e. the random noise on the latency introduced by additional
hops in the route(s) of a network connection). These filters allow
attackers to measure events with higher accuracy over the Internet,
with potential effects on the feasibility of remote timing attacks
over WAN connections.

Timing as a side-channel is not limited to the execution time of
a whole cryptographic operation, and is often a gateway to retrieve

9To track the issue uncovered by this work the id CVE-2011-1945 was assigned and
CERT issued the vulnerability note VU#536044.

information from other resources shared between an attacker and
a victim, including microarchitecture components, as in the cache-
timing attacks covered below or, switching to the domain of web
privacy, even virtual constructs in modern web browsers [71, 72].

Alternatively, the timing side-channel can be used to build reli-
able oracles, often circumventing trivial implementations of coun-
termeasures to prevent other side-channel attacks. In 1998, Ble-
ichenbacher [16] presented a famous adaptive chosen-ciphertext
attack on SSL/TLS ciphersuites based on RSA and PKCS#1 v1.5
encryption padding, based on an oracle built on top of different
error messages sent by servers in case of malformed ciphertexts
during the SSL/TLS handshake. As a result of the work, subsequent
specifications of the TLS protocol (starting from RFC 2246 [33] TLS
1.0, in the same year) recommend “to treat incorrectly formatted
messages in a manner indistinguishable from correctly formatted
RSA blocks”. But when implementations fail to extend this recom-
mendation to the execution time of handling different events and
conditions, the timing side-channel can be used to build an alterna-
tive oracle, effective for remote exploitation, as presented in 2014
by Meyer et al. [56]. Their work targeted, among others, the default
Java Secure Socket Extension (JSSE) and OpenSSL implementations
of the SSL/TLS protocol.

2.3 Cache Timing Attacks
Cache-timing attacks are a subset of microarchitecture attacks
targeting specifically the cache hierarchy. Cache-timing attacks
against implementations of cryptography primitives exploit two
key features: (1) the timing variation introduced by the cache hi-
erarchy; and (2) the non-constant time execution of algorithms
handling confidential data used by cryptography primitives and
algorithms, e.g. key generation [8, 73], digital signatures [11, 65],
encryption [12] and key exchange [39]. Typically, the ultimate goal
of a cache-timing attack is to recover confidential information from
an algorithm execution and this is done by correlating cache timing
data to either the execution time of the algorithm in use, its internal
state during execution, or the output of the algorithm. Cache-timing
attacks are enabled by several cache attack techniques proposed
and used successfully in the past, e.g. Evict+Time [63], Prime+Pro-
be [64], and Flush+Reload [75]. The choice of attack technique
depends on the attack scenario since each technique has its own
advantages and disadvantages.

Cache Architecture. Accessing data and instructions from main
memory is not an instant operation since it takes time to locate
and fetch the data, thus delaying the execution of the processor.
To improve the efficiency of the processor, the memory hierarchy
includes memory banks called caches, located between the CPU
cores and the RAM. Caches are smaller and faster compared to
RAM and main memory, helping to improve the performance by
exploiting spacial and temporal locality during memory access.

Modern CPUs contain multiple cache levels, usually L1 and L2
caches are private to a specific core and the last level cache (LLC)
is shared among all the cores. Typically, the LLC is said to be inclu-
sive, meaning that it contains a superset of the data in the caches
below it, thus it contains both instructions and data from L1 and
L2. The caches are organized into fixed size cache lines which are
grouped in cache sets. The number of cache lines in a cache set is

149

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

the associativity, i.e., a cache withW lines in each set is aW-way
set-associative cache.

When the CPU needs to fetch data from memory, it first checks
in the caches; if the data is there, a cache hit occurs and the load
delay is short. On the other hand, when the data is not found in
the caches, a cache miss occurs and the data must be fetched from
a higher level memory, causing a longer delay. A copy of the data
fetched from a higher level is cached, exploiting temporal locality.
In addition, data close to the accessed data will be fetched and
cached too, exploiting spatial locality. If a cache miss occurs and all
the cache lines are in use, one of the cache lines is evicted, freeing
space for the new data. In order to determine the cache line to
evict, modern CPUs use variations of the least-recently-used (LRU)
replacement policy.

Flush+Reload. Proposed by Yarom and Falkner [75], this powerful
technique positively identifies accesses to specific memory lines
with a high resolution, high accuracy, and high signal-to-noise ratio.
Moreover, the technique relies on cache sharing between the CPU
cores, typically achieved through the use of shared libraries.

A round of attack consists of three phases: (1) the attacker evicts
the target memory line using the clflush instruction; (2) the at-
tacker waits some time for the victim to access the memory line; (3)
the attacker measures the time it takes to reload the memory line.
The timing reveals whether or not the memory line was accessed
by the victim during the waiting period, i.e. identifies cache hits
and cache misses.

In addition to cache-timing attacks on cryptography, the Flu-
sh+Reload technique has been applied in clever ways targeting
the kernel [45], web server function calls [77], user input [42, 51],
covert channels [55], as well as more powerful microarchitecture
attacks such as the Meltdown [52] and Spectre [48] attacks.

2.4 EM Analysis
Introduced by Kocher et al. [50], power analysis exploits the corre-
lation between sensitive data and changing power leakages on the
device. These power fluctuations are a result of transistor switching
between the logic levels of CMOS circuits, and the current flow on
data lines, as a result of processor activity and memory accesses.

Due to the tightly packaged components on modern devices,
power analysis can be difficult to perform with limited or no access
to power rails and only noisy global power consumption. As an al-
ternative, Electromagnetic (EM) emanations—a by-product caused
by the current flow on data lines and power rails—originally pro-
posed as cryptographic side-channels by Quisquater and Samyde
[66], provides a spatial dimension to perform side-channel analysis
in isolation from unwanted leakage.

Various techniques exploit data dependent EM leakage such as
Differential Power Analysis [50], Correlation Power Analysis [17],
Template Attacks [25] and Horizontal attacks [30, 34]. Identifying
data dependent EM leakage can be challenging due to additional
noise and other unwanted artifacts, thus in addition to simple fre-
quency analysis, additional leakage detection statistical tools are
required such as Mutual Information Analysis [29], χ2-test [58]
and Test Vector Leakage Assessment (TVLA) [41, 67].

Originally developed by Cryptography Research, Inc. for AES
[41] and later adapted for public-key cryptography [47], TVLA is a

preferred choice for applying black-box leakage detection testing
to identify side-channel weaknesses [28, 61]. TVLA is based on
Welch’s T-test [74], which computes a statistical value, i.e. confi-
dence interval (CI) to accept or reject the null hypothesis. More
specifically, the test validates whether two sets of samples are taken
from similar data by comparing the averages of the two data sets.
Formally, for two sets S1 and S2, the T-test computes as

t =
µ1 − µ2√
σ 2
1

n1
+

σ 2
2

n2

where µ1, σ1, and n1 are the mean, standard deviation, and cardi-
nality of S1, respectively, and similarly for S2. The T-test will fail
at some discrete sample point if the value is greater than some
threshold Cτ . In the context of side-channel data, usually fixed vs
random test samples are compared to identify points with data
dependent leakage [41].

Contemporary works demonstrate the effectiveness of EM anal-
ysis on modern PCs, embedded and mobile devices on various open
source libraries such as GnuPG and OpenSSL, for attacking cryp-
tosystems like AES [54], RSA [38], ECDH [36], and ECDSA [37].
Moreover, e.g. Goller and Sigl [40] successfully demonstrate the
viability of EM attacks over varying distances from mobile devices
on ECC and RSA.

Longo et al. [54] performed localized EM analysis on a mod-
ern embedded device running software based OpenSSL AES, a
bit-sliced optimized implementation for SIMD NEON core, and an
AES hardware engine. They applied TVLA to identify EM leakages
and subsequently carry out template attacks. Genkin et al. [37]
were able to filter out EM emanations from a mobile device at very
low frequencies using inexpensive equipment and additional signal
processing steps. Their attack successfully recovered a few bits
of ECDSA nonces, targeting the OpenSSLwNAF implementation.
With roughly 100 signatures, they then successfully mounted a
lattice attack for full key recovery.

2.5 SM2 Implementation Attacks: Previous
Work

Due to only recently being standardized and coupled with lack
of sufficient public implementations and deployments, academic
results on attacking SM2 implementations are limited in number.
Nevertheless, existing results suggest that implementation attacks
on ECDSA generally extend—with slight modification—to SM2DSA.
A brief review follows.

Liu et al. [53] were the first to construct an SM2DSA analogue
of existing lattice-based ECDSA key recovery with partially known
nonces. The authors model exposure of three LSBs, and with 256-bit
p and n recover a private key from 100 signatures with reasonable
probability and modest computation time.

Chen et al. [27] were the first to implement an SM2DSA lat-
tice attack with real traces. They target an SM2DSA smartcard
implementation and distinguish least significant byte collisions by
detecting Hamming weight with PCA-based techniques. Restricting
to byte values 0x00 and 0xFF, the authors obtain 120K signatures
with power traces, filter them to 48 pairs, and iteratively construct
lattice problem instances to recover a private key. Interestingly, the
target is not the underlying ECC itself, but data moves by the RNG

150

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

during nonce generation. In that respect, their attack is independent
of the underlying ECC arithmetic.

Building on [11, 20] that focus on the LSDs of the wNAF for
ECDSA nonces, Zhang et al. [76] extend the analysis to SM2DSA.
With their own implementation of ECC including traditionalwNAF
scalar multiplication paired with SM2DSA, they demonstrate it is
possible to reliably capture the sequence of ECC doubles and adds
through SPA on an Atmega128. Subsequently modeling the filtered
nonces with sufficient zeros in the LSDs and constructing lattice
problem instances, they recover private keys with high probability.
Since they target least significant zeros in the wNAF expansion,
their attack is largely independent of the scalar representation—for
example, it immediately applies to binary, sliding window, and fixed
window expansions. Their work provides even further evidence
that ECDSA-type leaks are similarly detrimental to SM2DSA.

While no English version is available, the abstract of [68] sug-
gests a CPA attack to recover the SM2PKE session key exploiting
potential leakage from the SM3 compression function execution.
That is, the target is not the ECC but the subsequent KDF.

3 SM2 IN OPENSSL
Refer to Section 1 for the detailed timeline of the SM2 feature
within OpenSSL. With the narrow review window induced by the
release milestone shift, several security (and functionality) issues
were mainlined into the OpenSSL codebase. We give an overview
of these issue in this section. Listing 1 includes an extract of the
SM2DSA signature generation implementation and Listing 2 for
SM2PKE public key decryption, as of OpenSSL 1.1.1-pre5 (beta 3).

Code review. Due to the hasty review process, the code implement-
ing SM2 in the beta releases is evidently not in line with the quality
standards of analogous components of libcrypto,10 lacking test
coverage, including critical bugs (e.g. double frees and wrong return
values), a lack of return values checking and poor error handling.
These defects are particularly evident in the integration with the
EVP_PKEY (and EVP_DigestSign) API, which is the main entry
point for libssl and internal and external applications for using
the cryptographic functionality included in libcrypto.

SCA review. Beyond these traditional software issues, we preformed
an SCA evaluation of both SM2DSA and SM2PKE in OpenSSL.
This integration provides a rare opportunity to see how a straight-
forward implementation of an EC cryptosystem mixes with the
underlying EC module for arithmetic. Our review resulted in the
following observations, leveraging existing SCA results (Section 2)
on the OpenSSL EC module.

(1) For SM2DSA, in Listing 1 there is no scalar padding before
calling EC_POINT_mul, suggesting an SM2DSA analogue of
CVE-2011-1945 for remote timing attacks; see Section 4 for
our empirical evaluation.

(2) For SM2DSA, since there is no custom EC_METHOD for the
SM2 curve, EC_POINT_mul is a wrapper to ec_wNAF_mul,
suggesting an SM2DSA analogue for cache timing attacks

10The OpenSSL binaries can be roughly split in three blocks: libcrypto, providing the
cryptographic and abstraction layer; libssl, providing the networking layer; apps,
consisting in a CLI toolkit using the two libraries to perform various tasks.

84 k = BN_CTX_get(ctx);
85 rk = BN_CTX_get(ctx);
86 x1 = BN_CTX_get(ctx);
87 tmp = BN_CTX_get(ctx);
88
89 if (tmp == NULL)
90 goto done;
91
92 /* These values are returned and so should not be allocated out of the

context */↪→
93 r = BN_new();
94 s = BN_new();
95
96 if (r == NULL || s == NULL)
97 goto done;
98
99 for (;;) {
100 BN_priv_rand_range(k, order);
101
102 if (EC_POINT_mul(group, kG, k, NULL, NULL, ctx) == 0)
103 goto done;
104
105 if (EC_POINT_get_affine_coordinates_GFp(group, kG, x1, NULL, ctx) == 0)
106 goto done;
107
108 if (BN_mod_add(r, e, x1, order, ctx) == 0)
109 goto done;
110
111 /* try again if r == 0 or r+k == n */
112 if (BN_is_zero(r))
113 continue;
114
115 BN_add(rk, r, k);
116
117 if (BN_cmp(rk, order) == 0)
118 continue;
119
120 BN_add(s, dA, BN_value_one());
121 BN_mod_inverse(s, s, order, ctx);
122
123 BN_mod_mul(tmp, dA, r, order, ctx);
124 BN_sub(tmp, k, tmp);
125
126 BN_mod_mul(s, s, tmp, order, ctx);
127
128 sig = ECDSA_SIG_new();
129
130 if (sig == NULL)
131 goto done;
132
133 /* takes ownership of r and s */
134 ECDSA_SIG_set0(sig, r, s);
135 break;
136 }

Listing 1: Source code from crypto/sm2/sm2_sign.c in
OpenSSL 1.1.1-pre5 for SM2DSA signature generation.

270 C1 = EC_POINT_new(group);
271 if (C1 == NULL)
272 goto done;
273
274 if (EC_POINT_set_affine_coordinates_GFp
275 (group, C1, sm2_ctext->C1x, sm2_ctext->C1y, ctx) == 0)
276 goto done;
277
278 if (EC_POINT_mul(group, C1, NULL, C1, EC_KEY_get0_private_key(key), ctx) ==
279 0)
280 goto done;
281
282 if (EC_POINT_get_affine_coordinates_GFp(group, C1, x2, y2, ctx) == 0)
283 goto done;

Listing 2: Source code from crypto/sm2/sm2_crypt.c in
OpenSSL 1.1.1-pre5 for SM2PKE decryption.

151

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.480 1.490 1.500 1.510 1.520 1.530 1.540 1.550 1.560

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

271 bits
272 bits
273 bits
274 bits
275 bits
276 bits
277 bits
278 bits
279 bits
280 bits
281 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.030 1.040 1.050 1.060 1.070 1.080 1.090 1.100 1.110

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 1: SM2DSA latency dependency on the nonce length
on amd64 architecture in OpenSSL 1.1.1-pre3. Top: K-283 bi-
nary curve. Bottom: Recommended SM2 prime curve.

targeting scalar multiplication; see Section 5.1 for our em-
pirical evaluation.

(3) The SM2DSA implementation uses BN_mod_inverse with-
out setting BN_FLG_CONSTTIME, suggesting an SM2DSA ana-
logue for cache timing attacks targeting inversion via BEEA;
see Section 5.2 for our empirical evaluation.

(4) For SM2PKE, in Listing 2 there are no SCA considerations,
suggesting (at least) DPA-style attacks on EC_POINT_mul
during decryption; see Section 6 for our empirical evaluation.

The remainder of this paper is dedicated to evaluating these SCA
leaks, proposing and implementing mitigations (Section 7), and
empirical SCA evaluation of the mitigations (Section 7.3).

4 SM2DSA: REMOTE TIMINGS
We note the lack of scalar padding before calling EC_POINT_mul,
suggesting an SM2DSA analogue of CVE-2011-1945. To evaluate
the impact of this vulnerability, we correlate nonce lengths and the
execution time of signature generations, adopting a process similar
to the one presented by Brumley and Tuveri [21].

We wrote an OpenSSL client application which repeatedly gen-
erates SM2DSA signatures for a given plaintext, under the same
private key. For each generated signature, the program measures
the execution time of the operation (in CPU cycles) and retrieves
the associated nonce by monitoring the PRNG. We repeated the
experiment using both the recommended SM2 prime curve and
the standardized K-283 binary (Koblitz) curve [3], as the library
executes two different code paths for EC_POINT_mul over prime
and binary curves. We then analyzed the captured data to correlate
the timings with the binary logarithm (bit-length) of the nonces.

We ran these experiments on a 4-cores/4-threads Intel Core
i5-6500 CPU (Skylake) running at 3.2GHz, with Enhanced Intel

lfence
rdtsc
lfence
mov %rax, %r10
shr $31, %rdx
mov (%rsi, %rdx), %rax
lfence
rdtsc
shl $32, %rax
or %r10, %rax
mov %rax, (%rdi)
shr $31, %rdx
clflush (%rsi, %rdx)

1:
clflush (%rdi)
clflush (%rsi)
clflush (%rdx)
clflush (%rcx)
jmp 1b

Listing 3: Flush+Reload (left) and performance degrada-
tion (right) implemented for our cache-timing attacks.

SpeedStep Technology and Intel Turbo Boost Technology disabled.
Figure 1 shows cumulative distribution functions (CDF) for differ-
ent nonce bit-lengths for the two curves, collating 4 million samples
for each curve. Both plots show a strong correlation between the
bit-length of the nonce and the execution time of the signature
generation, which in turn is distinctly dominated by the execution
time of the underlying EC_POINT_mul operation. For no correla-
tion, these curves should essentially be on top of each other, i.e.
indistinguishable; see Section 7.3.

Generic binary curves. The top plot of Figure 1 shows that, using a
generic binary curve as the underlying elliptic curve for SM2DSA,
the timing correlation appears easily exploitable to mount a remote
timing attack similar to [21]. For generic binary curves, OpenSSL
implements the EC_POINT_mul operation through a Montgomery
ladder algorithm, which due to its extreme regularity in the se-
quence of EC additions and doublings, results in an overall execu-
tion time directly proportional to the binary logarithm of the secret
EC_POINT_mul scalar (i.e. the SM2DSA nonce). As a result, each
nonce bit-length exhibits a clearly distinct CDF, and suggests simple
thresholding on the execution time to filter signatures associated
with a specific nonce length with high probability.

Recommended SM2 curve. When using the recommended SM2 prime
curve, OpenSSL 1.1.1-pre3 implements the EC_POINT_mul operation
using the generic prime curve codepath, using awNAF algorithm
(see Section 5.1). The bottom plot of Figure 1 shows that, similarly
to the previous case, there is a strong correlation between the exe-
cution time of SM2DSA and the associated nonce length. We note
that in this case, mounting a practical attack poses more challenges
due to a less distinct separation between the different CDFs, likely
compensated by collecting more samples.

5 SM2DSA: CACHE TIMINGS
Asmentioned in Section 2.5, several previousworks show SM2DSA

vulnerable to ECDSA-type SCA attacks. For that reason, we explore
and analyze the cryptosystem applying existing cache-timing at-
tack techniques to code paths known for leaking information, and
exploited successfully in the past for ECDSA [11, 65].

For our analysis, we use the Flush+Reload technique [75] paired
with a performance degradation attack [9, 65]. Listing 3 shows code
snippets used to implement both techniques. This combination
of techniques allows us to accurately probe relevant memory ad-
dresses with enough granularity to confirm bit leakage on both
scalar multiplication and modular inversion operations.

152

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

 0

 50

 100

 150

 200

 250

 61000 61500 62000 62500 63000

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

double probe add probe

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

shift probe subtract probe

Figure 2: Partial raw cache-timing traces during SM2DSA.
Top: Scalar multiplication. Bottom: Binary GCDmodular in-
version. Both traces reveal partial information on the secret
scalar and the long-term private key, respectively.

5.1 Scalar Multiplication
SM2DSA in OpenSSL performs scalar multiplication operations by
calling the EC_POINT_mul function in SM2_sig_gen @ crypto/-
sm2/sm2_sign.c, which is only a wrapper to the underlying ec_-
wNAF_mul function. The ec_wNAF_mul function is a generic code
path performing scalar multiplication, i.e. [k]G in SM2DSA, by
executing a series of double and add operations based on thewNAF
representation of k . This code path is vulnerable to cache-timing
attacks due to its non constant-time execution, targeted previously
using cache-timing techniques [9, 20, 70, 75]. Generally, the strategy
is to trace the sequence of double and add operations, which leaks
LSDs of k , leading to private key recovery.

Unlike previous attacks, during our analysis we do not probe
memory lines directly used in functions EC_POINT_add and EC_-
POINT_dbl, but instead we focus in low level functions BN_rshift1
and BN_lshift. The BN_rshift1 function is one of several func-
tions called during EC_POINT_add execution and, unlike the rest
of the functions in the routine, BN_rshift1 is a representative
of the add operation. Similarly, BN_lshift is a representative of
the double operation, allowing to identify add and double opera-
tions respectively during scalar multiplication. Therefore, these low
level functions allow accurately detecting when add and double
operations execute. By tracing the sequence of BN_rshift1 and
BN_lshift operations, we are able to determine with high accuracy
the sequence of double and add operations, leaking LSDs of k . Top
trace in Figure 2 shows a post-filtered cache-timing trace of a scalar
multiplication with a random nonce k during SM2DSA. The probes
detect the sequence of curve operations from left to right as follows:
1 double, 1 add, 4 doubles, 1 add, 4 doubles, 1 add, 7 doubles, 1 add,
4 doubles, and 1 add; thus revealing partial information on k .

5.2 Modular Inversion
Modular inversion is a common operation during digital signatures
and in OpenSSL, SM2DSA uses the BN_mod_inverse function for
this purpose. This function executes one of several GCD algorithm
variants. Unfortunately, most of these variants are based on the
Euclidean algorithm which executes in a non constant-time fashion.
The Euclidean algorithm and variants are highly dependent on their

inputs and previous research exploits some of these variants [4, 8,
65].

During SM2DSA execution, none of the input values has the
flag BN_FLG_CONSTTIME set when entering to the BN_mod_inverse
function, therefore the function takes the default insecure path, cal-
culating the modular inverse of dA+1 through the Binary Extended
Euclidean Algorithm (BEEA). More importantly, this operation exe-
cutes every time a signature is generated with the exact same input
values, therefore an attacker has several opportunities to trace the
BEEA execution on the private key.

Similar to the scalar multiplication case, we identify the low
level operations leaking bits from the input values. In the BEEA
case, this means functions BN_rshift1 and BN_sub. By placing
probes in memory lines in these routines, we are able to trace the
sequence of shift and subtraction operations performed during
modular inversion, leading to partial bit recovery of dA + 1. Using
algebraic methods [7], it is possible to recover a variable amount of
private key LSDs from these sequences. Bottom trace in Figure 2
shows the end of a post-filtered cache-timing trace capturing the
execution of the BEEA during SM2DSA. The trace matches the
sequence 2 shifts, 1 subtract, 1 shift, 1 subtract, 2 shifts, 1 subtract, 1
shift, 1 subtract, 1 shift; obtained from a perfect trace computed by
executing BEEA on the inputs taken from the SM2DSA signature
test, demonstrating private key leakage.

6 SM2PKE: EM ANALYSIS
As discussed in Section 2.1, SM2PKE decryption computes the
shared secret using the receiver’s private key dB and the sender’s
ECDHE public key C1. The point multiplication [dB]C1 can leak
intermediate values which can be exploited using both vertical
attacks [31, 35, 62] and horizontal attacks [10, 34] for key recovery.

To evaluate the side-channel leakage for SM2PKE, we applied
Test Vector Leakage Analysis (TVLA) using Welch’s T-test [41, 67].
We took an approach similar to [28, 61] for ECC, with a reduced
set of test vectors. We divided the test vectors into three different
sets {Si } for i = 1, 2, 3. The sets S1, S2 and S3 contained traces for
fixed key dB and fixed cipher textC1, fixed dB and varyingC1, fixed
C1 and varying dB respectively. We performed the tests in pairs,
such that {(S1, S2), (S1, S3)} would fail the T-test if the resulting
confidence threshold satisfies |Cτ | > 4.5. We selected the value Cτ
(a function of number of samples) based upon empirical evidence
from Jaffe et al. [47].

Experimental setup. Weperformed the experiments on anAM335x
Sitara SoC11 featuring a 32-bit ARM Cortex-A8 embedded on a
BeagleBone Black12 development board. We used the standard Bea-
gleBone Debian distribution (“Wheezy” 7.8) while keeping all the
default configurations intact. For capturing the EM traces, we used a
Langer LF-U5 near-field probe (500kHz to 50MHz) and 30dB Langer
PA-303 low noise amplifier. We positioned the probe head directly
on the SoC, seeking to strengthen the acquisition quality. We pro-
cured the traces using a PicoScope 5244B digital oscilloscope at a
sampling rate of 125 MSamples/sec with a 12-bit ADC resolution.
Figure 3 shows our setup for the EM analysis.

11http://www.ti.com/processors/sitara/arm-cortex-a8/am335x/overview.html
12https://beagleboard.org/black

153

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

Figure 3: Capturing EM traces from the BeagleBone Black
using a Langer probe positioned on the SoC and procured
using the Picoscope USB oscilloscope.

 0 5000 10000 15000 20000 25000 30000

D D D A D D

Time (samples)

Figure 4: The filtered EM trace clearly reveals the sequence
of ECC double and add operations during SM2PKE decryp-
tion.

EM acquisition. For the purpose of this analysis, we captured
1500 EM traces for each set (S1, S2, S3) while performing the decryp-
tion operation. We fixed the clock frequency at 1GHz to avoid any
bias in the captured traces. To acquire traces, we initially utilized
the GPIO pin of the board to trigger the oscilloscope. However,
this trigger proved unreliable as it encountered random delays. To
improve this, we applied correlation based matching to locate the
beginning of the trace. As most of the EM signal energy was con-
centrated at much lower frequencies, we also applied a Low Pass
filter with a cut-off frequency at 15MHz.

Due to noise in the traces, we performed additional process-
ing steps. For the envelope detection, we applied a Digital Hilbert
Transform, followed by a Low Pass Filter to smooth out any high
frequency noise. From the sets, we dropped traces containing noise
due to preemptive interrupts and other unwanted signal features.
In the end, we retained a total of 1000 traces per set. Since the T-test
required averaging multiple traces, we aligned the traces at each
point of interest (i.e. ECC operations). Figure 4 shows part of an
actual processed EM trace, depicting a sequence of ECC double and
add operations.

T-test. To validate the results, we divided each set into subsets
{Sia } and {Sib } and performed an independent T-test between sets
{(S1a, Ska)} and {(S1b , Skb)} for k = 2, 3. We performed a further
test by combining an equal number of randomly selected traces
from both {S1} and {Sk } such that the two resulting subsets were
disjoint. A correct T-test for the random sets R1 = {(S1 ∪ Sk)}
and Rk = {(S1 ∪ Sk) − R1} should result in confidence threshold
|Cτ | < 4.5 for all the points in the traces.

 0

 2

 4

 6

 8

 0 5000 10000 15000 20000 25000 30000

(S
1a

, S
2a

) (S
1b

, S
2b

)

 0

 2

 4

 6

 8

 0 5000 10000 15000 20000 25000 30000

Figure 5: TVLA during SM2PKE decryption. Top: T-test re-
sults between sets S1 and S2 versus sample index; for fixed
vs random k the test fails since many peaks exceed the 4.5
threshold for both sets. Bottom: T-test results between ran-
dom sets R1 and R2 versus sample index; it shows no peaks
exceeding 4.5 since the means are similar due to balanced
and random selection of fixed and random k in both sets.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000

(S
1a

, S
3a

) (S
1b

, S
3b

)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000

Figure 6: TVLA during SM2PKE decryption. Top: T-test re-
sults between sets S1 and S3 versus sample index; for fixed
vs random C the test fails since many peaks exceed the 4.5
threshold for both sets. Bottom: T-test results between ran-
dom sets R1 and R3 versus sample index; shows no peaks ex-
ceeding 4.5 since themeans are similar due to equal and ran-
dom selection of fixed and random C in both sets.

The experiments showed multiple points where the T-test failed
for both {(S1, S2), (S1, S3)}. Figure 5 shows two T-test results for
{(S1a, S2a)} and {(S1b , S2b)}. It is clear from the figure that the T-
test values have a significant number of peaks satisfying |Cτ | > 4.5
for both tests, roughly at the same points. This demonstrates there
is a strong leak at these points, since we performed both tests on dif-
ferent sets of traces. From the random sets {R1,R2} the confidence
threshold remains |Cτ | < 4.5 which further validates our hypothe-
sis. Similarly, Figure 6 shows the failed T-test for {(S1a, S3a)} and
{(S1b , S3b)}.

7 SCA MITIGATIONS
The attacker effort required to achieve full key recovery using the
previously described leaks is very low. Taking the cache-timing leak
in Section 5.1 as an example, SM2DSA lattice attacks discussed in
Section 2.5 analogous to ECDSA would require roughly a mere 500
signatures with traces, immediately discarding roughly 75% of those
that statistically will not reveal enough information about the LSDs
(i.e. three or more bits are needed in practice for lattice attacks). In

154

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

this section, we describe our results on mitigating the discovered
leaks. We claim no novelty for the mitigations themselves, only
their application and implementation within the OpenSSL library;
they are standard techniques known since at least the 90s.

We stress that the focus of our mitigation effort is not on SM2 nor
any individual cryptosystem, but rather on the EC module itself, to
provide transparent secure-by-default behavior to cryptosystems at
the architecture level. That is, conceptually it should be completely
reasonable to drop in a cryptosystem implementation like it was
done with SM2DSA or SM2PKE and have it resist SCA, with ab-
solutely no esoteric knowledge of OpenSSL internals that control
SCA features such as constant-time flags.

7.1 Scalar Multiplication: SCA Mitigations
Ladder. While it is indeed feasible to reduce leakage in OpenSSL’s
wNAF scalar multiplication code path [18], tediously straightlining
conditions and making table lookups regular adds significant code
complexity, increases the probability of defects, and generally re-
sults in low maintainability code. Even then, there is no guarantee
that all leakage issues are addressed: the code path was not ini-
tially intended to resist SCA, and retrofitting mitigations becomes
awkward.

We instead implemented an early exit from ec_wNAF_mul that—
irrespective of the constant time flag—diverts to a new single scalar
multiplication function for all instances of [k]G (fixed point, e.g.
ECC key generation, SM2DSA signing, ECDSA signing, first half
of ECDH) or [k]P (variable point, e.g. SM2PKE decryption, last half
of ECDH), and falls back to the existing (insecure)wNAF code in
all other cases (e.g. [a]G + [b]P in various digital signature scheme
verifications). For cryptosystem use cases internal to the OpenSSL
library, this provides secure-by-default scalar multiplication code
path traversal.

For this new functionality, we chose the traditional powering lad-
der due to Montgomery [57], heralded for its favorable SCA proper-
ties. In modern implementations, straightlining the key-dependent
ladder branches happens in one of two ways [60, Sec. 2]: “either
by loading from (or storing to) addresses that depend on the secret
scalar, or by using arithmetic operations to perform a conditional
register-to-register move. The latter approach is very common
on large processors with cache, where the former approach leaks
through cache-timing information.”

We see both in practice: For example, TomsFastMath13 does not
branch but reads and stores using (secret) pointer offsets, while
Mbed TLS14 parses all the data and performs a manual conditional
swap with arithmetic, even documenting their function mbedtls-
_mpi_safe_cond_swap with the comment: “Here it is not OK to
simply swap the pointers, which would lead to different memory ac-
cess patterns whenX andY are used afterwards.” This is in contrast
to e.g. [44, Sec. 8.5]: “we implement the conditional swap operation
after each ladder step by swapping pointer variables instead of
data. We expect slightly better performance and also a reduced
side-channel leakage.” While that is perhaps a valid strategy on

13https://github.com/libtom/tomsfastmath/
14https://github.com/ARMmbed/mbedtls/

architectures lacking cache memory, we feel it is generally dubi-
ous advice since typical engineers are usually unaware of SCA
subtleties.

Regardless, the “standard way” according to Bernstein [14, Sec. 3]
uses arithmetic to implement conditional swaps on the data, not
the pointers; the work also reviews a slight optimization, which we
also implement. The two contiguous swaps conditional on bits ki
and ki−1 reduce to a single swap by XOR-merging the condition
bits, i.e. only swap if the bit values differ. This optimization halves
the number of conditional swaps.

Scalar padding. The above conditional swaps ensure favorable SCA
behavior for ladder iterations. But [21] exploits the number of said
iterations, fixed in an ECDSA-only fashion in 2011 by padding
nonces. We remove this padding, and instead push it to the underly-
ing EC module to ensure a constant number of ladder iterations. To
accomplish this in an SCA-friendly way, we construct two values
k ′ = k+n andk ′′ = k ′+n, subsequently using the above conditional
swap to set k to either k ′ or k ′′, whichever has bit-length precisely
one more than n. We apply this padding directly preceding ladder
execution.

Coordinate blinding. Originally proposed by Coron [31, Sec. 5.3] for
standard projective coordinates as a DPA countermeasure, coordi-
nate blinding transforms the input point to a random representative
of the equivalence class. For generic curves over GF (p), OpenSSL’s
formulae are a fairly verbatim implementation of Jacobian projec-
tive coordinates [1, A.9.6] where the relation

(X ,Y ,Z) ≡ (λ2X , λ3Y , λZ)
holds for all λ , 0 inGF (p). Our implemented mitigation generates
λ randomly, applying the map a single time directly preceding the
ladder execution. This is, for example, the approach taken by Mbed
TLS (function ecp_randomize_jac).

7.2 Modular Inversion: SCA Mitigations
Directly due to the work by Gueron and Krasnov [43, Sec. 6],
OpenSSL integrated a contribution from Intel that included (1)
high-speed, constant-time P-256 ECC on AVX2 architectures; (2)
constant-time modular inversion modulo ECDSA group orders.
It did the latter by internally exposing a function pointer within
the EC_METHOD structure. If set, ECDSA signing code path calls
said pointer (for which the custom P-256 method has a dedicated
function), otherwise a series of default fallbacks including (1) FLT
inversion with Montgomery modular exponentiation; (2) normal
EEA-based inversion. We refactored the structure to expose this de-
fault behavior within the wrapper that checks the function pointer,
the end goal being to expose it to the EC module as a whole and
not limit to ECDSA, in turn allowing SM2DSA access to a strictly
secure-by-default functionality. We explored two different options
for inversion default behavior that resist SCA, summarized below.

Blinding. The classical way to computemodular inversions is through
the EEA utilizing divisions, or binary variants utilizing shifts and
subtracts. However, as previously described their control flow can
leak critical algorithm state. Nevertheless, to prevent direct input
deduction from this state one option is to choose blinding value b
uniformly at random from [1 . .n) then compute k−1 = b(bk)−1 at

155

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

the additional cost of two multiplications. This is, for example, the
approach taken by Mbed TLS for ECDSA nonces.

Exponentiation. Although initially motivated by binary fields with
normal basis representation where squaring is a simple bit rotation,
the algorithm by Itoh and Tsujii [46] is one of the earliest examples
of favorable implementation aspects of using FLT for finite field
inversion. SCA benefits followed thereafter, e.g. Curve25519 where
Bernstein [13, Sec. 5] weighs blinded EEA methods versus FLT: “An
extended-Euclid inversion, randomized to protect against timing
attacks, might be faster, but the maximum potential speedup is very
small, while the cost in code complexity is large.”

Performance and security. Regarding security, it is clear that either
method is a leap forward for OpenSSL with respect to secure-by-
default. We feel that blinding has an intrinsic advantage over FLT-
based methods, since the former resists bug attacks [15, 19] that
exploit predictable execution flows. Regarding performance, we
benchmarked both approaches to measure the potential differences
alluded to by Bernstein, and found the results consistent. On an
Intel Core i5-6500 CPU (Skylake) running at 3.2GHz, after all of
our described and implemented countermeasures, one SM2DSA
execution takes on average 1760913 cycles with FLT, and 1750984
cycles with blinded BEEA—a difference of a fraction of a percent.

In the end, the OpenSSL team declined our blinding contribution.
They plan to increase the usage of the Montgomery arithmetic
context within the EC module, so in that sense their decision is
rational from a software architecture perspective. The team instead
integrated our FLT refactoring, sufficient to thwart the attack in
Section 5, and furthermore provide secure-by-default behavior to
future callers conforming to the convention set by this API.

7.3 SCA Mitigations: Evaluation
Remote timings: evaluation. Using the same approach adopted in
Section 4, Figure 7 shows the cumulative effect of three counter-
measures: adopting the Montgomery ladder instead of thewNAF
algorithm for regular scalar multiplication, scalar padding, and
computation of modular inversion via exponentiation through FLT.

Both plots clearly show that the latencies measured for signa-
ture generation using nonces of different bit-lengths are indistin-
guishable, effectively preventing the attack, and a comparison with
Figure 1 immediately shows the extent of the leakage reduction.

Cache-timings: evaluation. After introducing the mitigations, when
SM2DSA performs a scalar multiplication it first calls the EC_-
POINT_mul function, a wrapper to ec_wNAF_mul. There the code
takes an early exit, jumping to the powering ladder regular algo-
rithm to perform a fixed point scalar multiplication [k]G. From
the cache perspective, the ladder implementation consists of an
always-double-and-add algorithm, largely unrelated to thewNAF
representation of the nonce k . To support our claim, we follow the
same approach as in Section 5, placing probes in the same underly-
ing functions BN_rshift1 and BN_lshift—called by EC_POINT_-
add and EC_POINT_dbl—to trace the sequence of operations during
scalar multiplication. Top trace in Figure 8 shows an example trace,
which indeed tracks the sequence of double and add operations
successfully, but due to the regular nature of the powering ladder

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2.170 2.175 2.180 2.185 2.190 2.195

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

271 bits
272 bits
273 bits
274 bits
275 bits
276 bits
277 bits
278 bits
279 bits
280 bits
281 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1.720 1.725 1.730 1.735 1.740 1.745 1.750 1.755 1.760

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 7: SM2DSA latency dependency on the nonce length
on amd64 architecture, using (1) a Montgomery ladder
algorithm for scalar multiplication instead of wNAF; (2)
scalar padding; (3) modular inversion through exponentia-
tion (FLT). Top: K-283 binary curve. Bottom: Recommended
SM2 curve.

algorithm, no meaningful information can be retrieved from this
sequence.

During modular inversion, the high level function SM2_sig_gen
in SM2DSA no longer calls BN_mod_inverse but instead it calls di-
rectly EC_GROUP_do_inverse_ord on the private key dA + 1. This
function computes modular inversion by performing an exponen-
tiation using FLT, therefore the underlying algorithm and its im-
plementation are completely different compared to the Euclidean
algorithm (and variants) used previously. Recall that during mod-
ular inversion using FLT, the exponent value is public; said value
does not require SCA protection. Bottom trace in Figure 8 shows
an example trace during modular inversion, probing the square and
multiply operations based on the public exponent.

EM leakage: evaluation. To validate the efficacy of the applied miti-
gations, we repeated the T-test experiments (Section 6). Figure 10
shows the results of the new T-test for both fixed vs random key
(S1, S2) and fixed vs random point (S1, S3). Figure 9 shows the EM
traces, reflecting a regular sequence of ECC double and add opera-
tions due to ladder point multiplication. One interesting observation
is the increase in the number of peaks for the add operation com-
pared to Figure 4. This is due to the fact that ec_wNAF_mul uses
mixed coordinates (projective and affine), a code path with less field
operations compared to the fully projective coordinate path taken
by the ladder.

It is clear from Figure 10 that the T-test shows a significant im-
provement due to the combined ladder application and projective
coordinate randomization. The T-test easily passed for fixed vs
random point (S1, S3) with |Cτ | < 4. In case of fixed vs random key

156

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

 0

 50

 100

 150

 200

 250

 76200 76300 76400 76500 76600 76700

D A D A D A D A

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

double probe add probe

 0

 50

 100

 150

 200

 250

 103700 103750 103800 103850 103900 103950 104000

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

multiply probe square probe

Figure 8: Partial raw cache-timing traces during SM2DSA.
Top: Ladder scalar multiplication composed of regular dou-
ble and add operations. Bottom: FLT modular inversion via
exponentiation composed of regular squaring windows fol-
lowed by a single multiply.

 10000 15000 20000 25000 30000 35000 40000 45000

A A A AD D D

Time (samples)

Figure 9: The filtered EM trace after applying the ladder
countermeasure. As expected, it clearly reveals the sequence
of ECC double and add operations during SM2PKE decryp-
tion, yet this sequence is regular and not useful for SCA-
enabled attackers.

 0

 2

 4

 6

 8

 0 10000 20000 30000 40000 50000

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000

Figure 10: Top: T-test results between sets S1 and S2 versus
sample index; for fixed vs random k the test marginally fails
with leaks at the few points where the threshold is around 6.
Bottom: T-test results between sets S1 and S3 versus sample
index; for fixed vs random C the test passes since no peaks
exceed the 4.5 threshold.

(S1, S2) we still observe a marginal number of peaks with magnitude
roughly 6. In theory, it is still possible to exploit this; e.g. a key
value that leading to special intermediate points on the curve such
as zero-value [6] or same value points [59]. However, the leakage is
so minimal, our analysis suggests mounting such attacks would be
extremely difficult and feature significant data complexity. More-
over, the scalar randomization countermeasure [31] to thwart this
leak introduces performance overhead, in this case unacceptable to
OpenSSL when weighed vs risk.

8 CONCLUSION
Subsequent to an accelerated OpenSSL milestone to support SM2
cryptosystems, our work began with a security review of SM2DSA
and SM2PKE implementations within OpenSSL pre-releases. Part
of our review uncovered several side-channel deficiencies in the
merged code, which we then verified with empirical remote timing,
cache-timing, and EM traces. To mitigate these discovered vulner-
abilities, we proposed and implemented several mitigations, now
mainlined into the OpenSSL codebase. These mitigations target the
underlying EC module, providing secure-by-default behavior not
only for SM2 but future cryptosystems in the ECC family. Notably,
the mitigations also bring security to the generic curve scalar multi-
plication code path in OpenSSL, a longstanding vulnerability since
2009. Finally, we performed an empirical SCA evaluation of these
mitigations to demonstrate their efficacy.

We met our goal to intersect the recent OpenSSL 1.1.1 release
and ensure these vulnerabilities do not affect release versions. How-
ever, given a more relaxed schedule, we outline future work to
improve this secure-by-default approach: (1) the antiquated ECC
point addition and doubling formulae should be renovated to more
recent exception and/or branch-free versions; (2) support for ladder
step function pointers, for more efficient ladder operations w.r.t.
finite field operations; (3) at the standardization level, SM2DSA
private key formats that, similar to RSA private keys with CRT
parameters, store the value (dA + 1)−1 alongside the private key dA
for accelerated performance and a reduced SCA attack surface.

From the software engineering perspective, lessons learned from
our work are twofold: (1) software projects, OpenSSL included,
should maintain a stronger separation between release, beta, and
development branches to inhibit “feeping creaturism” [69, Ch. 6]
that can adversely shift milestones; (2) milestones for security-
critical features should be set consistent with the complexity of
the review process, to prevent premature merging. Luckily, in this
case our responsible disclosure with the OpenSSL security team
coupled with our mitigation development efforts yielded a favorable
outcome. We strongly encourage adhering to the above two points
to assist averting future security vulnerabilities.

ACKNOWLEDGMENTS
Supported in part by Academy of Finland grant 303814.

The third author was supported in part by a Nokia Foundation
Scholarship and by the Pekka Ahonen Fund through the Industrial
Research Fund of Tampere University of Technology.

This article is based in part upon work from COST Action IC1403
CRYPTACUS, supported by COST (European Cooperation in Sci-
ence and Technology).

REFERENCES
[1] 1999. Standard Specifications for Public Key Cryptography. IEEE P1363/D13.

Institute of Electrical and Electronics Engineers.
[2] 2009. Elliptic Curve Cryptography. SEC 1. Standards for Efficient Cryptography

Group. http://www.secg.org/sec1-v2.pdf
[3] 2013. Digital Signature Standard (DSS). FIPS PUB 186-4. National Institute of

Standards and Technology. https://doi.org/10.6028/NIST.FIPS.186-4
[4] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch

Prediction Vulnerabilities in OpenSSL and Necessary Software Countermea-
sures. In Cryptography and Coding, 11th IMA International Conference, Cirences-
ter, UK, December 18-20, 2007, Proceedings (Lecture Notes in Computer Science),

157

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

Steven D. Galbraith (Ed.), Vol. 4887. Springer, 185–203. https://doi.org/10.1007/
978-3-540-77272-9_12

[5] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. 2005. Improving Brumley
and Boneh timing attack on unprotected SSL implementations. In Proceedings of
the 12th ACM Conference on Computer and Communications Security, CCS 2005,
Alexandria, VA, USA, November 7-11, 2005, Vijay Atluri, Catherine A. Meadows,
and Ari Juels (Eds.). ACM, 139–146. https://doi.org/10.1145/1102120.1102140

[6] Toru Akishita and Tsuyoshi Takagi. 2005. Zero-Value Register Attack on Elliptic
Curve Cryptosystem. IEICE Transactions 88-A, 1 (2005), 132–139. https://doi.
org/10.1093/ietfec/e88-a.1.132

[7] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento, and Santiago Sánchez-
Solano. 2017. SPA vulnerabilities of the binary extended Euclidean algorithm.
J. Cryptographic Engineering 7, 4 (2017), 273–285. https://doi.org/10.1007/
s13389-016-0135-4

[8] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and
Billy Bob Brumley. 2018. Cache-Timing Attacks on RSA Key Generation. IACR
Cryptology ePrint Archive 2018, 367 (2018). https://eprint.iacr.org/2018/367

[9] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and
Yuval Yarom. 2016. Amplifying side channels through performance degrada-
tion. In Proceedings of the 32nd Annual Conference on Computer Security Ap-
plications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, Stephen
Schwab, William K. Robertson, and Davide Balzarotti (Eds.). ACM, 422–435.
https://doi.org/10.1145/2991079.2991084

[10] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard, and Justine
Wild. 2015. Horizontal collision correlation attack on elliptic curves – Extended
Version. Cryptography and Communications 7, 1 (2015), 91–119. https://doi.org/
10.1007/s12095-014-0111-8

[11] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh
Aah... Just a Little Bit” : A Small Amount of Side Channel Can Go a Long Way. In
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings (Lecture Notes in
Computer Science), Lejla Batina and Matthew Robshaw (Eds.), Vol. 8731. Springer,
75–92. https://doi.org/10.1007/978-3-662-44709-3_5

[12] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. http://cr.yp.to/papers.
html#cachetiming

[13] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In
Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings (Lecture Notes in Computer Science), Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin (Eds.), Vol. 3958. Springer, 207–228. https:
//doi.org/10.1007/11745853_14

[14] Daniel J. Bernstein. 2009. Batch Binary Edwards. In Advances in Cryptology
- CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings (Lecture Notes in Computer Sci-
ence), Shai Halevi (Ed.), Vol. 5677. Springer, 317–336. https://doi.org/10.1007/
978-3-642-03356-8_19

[15] Eli Biham, Yaniv Carmeli, and Adi Shamir. 2016. Bug Attacks. J. Cryptology 29, 4
(2016), 775–805. https://doi.org/10.1007/s00145-015-9209-1

[16] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings (Lecture Notes in Computer Science), Hugo
Krawczyk (Ed.), Vol. 1462. Springer, 1–12. https://doi.org/10.1007/BFb0055716

[17] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power
Analysis with a Leakage Model. In Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-
13, 2004. Proceedings (Lecture Notes in Computer Science), Marc Joye and Jean-
Jacques Quisquater (Eds.), Vol. 3156. Springer, 16–29. https://doi.org/10.1007/
978-3-540-28632-5_2

[18] Billy Bob Brumley. 2015. Faster Software for Fast Endomorphisms. In Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers (Lecture Notes
in Computer Science), Stefan Mangard and Axel Y. Poschmann (Eds.), Vol. 9064.
Springer, 127–140. https://doi.org/10.1007/978-3-319-21476-4_9

[19] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. 2012.
Practical Realisation and Elimination of an ECC-Related Software Bug Attack.
In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings
(Lecture Notes in Computer Science), Orr Dunkelman (Ed.), Vol. 7178. Springer,
171–186. https://doi.org/10.1007/978-3-642-27954-6_11

[20] Billy Bob Brumley and Risto M. Hakala. 2009. Cache-Timing Template Attacks.
In Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the
Theory and Application of Cryptology and Information Security, Tokyo, Japan, De-
cember 6-10, 2009. Proceedings (Lecture Notes in Computer Science), Mitsuru Matsui
(Ed.), Vol. 5912. Springer, 667–684. https://doi.org/10.1007/978-3-642-10366-7_39

[21] Billy Bob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still
Practical. In Computer Security - ESORICS 2011 - 16th European Symposium on

Research in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings
(Lecture Notes in Computer Science), Vijay Atluri and Claudia Díaz (Eds.), Vol. 6879.
Springer, 355–371. https://doi.org/10.1007/978-3-642-23822-2_20

[22] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.
In Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003. USENIX Association. https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical

[23] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701–716. https://doi.org/10.1016/j.comnet.2005.
01.010

[24] Certicom Research. 2010. Standards for Efficient Cryptography 2 (SEC 2): Rec-
ommended Elliptic Curve Domain Parameters (Version 2.0). Technical Report.
Certicom Corp. http://www.secg.org/sec2-v2.pdf

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2002. Template Attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers (Lecture
Notes in Computer Science), Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar (Eds.), Vol. 2523. Springer, 13–28. https://doi.org/10.1007/3-540-36400-5_3

[26] Cai-Sen Chen, Tao Wang, and Jun-Jian Tian. 2013. Improving timing attack on
RSA-CRT via error detection and correction strategy. Information Sciences 232
(2013), 464–474. https://doi.org/10.1016/j.ins.2012.01.027

[27] Jiazhe Chen, Mingjie Liu, Hexin Li, and Hongsong Shi. 2015. Mind Your Nonces
Moving: Template-Based Partially-Sharing Nonces Attack on SM2 Digital Sig-
nature Algorithm. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17,
2015, Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn (Eds.). ACM,
609–614. https://doi.org/10.1145/2714576.2714587

[28] Łukasz Chmielewski, PedroMassolino, Jo Vliegen, Lejla Batina, and NeleMentens.
2017. Completing the Complete ECC Formulae with Countermeasures. Journal
of Low Power Electronics and Applications 7, 1 (2017), 3. https://doi.org/10.3390/
jlpea7010003

[29] Tom Chothia and Apratim Guha. 2011. A Statistical Test for Information Leaks
Using Continuous Mutual Information. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June,
2011. IEEE Computer Society, 177–190. https://doi.org/10.1109/CSF.2011.19

[30] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vin-
cent Verneuil. 2010. Horizontal Correlation Analysis on Exponentiation. In
Information and Communications Security - 12th International Conference, ICICS
2010, Barcelona, Spain, December 15-17, 2010. Proceedings (Lecture Notes in Com-
puter Science), Miguel Soriano, Sihan Qing, and Javier López (Eds.), Vol. 6476.
Springer, 46–61. https://doi.org/10.1007/978-3-642-17650-0_5

[31] Jean-Sébastien Coron. 1999. Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings (Lecture Notes in Computer Science), Çetin Kaya Koç and Christof Paar
(Eds.), Vol. 1717. Springer, 292–302. https://doi.org/10.1007/3-540-48059-5_25

[32] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. 2009. Opportunities
and Limits of Remote Timing Attacks. ACM Transactions on Information and
System Security (TISSEC) 12, 3 (2009), 17:1–17:29. https://doi.org/10.1145/1455526.
1455530

[33] T. Dierks and C. Allen. 1999. The TLS Protocol Version 1.0. RFC 2246. RFC Editor.
https://doi.org/10.17487/RFC2246

[34] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-
Luc Danger, and Sylvain Guilley. 2016. Dismantling Real-World ECC with Hor-
izontal and Vertical Template Attacks. In Constructive Side-Channel Analysis
and Secure Design - 7th International Workshop, COSADE 2016, Graz, Austria,
April 14-15, 2016, Revised Selected Papers (Lecture Notes in Computer Science),
François-Xavier Standaert and Elisabeth Oswald (Eds.), Vol. 9689. Springer, 88–
108. https://doi.org/10.1007/978-3-319-43283-0_6

[35] Pierre-Alain Fouque and Frédéric Valette. 2003. The Doubling Attack - Why
Upwards Is Better than Downwards. In Cryptographic Hardware and Embedded
Systems - CHES 2003, 5th International Workshop, Cologne, Germany, Septem-
ber 8-10, 2003, Proceedings (Lecture Notes in Computer Science), Colin D. Wal-
ter, Çetin Kaya Koç, and Christof Paar (Eds.), Vol. 2779. Springer, 269–280.
https://doi.org/10.1007/978-3-540-45238-6_22

[36] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2016. ECDH
Key-Extraction via Low-Bandwidth Electromagnetic Attacks on PCs. In Topics
in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings (Lecture
Notes in Computer Science), Kazue Sako (Ed.), Vol. 9610. Springer, 219–235. https:
//doi.org/10.1007/978-3-319-29485-8_13

[37] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
2016. ECDSA Key Extraction fromMobile Devices via Nonintrusive Physical Side
Channels. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM, 1626–1638. https://doi.org/10.1145/2976749.2978353

158

Side-Channel Analysis of SM2: A Late-Stage Featurization Case Study ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

[38] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I (Lecture Notes in Computer Science), Juan A. Garay and
Rosario Gennaro (Eds.), Vol. 8616. Springer, 444–461. https://doi.org/10.1007/
978-3-662-44371-2_25

[39] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth BeWith You:
A Microarchitectural Side Channel Attack on Several Real-World Applications
of Curve25519. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 845–858. https://doi.org/10.1145/3133956.3134029

[40] Gabriel Goller and Georg Sigl. 2015. Side Channel Attacks on Smartphones
and Embedded Devices Using Standard Radio Equipment. In Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers (Lecture Notes in Com-
puter Science), Stefan Mangard and Axel Y. Poschmann (Eds.), Vol. 9064. Springer,
255–270. https://doi.org/10.1007/978-3-319-21476-4_17

[41] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011.
A testing methodology for side-channel resistance validation. In Non-
Invasive Attack Testing Workshop, NIAT 2011, Nara, Japan, September
26-27, 2011. Proceedings. NIST. https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/08_goodwill.pdf

[42] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association, 897–
912. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/gruss

[43] Shay Gueron and Vlad Krasnov. 2015. Fast prime field elliptic-curve cryptography
with 256-bit primes. J. Cryptographic Engineering 5, 2 (2015), 141–151. https:
//doi.org/10.1007/s13389-014-0090-x

[44] Björn Haase and Benoît Labrique. 2017. Making Password Authenticated Key
Exchange Suitable for Resource-Constrained Industrial Control Devices. In Cryp-
tographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings (Lecture Notes
in Computer Science), Wieland Fischer and Naofumi Homma (Eds.), Vol. 10529.
Springer, 346–364. https://doi.org/10.1007/978-3-319-66787-4_17

[45] Ralf Hund, CarstenWillems, and ThorstenHolz. 2013. Practical Timing Side Chan-
nel Attacks Against Kernel Space ASLR. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/
practical-timing-side-channel-attacks-against-kernel-space-aslr

[46] Toshiya Itoh and Shigeo Tsujii. 1988. A fast algorithm for computing multiplica-
tive inverses in GF(2m) using normal bases. Inform. and Comput. 78, 3 (1988),
171–177. https://doi.org/10.1016/0890-5401(88)90024-7

[47] Josh Jaffe, Pankaj Rohatgi, and Marc Witteman. 2011. Efficient side-
channel testing for public key algorithms: RSA case study. In Non-
Invasive Attack Testing Workshop, NIAT 2011, Nara, Japan, September 26-
27, 2011. Proceedings. NIST. https://csrc.nist.gov/CSRC/media/Events/
Non-Invasive-Attack-Testing-Workshop/documents/09_Jaffe.pdf

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In 2019
IEEE Symposium on Security and Privacy, SP 2019, Proceedings, 20-29 May 2019, San
Francisco, California, USA. IEEE, 19–37. https://doi.org/10.1109/SP.2019.00002

[49] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings (Lecture Notes in Computer Science), Neal Koblitz (Ed.), Vol. 1109.
Springer, 104–113. https://doi.org/10.1007/3-540-68697-5_9

[50] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lec-
ture Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666. Springer,
388–397. https://doi.org/10.1007/3-540-48405-1_25

[51] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Ste-
fan Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-
12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 549–
564. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/lipp

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX
Association, 973–990. https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp
[53] Mingjie Liu, Jiazhe Chen, and Hexin Li. 2013. Partially Known Nonces and

Fault Injection Attacks on SM2 Signature Algorithm. In Information Security
and Cryptology - 9th International Conference, Inscrypt 2013, Guangzhou, China,
November 27-30, 2013, Revised Selected Papers (Lecture Notes in Computer Science),
Dongdai Lin, Shouhuai Xu, and Moti Yung (Eds.), Vol. 8567. Springer, 343–358.
https://doi.org/10.1007/978-3-319-12087-4_22

[54] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. 2015. SoC It to
EM: ElectroMagnetic Side-Channel Attacks on a Complex System-on-Chip. In
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings (Lecture Notes
in Computer Science), Tim Güneysu and Helena Handschuh (Eds.), Vol. 9293.
Springer, 620–640. https://doi.org/10.1007/978-3-662-48324-4_31

[55] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
2015. C5: Cross-Cores Cache Covert Channel. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 12th International Conference, DIMVA
2015, Milan, Italy, July 9-10, 2015, Proceedings (Lecture Notes in Computer Sci-
ence), Magnus Almgren, Vincenzo Gulisano, and Federico Maggi (Eds.), Vol. 9148.
Springer, 46–64. https://doi.org/10.1007/978-3-319-20550-2_3

[56] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian
Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS Implementations: New Ble-
ichenbacher Side Channels and Attacks. In Proceedings of the 23rd USENIX Secu-
rity Symposium, San Diego, CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon
Jung (Eds.). USENIX Association, 733–748. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/meyer

[57] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve methods
of factorization. Math. Comp. 48, 177 (1987), 243–264. https://doi.org/10.2307/
2007888

[58] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Standaert.
2018. Leakage Detection with the χ 2-Test. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018, 1 (2018), 209–237. https://doi.org/10.13154/tches.v2018.i1.209-237

[59] Cédric Murdica, Sylvain Guilley, Jean-Luc Danger, Philippe Hoogvorst, and David
Naccache. 2012. Same Values Power Analysis Using Special Points on Elliptic
Curves. In Constructive Side-Channel Analysis and Secure Design - Third Interna-
tional Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings
(Lecture Notes in Computer Science), Werner Schindler and Sorin A. Huss (Eds.),
Vol. 7275. Springer, 183–198. https://doi.org/10.1007/978-3-642-29912-4_14

[60] Erick Nascimento, Lukasz Chmielewski, David Oswald, and Peter Schwabe. 2016.
Attacking Embedded ECC Implementations Through cmov Side Channels. In
Selected Areas in Cryptography - SAC 2016 - 23rd International Conference, St.
John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers (Lecture Notes
in Computer Science), Roberto Avanzi and Howard M. Heys (Eds.), Vol. 10532.
Springer, 99–119. https://doi.org/10.1007/978-3-319-69453-5_6

[61] Erick Nascimento, Julio López, and Ricardo Dahab. 2015. Efficient and Secure
Elliptic Curve Cryptography for 8-bit AVR Microcontrollers. In Security, Privacy,
and Applied Cryptography Engineering - 5th International Conference, SPACE 2015,
Jaipur, India, October 3-7, 2015, Proceedings (Lecture Notes in Computer Science),
Rajat Subhra Chakraborty, Peter Schwabe, and Jon A. Solworth (Eds.), Vol. 9354.
Springer, 289–309. https://doi.org/10.1007/978-3-319-24126-5_17

[62] Katsuyuki Okeya and Kouichi Sakurai. 2002. A Second-Order DPA Attack Breaks
a Window-Method Based Countermeasure against Side Channel Attacks. In
Information Security, 5th International Conference, ISC 2002 Sao Paulo, Brazil,
September 30 - October 2, 2002, Proceedings (Lecture Notes in Computer Science),
Agnes Hui Chan and Virgil D. Gligor (Eds.), Vol. 2433. Springer, 389–401. https:
//doi.org/10.1007/3-540-45811-5_30

[63] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Topics in Cryptology - CT-RSA 2006, The Cryp-
tographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,
2006, Proceedings (Lecture Notes in Computer Science), David Pointcheval (Ed.),
Vol. 3860. Springer, 1–20. https://doi.org/10.1007/11605805_1

[64] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings. http://www.daemonology.net/papers/
cachemissing.pdf

[65] Cesar Pereida García and Billy Bob Brumley. 2017. Constant-Time Callees with
Variable-Time Callers. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ris-
tenpart (Eds.). USENIX Association, 83–98. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/garcia

[66] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In Smart Card Program-
ming and Security, International Conference on Research in Smart Cards, E-smart
2001, Cannes, France, September 19-21, 2001, Proceedings (Lecture Notes in Com-
puter Science), Isabelle Attali and Thomas P. Jensen (Eds.), Vol. 2140. Springer,
200–210. https://doi.org/10.1007/3-540-45418-7_17

[67] Tobias Schneider and Amir Moradi. 2016. Leakage assessment methodology
– Extended version. Journal of Cryptographic Engineering 6, 2 (2016), 85–99.
https://doi.org/10.1007/s13389-016-0120-y

159

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and Billy Bob Brumley

[68] Ru-Hui Shi, Zeng-Ju Li, Lei Du, Qian Peng, and Jiu-Ba Xu. 2015. Side Channel
Analysis on SM2 Decryption Algorithm. Journal of Cryptologic Research 2, 5
(2015), 467–476. https://doi.org/10.13868/j.cnki.jcr.000093

[69] Sam Tregar. 2002. Writing Perl Modules for CPAN. Apress. https://doi.org/10.
1007/978-1-4302-1152-5

[70] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2015. Just a Little Bit More.
In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings (Lecture
Notes in Computer Science), Kaisa Nyberg (Ed.), Vol. 9048. Springer, 3–21. https:
//doi.org/10.1007/978-3-319-16715-2_1

[71] Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still
Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.).
ACM, 1382–1393. https://doi.org/10.1145/2810103.2813632

[72] Pepe Vila and Boris Köpf. 2017. Loophole: Timing Attacks on Shared Event
Loops in Chrome. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Risten-
part (Eds.). USENIX Association, 849–864. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/vila

[73] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. 2018. Single Trace Attack
Against RSA Key Generation in Intel SGX SSL. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, AsiaCCS 2018, Incheon,
Republic of Korea, June 04-08, 2018, Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim (Eds.). ACM, 575–586. https://doi.
org/10.1145/3196494.3196524

[74] Bernard L. Welch. 1947. The generalization of ‘Student’s’ problem when several
different population variances are involved. Biometrika 34 (1947), 28–35. http:
//www.jstor.org/stable/2332510

[75] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
LowNoise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX Secu-
rity Symposium, SanDiego, CA, USA, August 20-22, 2014. USENIXAssociation, 719–
732. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/yarom

[76] Kaiyu Zhang, Sen Xu, Dawu Gu, Haihua Gu, Junrong Liu, Zheng Guo, Ruitong
Liu, Liang Liu, and Xiaobo Hu. 2017. Practical Partial-Nonce-Exposure Attack on
ECC Algorithm. In 13th International Conference on Computational Intelligence
and Security, CIS 2017, Hong Kong, China, December 15-18, 2017. IEEE, 248–252.
https://doi.org/10.1109/CIS.2017.00061

[77] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,
990–1003. https://doi.org/10.1145/2660267.2660356

A REMOTE TIMINGS SCA EVALUATION:
ECDSA

As stated in the Introduction, as a secondary goal, we aimed at
reviewing the abstraction level at which SCA countermeasures
are implemented. Specifically, pushing for a secure-by-default ap-
proach, we proposed to move each one of the SCA countermeasures
discussed in this work at the lowest possible abstraction level.

As a result, the changes we proposed affected also other existing
cryptosystems, increasing their resistance to SCA. In particular, in
this section we evaluate the impact of our patchset on the ECDSA
cryptosystem, specifically when using generic prime curves (as op-
posed to curves for which an alternative optimized implementation
is specifically provided).

Figure 11 shows an empirical evaluation —similar to the one
presented in Section 4 and Section 7—on the impact of the proposed
mitigations on ECDSA over the secp256k1 [24] GLV prime curve
used in the BitCoin protocol.

Both plots show the latency dependency on the nonce length:
the top plot related to the OpenSSL implementation as of version
1.1.1-pre3, while the bottom plot shows the results after applying
the proposed patchset. Specifically, the original implementation
already applied the nonce padding and the FLT modular inversion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.770 1.780 1.790 1.800 1.810 1.820

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 11: Latency dependency on the nonce length for
ECDSA signature generation over the secp256k1 prime
curve on amd64 architecture. Top: OpenSSL 1.1.1-pre3, in
which a wNAF algorithm is used to implement EC scalar
multiplication (see Section 5.1). Bottom: After applying our
patchset (see Section 7), most notably switching to a Mont-
gomery ladder algorithm for scalar multiplication instead
ofwNAF.

countermeasures, so the main change between the two implemen-
tations is due to adopting a Montgomery ladder algorithm for EC
scalar multiplication instead of thewNAF algorithm adopted in the
original implementation (see Section 7).

Comparing the two plots, our mitigations introduce an improve-
ment centered around the median values. This is due in part to the
fact that timings in the top plot depend on the weight of scalars,
while the timings in the bottom plot are independent of the weight.
This leads to lower deviations for the majority of data points cen-
tered around the median.

160

PUBLICATION
VI

Port Contention for Fun and Profit
A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García and N. Tuveri

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. 2019, 870–887
doi: 10.1109/SP.2019.00066

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/SP.2019.00066

Port Contention for Fun and Profit
Alejandro Cabrera Aldaya∗, Billy Bob Brumley†, Sohaib ul Hassan†, Cesar Pereida García†, Nicola Tuveri†

∗Universidad Tecnológica de la Habana (CUJAE), Habana, Cuba
†Tampere University, Tampere, Finland

Abstract—Simultaneous Multithreading (SMT) architectures
are attractive targets for side-channel enabled attackers, with
their inherently broader attack surface that exposes more per
physical core microarchitecture components than cross-core at-
tacks. In this work, we explore SMT execution engine sharing
as a side-channel leakage source. We target ports to stacks of
execution units to create a high-resolution timing side-channel
due to port contention, inherently stealthy since it does not
depend on the memory subsystem like other cache or TLB
based attacks. Implementing our channel on Intel Skylake and
Kaby Lake architectures featuring Hyper-Threading, we mount
an end-to-end attack that recovers a P-384 private key from
an OpenSSL-powered TLS server using a small number of
repeated TLS handshake attempts. Furthermore, we show that
traces targeting shared libraries, static builds, and SGX enclaves
are essentially identical, hence our channel has wide target
application.

I. INTRODUCTION

Microarchitecture side-channel attacks increasingly gain
traction due to the real threat they pose to general-purpose
computer infrastructure. New techniques emerge every year [1,
2], and they tend to involve lower level hardware, they get
more complex but simpler to implement, and more difficult
to mitigate, thus making microarchitecture attacks a more
viable attack option. Many of the current microarchitecture
side-channel techniques rely on the persistent state property
of shared hardware resources, e.g., caches, TLBs, and BTBs,
but non-persistent shared resources can also lead to side-
channels [3], allowing leakage of confidential information
from a trusted to a malicious process.

The microprocessor architecture is complex and the effect
of a component in the rest of the system can be difficult (if not
impossible) to track accurately: especially when components
are shared by multiple processes during execution. Previous
research [4, 5] confirms that as long as (persistent and non-
persistent) shared hardware resources exist, attackers will be
able to leak confidential information from a system.

In this work, we present a side-channel attack vector exploit-
ing an inherent component of modern processors using Intel
Hyper-Threading technology. Our new side-channel technique
PORTSMASH is capable of exploiting timing information de-
rived from port contention to the execution units, thus targeting
a non-persistent shared hardware resource. Our technique can
choose among several configurations to target different ports
in order to adapt to different scenarios, thus offering a very
fine spatial granularity. Additionally, PORTSMASH is highly
portable and its prerequisites for execution are minimal, i.e.,
does not require knowledge of memory cache-lines, eviction

sets, machine learning techniques, nor reverse engineering
techniques.

To demonstrate PORTSMASH in action, we present a com-
plete end-to-end attack in a real-world setting attacking the
NIST P-384 curve during signature generation in a TLS server
compiled against OpenSSL 1.1.0h for crypto functionality.
Our Spy program measures the port contention delay while
executing in parallel to ECDSA P-384 signature generation,
creating a timing signal trace containing a noisy sequence of
add and double operations during scalar multiplication. We
then process the signal using various techniques to clean the
signal and reduce errors in the information extracted from each
trace. We then pass this partial key information to a recovery
phase, creating lattice problem instances which ultimately
yield the TLS server’s ECDSA private key.

We extend our analysis to SGX, showing it is possible to
retrieve secret keys from SGX enclaves by an unprivileged
attacker. We compare our PORTSMASH technique to other
side-channel techniques in terms of spatial resolution and
detectability. Finally, we comment on the impact of current
mitigations proposed for other side-channels on PORTSMASH,
and our recommendations to protect against it.

In summary, we offer a full treatment of our new technique:
from microarchitecture and side-channel background (Sec-
tion II); to the nature of port contention leakage when placed
in an existing covert channel framework (Section III); to its
construction as a versatile timing side-channel (Section IV);
to its application in real-world settings, recovering a private
key (Section V); to discussing (lack of) detectability and
mitigations (Section VI). We conclude in Section VII.

II. BACKGROUND

A. Microarchitecture

This section describes some of Intel’s microarchitectural
components and how they behave with Intel SMT implemen-
tation (i.e., Hyper-Threading technology). Intel launched its
SMT implementation with the Pentium 4 MMX processor [6].
Hyper-Threading technology (HT) aims at providing paral-
lelism without duplicating all microarchitectural components
in a physical processor. Instead, a processor supporting Hyper-
Threading has at least two logical cores per physical core
where some components are shared between the logical ones.

Figure 1 shows a high-level description of the layout of an
Intel i7 processor [7]. This figure shows four physical cores,
each with two logical cores. In this setting, the OS sees a
processor with eight cores.

Logical
Core

Logical
Core

Logical
Core

Logical
Core

Logical
Core

Logical
Core

Logical
Core

Logical
Core

L1 and L2

Execution Engine

Last Level Cache (LLC)

L1 and L2

Execution Engine

L1 and L2

Execution Engine

L1 and L2

Execution Engine

Fig. 1. Intel i7 Core processor.

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU
INT DIV

VEC ALU

AES
VEC STR
FP DIV

BRANCH

VEC MUL

INT ALU
INT MUL
VEC ALU

BIT SCAN
VEC MUL

INT ALU
VEC SHU
VEC ALU

LEA

INT ALU
BRANCH

AGU
LOAD

AGU
LOAD

STORE AGU

uOps

inst.
fetch

Fig. 2. Skylake/Kaby Lake microarchitecture.

Figure 1 sketches some microarchitectural components with

a sharing perspective. L1 and L2 caches are shared between a

pair of logical cores in the same physical core. The next level

depicts how an Execution Engine (EE) is also shared between

two logical cores. This component is very important for this

paper as the presented microarchitectural side-channel relies

on this logical-core-shared feature. On the other hand, the last

level cache (LLC) is shared between all cores.

Generally speaking, the EE is responsible for executing

instructions therefore it is closely related to the pipeline

concept [7, 8]. A simplified pipeline model consists of three

phases: (1) fetch, (2) decode, and (3) execute. While these

phases have complex internal working details, Figure 2 pro-

vides a high-level abstraction focusing mainly on the EE part,

and its description below also follows the same approach. For

more information about its inner working details we defer

to [6–8].

Each logical core has its own registers file, and the pipeline

fetches instructions from memory according to the program

counter on each of them. For the sake of processing perfor-

mance fairness, this fetching is interleaved between the logical

cores. After the fetch stage, a decoding phase decomposes each

instruction into simpler micro-operations (uops). Each micro-

operation does a single task, therefore this splitting helps out-

of-order execution by interleaving their executions for the sake

of performance. After this point, all processing is done on uops
instead of instructions. The decoding phase then issues these

uops to the execution scheduler.

At the scheduler there is a queue of uops that belongs to

both logical cores. One task of the scheduler is issuing these

uops to the Execution Ports while maximizing performance.

An Execution Port is a channel to the execution units, the

latter being where uops are actually executed. Figure 2 shows

execution units as gray-colored boxes with labels indicating

their functionality. For example, ports 0, 1, 5, and 6 can be

used to execute simple arithmetic instructions, because each

of them is a channel to an ALU execution unit. While ports 2,

3, 4, and 7 are dedicated to memory-based uops (e.g., loads

and stores).

As an illustrative example of how the whole process

happens in this simplified model, let us consider the adc
mem, reg instruction (AT&T syntax), which adds (with

carry) the value at memory location mem into the content in

register reg. According to Fog’s instruction table for Skylake

microarchitecture [9], this instruction splits into two uops:

one arithmetic uop (that actually performs the addition) and

another for loading a value from memory. The former can

be issued to ports 0 or 6, while the latter to port 2 and

3 [9]. However, if we change the operand order in the original

instruction (i.e., now the addition result is stored back in the

memory location mem), the new instruction splits into three

uops: two are essentially the same as before and another is

issued for storing the result back to memory (i.e., an operation

handled by port 4).

This execution sequence behaves exactly the same in the

presence of Hyper-Threading. At the scheduler, there are uops
waiting for dispatch to some port for execution. These uops
could actually belong to instructions fetched from any logical

core, therefore, these cores share the EE in a very granular

approach (at uops level).

B. SMT: Timing Attacks

Timing attacks on microprocessors featuring SMT technol-

ogy have a long and storied history with respect to side-

channel analysis. Since the revival of SMT in 1995 [10],

it was noted that contention was imminent, particularly in

the memory subsystem. Arguably, timing attacks became a

more serious security threat once Intel introduced its Hyper-

Threading technology on the Pentium 4 microarchitecture.

Researchers knew that resource sharing leads to resource

contention, and it took a remarkably short time to notice

that contention introduces timing variations during execution,

which can be used as a covert channel, and as a side-channel.

In his pioneering work, Percival [11] described a novel

cache-timing attack against RSA’s Sliding Window Expo-

nentiation (SWE) implemented in OpenSSL 0.9.7c. The at-

tack exploits the microprocessor’s Hyper-Threading feature

and after observing that threads “share more than merely

the execution units”, the author creates a spy process that

exfiltrates information from the L1 data cache. The L1 data

cache attack correctly identifies accesses to the precomputed

multipliers used during the SWE algorithm, leading to RSA

private key recovery. As a countermeasure, to ensure uniform

access to the cache lines, irrespective of the multiplier used,

the OpenSSL team included a “constant-time” Fixed Window
Exponentiation (FWE) algorithm paired with a scatter-gather
method to mask table access [12].

Cache-based channels are not the only shared resource to
receive security attention. Wang and Lee [3] and Acıiçmez
and Seifert [13] analyzed integer multiplication unit contention
in old Intel Pentium 4 processors with SMT support [6]. In
said microarchitecture, the integer multiplication unit is shared
between the two logical cores. Therefore contention could
exist between two concurrent processes running in the same
physical core if they issue integer multiplication instructions.
Wang and Lee [3] explore its application as a covert channel,
while Acıiçmez and Seifert [13] expand the side-channel
attack approach.

Acıiçmez and Seifert [13] stated this side-channel attack is
very specific to the targeted Intel Pentium 4 architecture due
to the fact that said architecture only has one integer multiplier
unit. They illustrated an attack against the SWE algorithm in
OpenSSL 0.9.8e. For this purpose they developed a proof-of-
concept, modifying OpenSSL source code to enhance the dis-
tinguishability between square and multiplication operations
in the captured trace. In addition to integer multiplication unit
sharing, their attack relies on the fact that square and mul-
tiplication operations have different latencies, an unnecessary
assumption in our work.

In a 2016 blog post1, Anders Fogh introduced Covert Shot-
gun, an automated framework to find SMT covert channels.
The strategy is to enumerate all possible pairs of instructions
in an ISA. For each pair, duplicate each instruction a small
number of times, then run each block in parallel on the same
physical core but separate logical cores, measuring the clock-
cycle performance. Any pairwise timing discrepancies in the
resulting table indicate the potential for a covert channel,
where the source of the leakage originates from any number
of shared SMT microarchitecture components. Fogh explic-
itly mentions caching of decoded uops, the reorder buffer,
port congestion, and execution unit congestion as potential
sources, even reproducing the rdseed covert channel [14]
that remarkably works across physical cores.

Covert channels from Covert Shotgun can be viewed as a
higher abstraction of the integer multiplication unit contention
covert channel by Wang and Lee [3], and our side-channel
a higher abstraction of the corresponding side-channel by
Acıiçmez and Seifert [13]. Now limiting the discussion to port
contention, our attack focuses on the port sharing feature. This
allows a darker-box analysis of the targeted binary because
there is no need to know the exact instructions executed by
the victim process, only that the attacker must determine the
distinguishable port through trial and error. This feature is
very helpful, for example, in a scenario where the targeted
code is encrypted and only decrypted/executed inside an SGX
enclave [15].

Analogous to [11], Acıiçmez et al. [16] performed a cache-
timing attack against OpenSSL DSA, but this time targeting

1https://cyber.wtf/2016/09/27/covert-shotgun/

the L1 instruction cache. The authors demonstrate an L1
instruction cache attack in a real-world setting and using
analysis techniques such as vector quantization and hidden
Markov models, combined with a lattice attack, they achieve
DSA full key recovery on OpenSSL version 0.9.8l. They
perform their attack on an Intel Atom processor featuring
Hyper-Threading. Moreover, due to the relevance and threat
of cache-timing attacks, the authors list and evaluate several
possible countermeasures to close the cache side-channels.

More recently, Yarom et al. [5] presented CacheBleed,
a new cache-timing attack affecting some older processors
featuring Hyper-Threading such as Sandy Bridge. The authors
exploit the fact that cache banks can only serve one request
at a time, thus issuing several requests to the same cache
bank, i.e., accessing the same offset within a cache line,
results in bank contention, leading to timing variations and
leaking information about low address bits. To demonstrate
the attack, the authors target the RSA exponentiation in
OpenSSL 1.0.2f. During exponentiation, RSA uses the scatter-
gather method adopted due to Percival’s work [11]. More
precisely, to compute the exponentiation, the scatter-gather
method accesses the cache bank or offset within a cache line
according to the multiplier used, which depends on a digit
of the private key. Thus, by detecting the used bank through
cache bank contention timings, an attacker can determine the
multiplier used and consequently digits of the private key. The
attack requires very fine granularity, thus the victim and the
spy execute in different threads in the same core, and after
observing 16,000 decryptions, the authors fully recover 4096-
bit RSA private keys.

In 2018, Gras et al. [4] presented TLBleed, a new class
of side-channel attacks relying on the Translation Lookaside
Buffers (TLB) and requiring Hyper-Threading to leak infor-
mation. In their work, the authors reverse engineer the TLB
architecture and demonstrate the TLB is a (partially) shared
resource in SMT Intel architectures. More specifically, the L1
data TLB and L2 mixed TLB are shared between multiple
logical cores and a malicious process can exploit this to
leak information from another process running in the same
physical core. As a proof-of-concept, the authors attack a non
constant-time version of 256-bit EdDSA [17] and a 1024-
bit RSA hardened against FLUSH+RELOAD as implemented
in libgcrypt. The EdDSA attack combined with a machine-
learning technique achieves a full key recovery success rate
of 97%, while the RSA attack recovers 92% of the private
key but the authors do not perform full key recovery. Both
attacks are possible after capturing a single trace.

III. INSTANTIATING COVERT SHOTGUN

Being an automated framework, Covert Shotgun is a power-
ful tool to detect potential leakage in SMT architectures. But
due to its black-box, brute-force approach, it leaves identifying
the root cause of leakage as an open problem: “Another
interesting project would be identifying [subsystems] which
are being congested by specific instructions”. In this section,
we fill this research gap with respect to port contention.

Our intention is not to utilize this particular covert channel
in isolation, but rather understand how the channel can be
better optimized for its later conversion to a side-channel in
Section IV.

A. Concept

Assume cores C0 and C1 are two logical cores of the same
physical core. To make efficient and fair use of the shared EE,
a simple strategy for port allocation is as follows. Denote i the
clock cycle number, j = i mod 2, and P the set of ports.

1) Cj is allotted Pj ⊆ P such that |P \ Pj | is minimal.
2) C1−j is allotted P1−j = P \ Pj .
There are two extremes in this strategy. For instance, if C0

and C1 are executing fully pipelined code with no hazards,
yet make use of disjoint ports, then both C0 and C1 can issue
in every clock cycle since there is no port contention. On the
other hand, if C0 and C1 are utilizing the same ports, then
C0 and C1 alternate, issuing every other clock cycle, realizing
only half the throughput performance-wise.

Consider Alice and Bob, two user space programs, exe-
cuting concurrently on C0 and C1, respectively. The above
strategy implies the performance of Alice depends on port
contention with Bob, and vice versa. This leads to a covert
timing channel as follows. Take two latency-1 instructions:
NOP0 that can only execute on port 0, and NOP1 similarly
on port 1. Alice sends a single bit of information to Bob as
follows.

1) If Alice wishes to send a zero, she starts executing NOP0
continuously; otherwise, a one and NOP1 instead.

2) Concurrently, Bob executes a fixed number of NOP0
instructions, and measures the execution time t0.

3) Bob then executes the same fixed number of NOP1
instructions, and measures the execution time t1.

4) If t1 > t0, Bob receives a one bit; otherwise, t0 > t1
and a zero bit.

The covert channel works because if both Alice and Bob
are issuing NOP0 instructions, they are competing for port 0
and the throughput will be cut in half (similarly for NOP1
and port 1). On the other hand, with no port contention both
NOP0 and NOP1 execute in the same clock cycle, achieving
full throughput and lower latency.

B. Implementation

In this section, we give empirical evidence that Intel Hyper-
Threading uses the previous hypothetical port allocation strat-
egy for SMT architectures (or one indistinguishable from it
for our purposes). Along the way, we optimize the channel
with respect to pipeline usage, taking into account instruction
latencies and duplicated execution units.

In these experiments, we used an Intel Core i7-7700HQ
Kaby Lake featuring Hyper-Threading with four cores and
eight threads. Using the perf tool to monitor uops dispatched
to each of the seven ports and the clock cycle count for a
fixed number of instructions, we determined the port footprint
and performance characteristics of several instructions, listed
in Table I. We chose this mix of instructions to demonstrate

TABLE I
SELECTIVE INSTRUCTIONS. ALL OPERANDS ARE REGISTERS, WITH NO

MEMORY OPS. THROUGHPUT IS RECIPROCAL.

Instruction Ports Latency Throughput
add 0 1 5 6 1 0.25
crc32 1 3 1
popcnt 1 3 1
vpermd 5 3 1
vpbroadcastd 5 3 1

TABLE II
RESULTS OVER A THOUSAND TRIALS. AVERAGE CYCLES ARE IN
THOUSANDS, RELATIVE STANDARD DEVIATION IN PERCENTAGE.

Diff. Phys. Core Same Phys. Core
Alice Bob Cycles Rel. SD Cycles Rel. SD
Port 1 Port 1 203331 0.32% 408322 0.05%

Port 1 Port 5 203322 0.25% 203820 0.07%

Port 5 Port 1 203334 0.31% 203487 0.07%

Port 5 Port 5 203328 0.26% 404941 0.05%

the extremes: from add that can be issued to any of the
four integer ALUs behind ports 0, 1, 5, or 6, to crc32
and vpermd that restrict to only ports 1 and 5, respectively.
Furthermore, to minimize the effect of the memory subsystem
on timings (e.g., cache hits and misses), in this work we do not
consider any explicit store or load instructions, or any memory
operands to instructions (i.e., all operands are registers).

Given the results in Table I, we construct the covert channel
as follows: crc32 (port 1) will serve as the NOP0 instruction,
and vpermd (port 5) as NOP1. Note that this configuration is
one of the n2 brute-force pairs of Covert Shotgun. However,
as we are targeting port contention we take into account
instruction latency, throughput, and port usage to maximize
its impact. Being crc32 and vpermd latency-3 instructions,
we construct a block of three such instructions with disjoint
operands to fill the pipeline, avoid hazards, and realize a
throughput of one instruction per clock cycle. We repeated
each block 64 times to obtain a low ratio of control flow logic
to overall instructions retired. The Alice program sends a zero
bit by executing the repeated crc32 blocks in an infinite loop.
Concurrently on the receiver side, using perf, we measured
the number of clock cycles required for the Bob program
to execute 220 of the repeated crc32 blocks, then again
measured with the same number of repeated vpermd blocks.
We then repeated the experiment with Alice sending a one
bit analogously with the vpermd instruction. We carried out
the experiments with both Alice and Bob pinned to separate
logical cores of the same physical core, then also different
physical cores. As a rough estimate, for full throughput we
expect 3 · 64 · 220 ≈ 201 million cycles (three instructions,
with 64 repetitions, looping 220 times); even with a latency of
three, our construction ensures a throughput of one. Of course
there is some overhead for control flow logic.

Table II contains the results, averaged over a thousand trials.
First on separate physical cores, we see that the cycle count is

essentially the same and approaches our full throughput esti-
mate, regardless of which port Alice and/or Bob are targeting.
This confirms the channel does not exist across physical cores.
In contrast, the results on the same physical core validates
the channel. When Alice and Bob target separate ports, i.e.,
the port 1/5 and 5/1 cases, the throughput is maximum and
matches the results on different physical cores. However, when
targeting the same port, i.e., the port 1/1 and 5/5 cases, the
throughput halves and the cycle count doubles due to the port
contention. This behavior precisely matches the hypothesis in
Section III-A.

IV. FROM COVERT TO SIDE-CHANNEL

One takeaway from the previous section is that, given two
user space programs running on two separate logical cores
of the same physical core, the clock cycle performance of
each program depends on each other’s port utilization. Covert
Shotgun leaves extension to side-channels as an open problem:
“it would be interesting to investigate to what extent these
covert channels extend to spying”. In this section, we fill this
research gap by developing PORTSMASH, a new timing side-
channel vector via port contention.

At a high level, in PORTSMASH the goal of the Spy is
to saturate one or more ports with a combination of full
instruction pipelining and/or generous instruction level par-
allelism. By measuring the time required to execute a series
of said instructions, the Spy learns about the Victim’s rate and
utilization of these targeted ports. A higher latency observed
by the Spy implies port contention with the Victim, i.e., the
Victim issued instructions executed through said ports. A lower
latency implies the Victim did not issue such instructions,
and/or stalled due to a hazard or waiting due to, e.g., a cache
miss. If the Victim’s ability to keep the pipeline full and utilize
instruction level parallelism depends on a secret, the Spy’s
timing information potentially leaks that secret.

As a simple example conceptually related to our later
application in Section V, consider binary scalar multiplication
for elliptic curves. Each projective elliptic curve point double
and conditional add is made up of a number of finite field
additions, subtractions, shifts, multiplications, and squarings.
These finite field operations utilize the pipeline and ports in
very different ways and have asymptotically different running
times. For example, shifts are extremely parallelizable, while
additions via add-with-carry are strictly serial. Furthermore,
the number and order of these finite field operations is not
the same for point double and add. The Spy can potentially
learn this secret sequence of doubles and conditional adds
by measuring its own performance through selective ports,
leading to (secret) scalar disclosure.

Figure 3 lists our proposed PORTSMASH Spy process. The
first rdtsc wrapped by lfence establishes the start time.
Then, depending on the architecture and target port(s), the Spy
executes one of several strategies to saturate the port(s). Once
those complete, the second rdtsc establishes the end time.
These two counters are concatenated and stored out to a buffer
at rdi. The Spy then repeats this entire process. Here we

mov $COUNT, %rcx #elif defined(P0156)
.rept 64

1: add %r8, %r8
lfence add %r9, %r9
rdtsc add %r10, %r10
lfence add %r11, %r11
mov %rax, %rsi .endr

#else
#ifdef P1 #error No ports defined
.rept 48 #endif
crc32 %r8, %r8
crc32 %r9, %r9 lfence
crc32 %r10, %r10 rdtsc
.endr shl $32, %rax
#elif defined(P5) or %rsi, %rax
.rept 48 mov %rax, (%rdi)
vpermd %ymm0, %ymm1, %ymm0 add $8, %rdi
vpermd %ymm2, %ymm3, %ymm2 dec %rcx
vpermd %ymm4, %ymm5, %ymm4 jnz 1b
.endr

Fig. 3. The PORTSMASH technique with multiple build-time port configura-
tions P1, P5, and P0156.

choose to store the counter values and not only the latency, as
the former helps identify interrupts (e.g., context switches) and
the latter can always be derived offline from the former, but
the converse is not true. It is also worth mentioning the Spy
must ensure some reasonable number of instructions retired
between successive rdtsc calls to be able to reliably detect
port contention; we expand later.

In general, strategies are architecture dependent and on
each architecture there are several strategies, depending on
what port(s) the Spy wishes to measure. We now provide
and describe three such example strategies (among several
others that naturally follow) for Intel Skylake and Kaby Lake:
one that leverages instruction level parallelism and targets
multiple ports with a latency-1 instruction, and two that
leverage pipelining and target a single port with higher latency
instructions.

Multiple ports: In Figure 3, the P0156 block targets ports
0, 1, 5, and 6. These four add instructions do not create
hazards, hence all four can execute in parallel to the four
integer ALUs behind these ports, and as a latency-1 instruction
in total they should consume a single clock cycle. To provide
a window to detect port contention, the Spy replicates these
instructions 64 times. With no port contention, this should
execute in 64 clock cycles, and 128 clock cycles with full
port contention.

Single port: In Figure 3, the P1 and P5 blocks target port
1 and 5, respectively, in a similar fashion. Since these are
latency-3 instructions, we pipeline three sequential instructions
with distinct arguments to avoid hazards and fill the pipeline,
achieving full throughput of one instruction per cycle. Here
the window size is 48, so the block executes with a minimum
3 · 48 + 2 = 146 clock cycles with no port contention, and
with full port contention the maximum is roughly twice that.

A. Comparison

Our PORTSMASH technique relies on secret-dependent ex-
ecution port footprint, a closely related concept to secret-

dependent instruction execution cache footprint. Although
similar in spirit to L1 icache attacks or LLC cache attacks,
since both rely on a secret-dependent footprint in a microarchi-
tecture component, we demonstrate that PORTSMASH offers
finer granularity and is stealthier compared to other techniques.
To differentiate PORTSMASH from previous techniques, we
compare them with respect to spatial resolution, detectability,
cross-core, and cross-VM applicability. We admit that de-
tectability is extremely subjective, especially across different
microarchitecture components; our rating is with respect to a
malicious program while the target victim is idle, i.e., waiting
to capture.

Initially, Osvik et al. [18] proposed the PRIME+PROBE
technique against the L1 dcache, relying on SMT technology
to provide asynchronous execution. Newer enhancements to
this technique allowed cross-core (and cross-VM) successful
attacks [22–24]. The spatial resolution of this attack is limited
to cache-set granularity, that is usually a minimum of 512
bytes. Typically, the PRIME+PROBE technique occupies all
cache sets, moderately detectable if cache activity monitoring
takes place.

Later, Yarom and Falkner [19] proposed the FLUSH+RE-
LOAD technique, a high resolution side-channel providing
cache-line granularity with an improved eviction strategy.
Closely related, Gruss et al. [20] proposed FLUSH+FLUSH, a
stealthier version of FLUSH+RELOAD. Both techniques rely
on shared memory between Victim and Spy processes, in
addition to the clflush instruction to evict cache lines
from the LLC. While this is a typical setting in cross-core
scenarios due to the use of shared libraries, the impact in cross-
VM environments is limited due to the common practice of
disabling page de-duplication [25, Sec. 3.2].

More recently, Gras et al. [4] proposed TLBLEED as another
microarchitecture attack technique. Even if this is not a “pure”
cache technique, it exploits TLBs, a form of cache for memory
address translations [7]. Interestingly, this subtle distinction is
sufficient for making it stealthier to cache countermeasures [4].
On the downside, the spatial resolution of this attack is limited
to a memory page (4 KB). Since no cross-core improvements
have been proposed for either TLBLEED or PORTSMASH,
it could be seen as a drawback of these attacks. However,
attackers can launch multiple Spy processes to occupy all cores
and ensure co-location on the same physical core; see [26,
Sec. 3.1] for a related discussion.

Recent microarchitecture attacks have been proposed
achieving intra cache-line granularity. Yarom et al. [5] demon-
strated that intra-cache granularity is possible—at least in older
Intel microprocessors—with their CacheBleed attack. This
attack proposes two techniques to achieve this granularity:
cache bank conflicts and write-after-read false dependencies.
Cache bank conflicts have a limited impact, considering the
authors discovered that current Intel microprocessors no longer
have cache banks; thus this technique does not apply to newer

2Cache-set size depends on the microprocessor specifications and can be
calculated as (cache line size × cache associativity).

30f0 <x64_foo>: 4150 <x64_bar>:
30f0 test %rdi,%rdi 4150 test %rdi,%rdi
30f3 je 4100 <x64_foo+0x1010> 4153 je 5100 <x64_bar+0xfb0>
30f9 jmpq 4120 <x64_foo+0x1030> 4159 jmpq 5140 <x64_bar+0xff0>
....
4100 popcnt %r8,%r8 5100 popcnt %r8,%r8
4105 popcnt %r9,%r9 5105 popcnt %r9,%r9
410a popcnt %r10,%r10 510a popcnt %r10,%r10
410f popcnt %r8,%r8 510f popcnt %r8,%r8
4114 popcnt %r9,%r9 5114 popcnt %r9,%r9
4119 popcnt %r10,%r10 5119 popcnt %r10,%r10
411e jmp 4100 <x64_foo+0x1010> 511e popcnt %r8,%r8
4120 vpbroadcastd %xmm0,%ymm0 5123 popcnt %r9,%r9
4125 vpbroadcastd %xmm1,%ymm1 5128 popcnt %r10,%r10
412a vpbroadcastd %xmm2,%ymm2 512d popcnt %r8,%r8
412f vpbroadcastd %xmm0,%ymm0 5132 popcnt %r9,%r9
4134 vpbroadcastd %xmm1,%ymm1 5137 popcnt %r10,%r10
4139 vpbroadcastd %xmm2,%ymm2 513c jmp 5100 <x64_bar+0xfb0>
413e jmp 4120 <x64_foo+0x1030> 513e xchg %ax,%ax
4140 retq 5140 vpbroadcastd %xmm0,%ymm0

5145 vpbroadcastd %xmm1,%ymm1
514a vpbroadcastd %xmm2,%ymm2
514f vpbroadcastd %xmm0,%ymm0
5154 vpbroadcastd %xmm1,%ymm1
5159 vpbroadcastd %xmm2,%ymm2
515e vpbroadcastd %xmm0,%ymm0
5163 vpbroadcastd %xmm1,%ymm1
5168 vpbroadcastd %xmm2,%ymm2
516d vpbroadcastd %xmm0,%ymm0
5172 vpbroadcastd %xmm1,%ymm1
5177 vpbroadcastd %xmm2,%ymm2
517c jmp 5140 <x64_bar+0xff0>
517e retq

Fig. 4. Two Victims with similar port footprint, i.e., port 1 and port 5, but
different cache footprint. Left: Instructions span a single cache-line. Right:
Instructions span multiple cache-lines.

microprocessors. To that end, Moghimi et al. [21] improved
the previous work and proposed a read-after-write false depen-
dency side-channel. The authors highlight the potential 5 cycle
penalty introduced when a memory write is closely followed
by a read, a more critical condition compared to a read closely
followed by a memory write. This technique gives a 4-byte
granularity on the cache-lines, thus allowing them to exploit
the 5 cycle delay to perform a key recovery attack against a
constant-time AES implementation on Intel IPP library.

To understand our detectability criteria in Table III, consider
the following example. During a typical round of attack,
a FLUSH+RELOAD process constantly reloads a previously
flushed memory address, observing a large number of cache-
misses, thus highly detectable. In contrast, a FLUSH+FLUSH
process does not perform explicit loads, instead it relies on
the time of clflush execution to determine the existence
of data in the cache, thus lowly detectable. Sitting in the
middle, a PRIME+PROBE process reloads data from cache at a
slower rate compared to FLUSH+RELOAD, but still observing
a significant amount of cache-misses, hence fairly detectable.
On the other hand, TLBLEED, MemJam and CacheBleed
attacks do not follow the same combination of cache eviction
and memory load operations, instead they rely on timing
variations observed when executing typical instructions during
a computation, i.e., no clflush, thus their detectability is
low.

Table III compares the previously mentioned techniques
in their original version. As can be appreciated, our PORT
SMASH technique enjoys the highest spatial resolution among
them, since it goes beyond the cache-line and instead, it
considers individual uops dispatched to the execution units.
As an example, consider the two functions x64_foo and
x64_bar in Figure 4. These two functions get passed an
argument of either zero or one (e.g., a secret bit): in the former

TABLE III
COMPARISON OF MICROARCHITECTURE ATTACK TECHNIQUES (ORIGINAL VERSIONS)

Attack Spatial Resolution Size Detectability Cross-Core Cross-VM
TLBLEED [4] Memory Page (Very low) 4 KB Low No Yes/SMT
PRIME+PROBE [18] Cache-set (Low) 512 bytes2 Medium Yes Yes/SharedMem
FLUSH+RELOAD [19] Cache-line (Med) 64 bytes High Yes Yes/SharedMem
FLUSH+FLUSH [20] Cache-line (Med) 64 bytes Low Yes Yes/SharedMem
CacheBleed [5] Intra cache-line (High) 8 bytes Medium No Yes/SMT
MemJam [21] Intra cache-line (High) 4 bytes Medium No Yes/SMT
PORTSMASH Execution port (Very High) uops Low No Yes/SMT

case, they start executing pipelined popcnt instructions in
a loop, and vpbroadcastd instructions in the latter. The
x64_foo function has all its functionality for both branches
within a single cache line (64B), starting at address 0x4100.
In contrast, the x64_bar function has distinct cache lines
for each branch: the zero case starts at address 0x5100
and the one case at 0x5140, and the control flow for each
corresponding loop restricts to its single cache line.

The x64_bar function is a potential target for L1 icache
attacks, FLUSH+RELOAD attacks, FLUSH+FLUSH attacks, etc.
since there are two different targets that span two different
cache lines. In contrast, the x64_foo control flow resides
in a single cache line: L1 icache attacks, FLUSH+RELOAD
attacks, FLUSH+FLUSH attacks, etc. only have cache line
granularity, and are not designed to distinguish varying code
traversal within a single line. Remarkably, both x64_foo and
x64_bar are potential targets for our new method. In this
light, at a very high level what CacheBleed accomplished for
dcache attacks—the ability to target at less than data cache line
granularity—our method accomplishes for the code side, and
furthermore potentially with a single trace instead of averaging
traces.

To validate our findings, we ran the following set of PORT
SMASH experiments. First, we configured the Victim process
to execute the x64_foo function passing 0 as an argument,
causing the Victim to issue popcnt commands, using port 1.
In parallel, we configured the Spy process with the P1 strategy
in the sibling logical core to issue and time crc32 commands,
thus creating contention and the Spy successfully tracks the
Victim state by observing high latency. Then, we repeated
the experiment but this time we passed 1 as an argument to
the Victim process, executing vpbroadcastd instructions,
using port 5. Since the Spy process is still using the P1
strategy, i.e., timing crc32 instructions, port contention does
not occur, hence the Spy successfully tracks the Victim state by
observing low latency. Figure 5 (Top) shows the resulting trace
for both cases, i.e., contention vs no-contention from a Spy
process perspective configured with the P1 strategy. We then
reconfigured the Spy to use the P5 strategy, and repeated the
experiments, shown in Figure 5 (Bottom). This raw empirical
data—that is clearly linearly separable—confirms not only the
validity of our new side-channel in general, but furthermore the
symmetry in the plots confirms that our technique even allows
to leak code traversal information with granularity finer than

 0

 100

 200

 300

 400

L
at

en
cy

Spy: P1 / Victim: 0 Spy: P1 / Victim: 1

 0

 100

 200

 300

 400

 0 1000 2000 3000 4000 5000 6000 7000

L
at

en
cy

Time

Spy: P5 / Victim: 0 Spy: P5 / Victim: 1

Fig. 5. Top: Timings for the PORTSMASH Spy when configured with P1, in
parallel to the Victim executing x64_foo with rdi as both zero and one in
two consecutive runs. Bottom: Analogous but with the Spy configured with
P5.

cache-line, since in this case it is dependent on port utilization
by the executed instructions within the cache-line.

V. APPLICATIONS

In the previous section, we developed a generic PORT
SMASH Spy process to procure timing signals that detect
port contention. In this section, we present the first attack
using our technique in a real-world setting. We start with
some background on ECC, and explain why P-384 is a
highly relevant standardized elliptic curve, and examine its
scalar multiplication code path within OpenSSL 1.1.0h and
earlier, based on an implementation featuring secret-dependent
execution flow, thus satisfying the PORTSMASH technique
requirement. We then design and implement an end-to-end P-
384 private key recovery attack that consists of three phases:

1) In the procurement phase, we target an stunnel TLS
server authenticating with a P-384 certificate, using
our tooling that queries the TLS server over multiple
handshakes with the Spy measuring port contention in
parallel as the server produces ECDSA signatures.

2) In the signal processing phase, we filter these traces and
output partial ECDSA nonce information for each digital
signature.

3) In the key recovery phase, we utilize this partial nonce
information in a lattice attack to fully recover the
server’s P-384 private key.

We close this section with a discussion on applications to
statically linked binaries and SGX enclaves. The rationale
behind our choice to demonstrate an end-to-end attack for
the non-SGX case is based on our perceived real-world im-
plications. The number of web-servers powered by OpenSSL

outside SGX enclaves largely outweighs the number within
SGX enclaves, by at least several orders of magnitude.

A. ECC and P-384

Koblitz [27] and Miller [28] introduced elliptic curves to
cryptography during the mid 1980’s. By 1995, the National
Security Agency (NSA) became a strong supporter of Elliptic
Curve Cryptography (ECC) [29] and pushed for the adoption
of ECDSA, the ECC variant of the (then) recently approved
Digital Signature Algorithm (DSA) [30].

In 2005, NSA’s support of ECC was clear, mandating its
use “for protecting both classified and unclassified National
Security information[..], the NSA plans to use the elliptic
curves over finite fields with large prime moduli (256, 384,
and 521 bits) published by NIST” [31]. Shortly after, the NSA
announced Suite B, a document recommending cryptography
algorithms approved for protecting classified information up
to Secret and Top Secret level, including P-256 at 128 bits of
security, and P-384 at 192 bits.

During 2012, the Committee for National Security Systems
(CNSS) issued CNSSP-15 [32], a document defining the set
of public key cryptographic standards recommended to protect
classified information until public standards for post-quantum
cryptography (PQC) materialize, further pushing the support
for both curves, P-256 and P-384. Suddenly in August 2015,
and after a long history of ECC support, the NSA released a
statement [33] urging the development of PQC and discour-
aging the late adoption of ECC, and instead focusing on the
upcoming upgrade to quantum-resistant algorithms. Parallel
to this statement, the Suite B recommendation was updated,
mysteriously removing P-256 from the list of approved curves
without giving any reason, and leaving P-384 as the only
ECC option to protect information up to Top Secret level.
In January 2016, the NSA issued a FAQ [34] derived from
the statement released five months prior. They informed about
the replacement of Suite B with an updated version of CNSS-
15, and also finally commented on the removal of P-256 from
the previous Suite B. We cherry-pick three statements from
the document: (1) “equipment for NSS that is being built and
deployed now using ECC should be held to a higher standard
than is offered by P-256”; (2) “Elimination of the lower level
of Suite B also resolves an interoperability problem raised by
having two levels”; and (3) “CNSSP-15 does not permit use
of P-521”.

To summarize, P-384 is the only compliant ECC option for
Secret and Top Secret levels. Unfortunately, its implementa-
tions have not received the same scrutiny as P-256 and P-521;
we expand later in this section.

ECDSA: For the purpose of this paper, we restrict to short
Weierstrass curves over prime fields. With prime p > 3, all of
the x, y ∈ GF (p) solutions to the equation

E : y2 = x3 + ax+ b

along with the point-at-infinity (identity) form a group. The
domain parameters of interest are the NIST standard curves
that set p a Mersenne-like prime and a = −3 ∈ GF (p).

The user’s private-public keypair is (dA, QA) where dA
is chosen uniformly from [1 . . n) and QA = [dA]G holds.
Generator G ∈ E is of prime order n. A digital signature on
message m compute as follows.

1) Select a secret nonce k uniformly from [1 . . n).
2) Compute r = (k[G])x mod n.
3) Compute s = k−1(h(m) + dAr) mod n.
4) Return the digital signature tuple (m, r, s).

The hash function h can be any “approved” function, e.g.,
SHA-1, SHA-256, and SHA-512. Verification is not relevant
to this work, hence we omit the description.

ECDSA and P-384 in OpenSSL: In OpenSSL, each elliptic
curve has an associated method structure containing function
pointers to common ECC operations. For ECDSA, scalar
multiplication is the most performance and security-critical
ECC operation defined in this method structure, and the
actual algorithm to perform scalar multiplication depends on
several factors, e.g., curve instantiated, scalar representation,
OpenSSL version, and both library and application build-time
options. We further elaborate on how these factors influence
the final scalar multiplication execution path in Appendix B,
while for the rest of this work we will focus on the code
paths executed in OpenSSL 1.1.0h and below and specifically,
as described in this paragraph, on the default implementation
for elliptic curves over prime fields. Due to the long history of
timing attacks against ECDSA and the possibility of improving
the performance of some curves, over the years OpenSSL
mainlined several implementations for scalar multiplication,
especially for popular NIST curves over prime fields.

Based on work by Käsper [35]—and as a response
to the data cache-timing attack by Brumley and Hakala
[36]—OpenSSL introduced EC_GFp_nistp256_method,
a constant-time scalar multiplication method for the NIST
P-256 curve (and analogous methods for P-224 and P-
521). This method uses secure table lookups (through mask-
ing) and fixed-window combing during scalar multiplica-
tion. This is a portable C implementation, but requires
support for 128-bit integer types. Later, Gueron and Kras-
nov [37] introduced a faster constant-time method with
their EC_GFp_nistz256_method. This method uses Intel
AVX2 SIMD assembly to increase the performance of finite
field operations, thus providing a considerable speedup when
compared to EC_GFp_nistp256_method that is portable
C. The NIST curve P-256 quickly became (arguably) the
most widely used, fast, and timing-attack resistant of all NIST
curves in OpenSSL.

Unfortunately, P-384 was neglected, and it missed all of
the previous curve-specific improvements that provided timing
attack security for P-224, P-256, and P-521. Instead, P-384—
like any other short Weierstrass curve over a prime field,
including e.g. secp256k1 (adopted for Bitcoin operations)
and Brainpool curves (RFC 5639[38])—follows the default
OpenSSL implementation for scalar multiplication on prime
curves. It is a non constant-time interleaving algorithm that
uses Non-Adjacent Form (wNAF) for scalar representation

[39, Sec. 3.2]. Although this implementation has been repeat-
edly targeted for side-channel vulnerabilities [36, 40–42], it
has never been exploited in the context of P-384 in OpenSSL.

During ECDSA signature generation, OpenSSL calls
ecdsa_sign_setup @ crypto/ec/ecdsa_ossl.c to
perform steps 1 and 2 of the ECDSA algorithm described
above. For the latter, the underlying ec_wNAF_mul func-
tion gets called to perform the scalar multiplication, where
r = [k]G is the relevant computation for this work. That
function first transforms the scalar k to its wNAF representa-
tion and then, based on this representation, the actual scalar
multiplication algorithm executes a series of double and add
operations. To perform double and add operations, OpenSSL
calls ec_GFp_simple_dbl and ec_GFp_simple_add
respectively. There, these methods have several function calls
to simpler and lower level Montgomery arithmetic, e.g., shift,
add, subtract, multiply, and square operations. A single ECC
double (or add) operation performs several calls to these
arithmetic functions. Among the strategies mentioned in Sec-
tion IV, we found that for our target the P5 strategy results
in the cleanest trace overall.

In summary, by using the PORTSMASH technique during
OpenSSL P-384 ECDSA signature generation, we can measure
the timing variations due to port contention. More specifically,
we capture the port contention delay during double and add
operations, resulting in an accurate raw signal trace containing
the sequence of operations during scalar multiplication, and
leaking enough LSDs of multiple nonces k to later succeed in
our key recovery phase.

B. Procurement Phase: TLS

Stunnel3 provides TLS/SSL tunneling services to servers
(and clients) that do not speak TLS natively; during the
procurement phase we used stunnel 5.49 as the TLS server. We
compiled it from source and linked it against OpenSSL 1.1.0h
for crypto functionality. Our setup consists of an Intel Core i7-
6700 Skylake 3.40GHz featuring Hyper-Threading, with four
cores and eight threads, running Ubuntu 18.04 LTS “Bionic
Beaver”. In addition, we disabled TurboBoost to minimize any
interference due to CPU frequency scaling. Nonetheless, we
hypothesize enabling it would merely introduce some clock
skew without substantially affecting the side-channel leakage
itself. Scalar multiplication is a demanding task, so Turbo-
Boost should already activate during execution and quickly
reach the maximum stable frequency. This would have little
impact on our results since we are more interested in the
trailing portion of the trace. This decision is consistent with
existing results in the literature, e.g. [16, 36, 41, 43].

We configured the stunnel server with a P-384 ECDSA
certificate and ECDHE-ECDSA-AES128-SHA256 as the
TLS 1.2 cipher suite. We wrote a custom TLS client to
connect to our TLS server. Typically, during a TLS hand-
shake, the client and the server exchange several protocol
messages, including ClientHello, ServerHello, and

3https://www.stunnel.org

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

ECDH ECDSA (below)

L
at

en
cy

 100

 150

 200

 250

 35000 36000 37000 38000 39000 40000

L
at

en
cy

Time

Latency Filtered

Fig. 6. Multiple TLS trace stages. Top: Raw TLS handshake trace showing
scalar multiplications during ECDH and ECDSA. Bottom: Zoom at the end
of the previous ECDSA trace, peaks (filtered) represent add operations. For
example, this trace ends with an add operation, indicating the nonce is odd.

ServerKeyExchange parameters. These messages are con-
catenated, hashed, and digitally signed by the server. Then, the
client verifies the signature before finally establishing a session
with the server.

Our custom TLS client, acting as an attacker, serves two
purposes: (1) it controls the start of the attack by initiating
a TLS handshake with the stunnel service, alerting the Spy
process to start capturing OpenSSL scalar multiplication op-
erations performed by the server during the handshake; and
(2) it collects protocol messages and digital signatures during
the TLS handshake. Figure 6 (Top) shows a trace captured
by the Spy process, containing the two scalar multiplication
operations during TLS handshake, i.e. ECDH and ECDSA
respectively.

The client drops the handshake as soon as the server
presents the digital signature; since we are only interested in
capturing up to the digital signature generation, this allows us
to capture a trace in roughly 4 ms (∼12.5 million clock cycles).
Additionally, our client concatenates the protocol messages,
hashes the resulting concatenation, and stores the message
digest. Similarly, it stores the respective DER-encoded P-384
ECDSA signatures for each TLS handshake. This process is
repeated as needed to build a set of traces, digest messages,
and digital signatures that our lattice attack uses later in the
key recovery phase.

Once the data tuples are captured, we proceed to the signal
processing phase, where the traces are trimmed and filtered
to reduce the noise and output useful information. Figure 6
(Bottom) shows a zoom at the end of the (Top) trace, where
the filters reveal peaks representing add operations, separated
by several double operations.

At a high level—returning to the discussion in Section IV—
the reason our signal modulates is as follows. The wNAF
algorithm executes a (secret) sequence of double and add
operations. In turn, these operations are sequences of finite

field additions, subtractions, multiplications, and squarings.
Yet the number and order of these finite field operations are
not identical for double and add. This is eventually reflected
in their transient port utilization footprint.

C. Signal Processing Phase

After verifying the existence of SCA leakage in the captured
TLS traces, we aim to extract the last double and add sequence
to provide partial nonce information to the key recovery
phase. Although visual inspection of the raw trace reveals the
position of double and add operations, this is not enough to
automatically and reliably extract the sequence due to noise
and other signal artifacts.

Since our target is ECDSA point multiplication, we cropped
it from the rest of the TLS handshake by applying a root-
mean-square envelope over the entire trace. This resulted in
a template used to extract the second point multiplication
corresponding to the ECDSA signature generation. To further
improve our results, we correlated the traces to the patterns
found at the beginning and end of the point multiplication.
This was possible as the beginning shows a clear pattern
(trigger) due to OpenSSL precomputation, and the end of the
trace has a sudden decrease in amplitude.

We then used a low pass filter on the raw point multi-
plication trace to remove any high frequency noise. Having
previously located the end of point multiplication, we focused
on isolating the add operations to get the last add peak,
while estimating the doubles using their length. To accomplish
this, we applied a source separation filtering method known
as Singular Spectrum Analysis (SSA) [44]. SSA was first
suggested in SCA literature for power analysis to increase
signal to noise ratio in DPA attacks [45], and later used as
a source separation tool for extracting add operations in an
EM SCA attack on ECDSA [46]. We discuss the theoretical
aspects of SSA in Appendix A.

For our purpose, we decided to threshold the SSA window
size as suggested in [45]. Since the total length of the trace
was around 15000 samples, this gave us a window size of
30. However, based on experimentation, a window of size
20 yielded optimal results using the second and the third
component.

The traces occasionally encountered OS preemptions, cor-
rupting them due to the Spy or Victim being interrupted. We
detect Spy interrupts as high amplitude peaks or low amplitude
gaps, depending on whether they happened while during or
between latency measurement windows. Similarly, the Victim
interrupts exhibit a low amplitude gap in our traces, since there
was no Victim activity in parallel. In any case, we discarded
all such traces (around 2.5%) when detecting any interrupt
during the last double and add sequence.

Finally, by applying continuous wavelet transform [47] in
the time-frequency domain we were able to detect the high
energy add peaks, therefore isolating them. Moreover, a root-
mean-square of the resulting peaks smoothed out any irreg-
ularities. Figure 6 illustrates the results of signal processing
steps on a TLS trace from top to bottom. Even after applying

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Length (samples)

A
AD

ADD
ADDD

ADDDD
ADDDDD*

Fig. 7. Length distributions for various patterns at the end of scalar
multiplication.

these steps, some traces where the adds were indistinguishable
due to noise still occur, decreasing the accuracy of our results
by about 2%.

The output of this phase, for each trace, is the distance from
the last add operation to the end of the point multiplication:
estimating the number of trailing doubles by counting the
number of samples. Figure 7 depicts the CDF of the resulting
sequences using our distance metric, having clear separation
for each trailing double and add sequence.

D. Key Recovery Phase: Lattices

The output of the signal processing phase eventually pro-
vides us with partial nonce information, as the trailing se-
quence tells us the bit position of the lowest set bit. We
then use this information to build a lattice attack to solve
a Hidden Number Problem, retrieving the long-term private
key used to sign the TLS handshakes. We build on previous
work for our lattice attack, deferring to [48] for a more
detailed mathematical description of the methodology. We
use the BKZ reduction algorithm (β = 20) to efficiently
look for solutions to the Shortest Vector Problem (SVP),
closely following the construction by Benger et al. [41], yet
with different parameters, and also a brute-force heuristic. In
what follows, we: (1) describe exploring the lattice parameter
space using traces modeled without errors; then (2) combine
this study with profiling of the experimental data and the
constraints of the computational resources at our disposal to
launch a real-world end-to-end attack.

Exploration of the lattice parameter space: The main
parameter to tune in implementing the lattice attack is the
size (d) of the set of signatures used to build the lattice
basis. Theoretically, given an infinite amount of time, if the
selected subset of signatures does not contain any error and
if the lattice embeds more bits of knowledge than the bit-
length of the secret key, it should eventually succeed. In this
scenario, optimizing for the smallest d that delivers enough
bits of knowledge to recover the private key would be the
preferred metric, as it requires less overall data from the
procurement phase (lowering the risk of detection) and also
improves success chances of the heuristic process (dealing
with potential errors in the signal processing phase).

In a more realistic scenario we want to model the lattice
parameters to succeed in a “reasonable” amount of time.

This definition is not rigorous and largely depends on the
capabilities of a dedicated attacker: in this academic contest,
constrained by the grid computing resources available to us,
we define a lattice instance as successful if it correctly retrieves
the secret key in under 4 hours when running on a single
2.50 GHz Xeon E5-2680 core (as done in Table 3 of [48]).
We believe this definition is very conservative with respect to
the potential computational resources of a nation-state level
adversary or the availability and costs of dynamically scalable
computing cloud services for individuals and organizations.

We modeled our preliminary experiments using random
nonces, biased to have a trailing sequence of zero bits: this
is equivalent to assuming error-free traces from the signal
processing phase. We ran two sets of experiments, one with
a bias mask of 0x3, i.e., with at least two trailing zero bits
(using the notation from [41], z ≥ 2 and l ≥ 3), and the other
with a bias mask of 0x1, i.e., with at least one trailing zero
bit (z ≥ 1 and l ≥ 2).

To determine the optimal d for each bias case, we ran 10000
instances of the lattice algorithm against the two sets of mod-
eled perfect traces and measured the corresponding amount
of known nonce bits (Figure 10), the number of iterations for
successful instances (Figure 11), the overall execution time for
successful instances (Figure 12), and the success probability
(Figure 9). The results indicate d = 450 is optimal for the
0x1 biased ideal traces, with success probability exceeding
90% coupled with a small number of iterations as well as
overall execution time. Analogously, d = 170 is optimal for
the 0x3 bias case.

Experimental parameters with real traces: Real traces come
with errors, which lattices have no recourse to compensate
for. The traditional solution is oversampling, using a larger
set of t traces (with some amount e of traces with errors),
and running in parallel a number (i) of lattice instances, each
picking a different subset of size d from the larger set. Picking
the subsets uniformly random, the probability for any subset
to be error-free is:

Pr(No error in a random subset of size d) =

(
t−e
d

)
(
t
d

)

For typical values of {t, e, d}, the above probability is small
and not immediately practical. But given the current capa-
bilities for parallelizing workloads on computing clusters,
repeatedly picking different subsets compensates:

Pr(≥ 1 error-free subset over i inst.) = 1−
(
1−

(
t−e
d

)
(
t
d

)
)i

(1)

Profiling the signal processing phase results, we determined
to utilize thresholding to select traces belonging to the “AD”,
“ADD”, “ADDD” and “ADDDD” distributions of Figure 7.
In our setup, other traces are either useless for our lattice
model or have too low accuracy. To ensure accuracy, we
determined very narrow boundaries around the distributions
to limit overlaps at the cost of very strict filtering. Out of
the original 10000 captures, the filtering process selects a set

of 1959 traces with a 0x1 bias mask (i.e. nonces are even)
including e = 34 (1.74%) errors. Combining this with d = 450
from our empirical lattice data, (1) leads us to i ≥ 36000
instances required to achieve a probability ≥ 99% of picking
at least one subset without errors. This number of instances
is beyond the parallel computational resources available to us,
hence we move to the remaining case.

Filtering out also the 1060 traces categorized as “AD”
delivers a total of 899 traces with a 0x3 bias mask (i.e.
k = 0 mod 4), including e = 14 (1.56%) errors. Combining
this with d = 170 for the higher nonce bias and substituting
in (1) leads us to i ≥ 200 instances to achieve a probability
≥ 99.99% of picking at least one subset without errors.

When using the actual attack data we noticed that while
our filtering process increases accuracy, it has the side-effect
of straying from the statistics determined in ideal conditions.
We speculate this is due to filtering out longer trailing zero bits
(low accuracy) decreasing the average amount of known nonce
bits per signature, resulting in wider lattice dimensions with
lower than expected useful information. This negatively affects
the overall success rate and the amount of required iterations
for a successful instance. We experimentally determined that
when selecting only nonces with a bias mask between 0x3
and 0xF, d = 290 compensates with a success rate (for an
error-free subset) of 90.72%. Using these values in (1) leads
us to i = 2000 instances to achieve a 99.97% probability of
picking at least one subset without errors—well within the
computing resources available to us.

Finally, running the entire process on the real data obtained
from the signal processing phase on the original 10000 cap-
tures, using parameters t = 899, e = 14, and d = 290 over
i = 2000 instances running in parallel on the described cluster
resulted in 11 instances that successfully retrieved the secret
key, the fastest of which terminated in 259 seconds after only
two BKZ reduction iterations.

E. SGX

Intel Software Guard Extensions (SGX)4 is a microarchi-
tecture extension present in modern Intel processors. SGX
aims at protecting software modules by providing integrity
and confidentiality to their code and memory contents. In
SGX terminology, an SGX enclave is a software module that
enjoys said protections. SGX was designed to defend processes
against tampering and inspection from OS-privileged adver-
saries, providing strong isolation between enclave memory
regions and the outer world. Despite these strong protections,
side-channel attacks are still considered a major threat for
enclaves, as SGX by itself does not protect against them [49].
In this regard, as the SGX threat model considers an OS-level
adversary, it is even possible to mount more powerful side-
channel attacks against enclaves where the measurement noise
can be reduced considerably [50–52].

From a practical perspective, it is interesting to know
which unprivileged side-channel techniques are a threat to

4https://software.intel.com/en-us/sgx

SGX enclaves. Regarding cache attacks, FLUSH+RELOAD and
FLUSH+FLUSH do not apply in the unprivileged scenario since
they require shared memory with the SGX enclave, which does
not share its memory [15, 49]. However, researchers use other
attack techniques against SGX, such as L1-based PRIME+
PROBE attacks [52], and false dependency attacks [21]. It
is worth mentioning that these methods assume an attacker
with privileged access. However, we strongly believe these
attacks would succeed without this assumption at the cost of
capturing traces with a higher signal-to-noise ratio. Finally,
TLBLEED [4] could be a potential successful attack technique
against SGX, yet the authors leave it for future work.

The rest of this section analyzes PORTSMASH impact on
SGX enclave security. Our first (strong) hypothesis is a PORT
SMASH attack can target SGX enclaves transparently. The
rationale relies on the difference between PORTSMASH root
cause and the computing layer SGX protects. PORTSMASH
aims at identifying the sequence of execution ports employed
by a Victim process, while SGX provides protection at the
memory subsystem level. This means that they operate at
different computing layers—instruction execution and memory
subsystem, respectively—providing soundness to our initial
hypothesis. Nevertheless, for the sake of completeness we
empirically evaluate our hypothesis, filling a research gap
left by Covert Shotgun as an open problem: “That would
be especially interesting say in SGX scenarios”. While de-
veloping an end-to-end attack like in previous sections on
SGX enclaves might appear interesting, we instead focus
on collecting sufficient experimental evidence to demonstrate
that SGX enclaves do leak through the port contention side-
channel—the most important contribution of this section.

For our experiments, we developed two Victim processes.
One Victim is a standard process statically linked against
OpenSSL 1.1.0h, and the other is an Intel SGX SSL enclave.
Both Victim processes follow the same scalar multiplication
code path analyzed in Section V, therefore we have two
processes executing exactly the same code path with and
without SGX protections.

Following the rationale that a PORTSMASH attack is oblivi-
ous to SGX enclaves, we applied the P5 strategy employed in
Section V. We captured two traces on an Intel Core i7-7700HQ
Kaby Lake, one for each setting: SGX and non-SGX. Figure 8
shows both the raw and filtered traces for each of them. Note
the similarities between both raw traces, and after applying
a noise reduction filter, the similarities become more evident
since the position of adds are clearly revealed in both traces
as amplitude peaks.

This demonstrates the leakage from SGX is essentially
identical to the leakage outside SGX, validating our hypothesis
that a PORTSMASH attack can be applied to SGX enclaves
as well as to non-SGX processes. Therefore SGX enclaves
do leak through port contention. The similarities in Figure 8
support the claim that developing an end-to-end attack against
Intel SGX SSL should be straightforward, employing the tools
explained in Section V. Moreover, it also shows two important
characteristics: (1) the amount of noise does not significantly

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time

SGX Filtered non-SGX

Fig. 8. From top to bottom: raw trace of our SGX Victim; said trace after
filtering; raw trace of our user space Victim; said trace after filtering. Both
victims received the same input, i.e., a scalar that induces 16 point adds at
the end of the trace, clearly identifiable by the peaks in the filtered traces.

vary between both scenarios; and (2) PORTSMASH oblivious-
ness regarding SGX as both traces were captured employing
the same port contention strategy.

Furthermore, regardless of SGX the observant reader can
also appreciate the similarities between traces in Figure 8
and Figure 6, demonstrating a PORTSMASH attack is also
independent of the binary linking strategy (static vs dynamic).

VI. MITIGATIONS

A. Existing Work

Due to the copious amount of microarchitecture side-
channel attacks in recent years, several countermeasures and
mitigations appear in the literature; see [53] for a complete
survey on countermeasures. From all the microarchitecture
side-channel attacks proposed, cache-timing attacks and their
respective techniques have arguably the most impact of all.
This translates to the development of specific memory-based
mitigations such as cache partitioning [11, 54], cache flush-
ing [55, 56], and (partially) disabling caching [16]. Never-
theless, generally these solutions do not provide protections
against non memory-based side-channels. To that end, another
mitigation technique angle follows malware analysis methods.
One way to categorize these countermeasures is by binary and
runtime analysis.

Binary analysis looks for code signatures that allows clas-
sifying a binary as malicious or not. Irazoqui et al. [57]
proposed MASCAT, a binary analysis framework for detecting
microarchitecture malware. This framework analyzes a target
binary by searching for a set of signature instructions often
used during microarchitecture attacks, e.g., high-resolution
timers, fence instructions, and cache-flushing instructions.
Nevertheless, [15] showed that is possible to hide malicious
code from static analysis of binaries.

Runtime analysis inspects potentially malicious processes
while they execute, looking for dubious activities. Several

approaches propose microarchitecture attack mitigations [58–
60]. Most of them focus mainly on monitoring hardware per-
formance counters (HPC) to detect irregular execution patterns
that may suggest an ongoing side-channel attack. Kulah et al.
[58] and Zhang et al. [59] focus on unusual cache-activity
rates, while Raj and Dharanipragada [60] aim at detecting an
attack by measuring memory bandwidth differences.

Wichelmann et al. [61] recently proposed a combination
of these categories. Their framework MicroWalk applies Dy-
namic Binary Instrumentation and Mutual Information Anal-
ysis to not only detect leakage in binaries, but also to locate
the source of the leakage in the binary. The framework
combines the memory footprint and the program control-
flow to determine the side-channel leakage. They apply their
technique successfully to closed source cryptographic libraries
such as Intel IPP and Microsoft CNG.

From this brief survey, most of the work to mitigate
microarchitecture side-channels is in the area of cache-based
channels. Hence, many of these frameworks and techniques
are not directly applicable to detect and mitigate our PORT
SMASH technique. Since our technique does not target the
cache, but instead focuses on the execution units, we argue it
is extremely challenging to detect it. For example, when using
an HPC-based countermeasure, it must distinguish normal
port utilization between highly optimized code and PORT
SMASH. At the end of the day, microprocessor manufacturers
and code developers expect full core resource utilization. We
agree that it is conceptually possible to adapt some of the
previous countermeasures to detect our technique, but it is
an open question how difficult, effective, and practical these
countermeasures would be.

B. Recommendations

Our PORTSMASH technique relies on SMT and exploits
transient microarchitecture execution port usage differences,
therefore two immediate countermeasures arise: (1) remove
SMT from the attack surface; and (2) promote execution port-
independent code.

So far, the best and most recommended strategy against
attacks relying on SMT—e.g., CacheBleed, MemJam, and
TLBleed—is to simply disable this feature. Even OpenBSD
developers 5 recently followed this approach, since it is the
simplest solution that exists but it comes at the cost of
performance loss on thread-intensive applications. In order to
minimize this loss, Wang and Lee [3] proposed a selective
approach by modifying the OS to support logical core isolation
requests from user space, such that security-critical code can
trigger it on demand. This selective SMT-disabling reduces
performance loss but is costly to implement since it requires
changes in the OS and the underlying libraries, hindering
portability and large-scale adoption.

The second option, port-independent code, can be achieved
through secret-independent execution flow secure coding prac-
tices, similar to constant-time execution. Constant-time imple-

5https://marc.info/?l=openbsd-cvs&m=152943660103446

mentations that execute the same set of instructions indepen-
dently from the secret—i.e., all code and data addresses are
assumed public—fulfill the port-independent code requirement
we propose to mitigate this technique. See Appendix B for a
discussion on experimentally validating the effectiveness of
this recommendation with respect to OpenSSL.

VII. CONCLUSION

We presented a new SCA technique exploiting timing
information against a non-persistent shared HW resource,
derived from port contention in shared CPU execution units
on SMT architectures. Our PORTSMASH technique features in-
teresting properties including high adaptability though various
configurations, very fine spatial granularity, high portability,
and minimal prerequisites. We demonstrated it is a practical
attack vector with a real-world end-to-end attack against a
TLS server, successfully recovering an ECDSA P-384 secret
key; we further demonstrated it is a viable side-channel to
endanger the security of SGX enclaves and discussed potential
mitigations.

Following responsible disclosure procedures, we reported
our findings to the manufacturer and OS vendors, which
resulted in the assignment of CVE-2018-5407 to track the
vulnerability. Subsequent to public disclosure, we released our
proof-of-concept software to the open source community [62]
in support of open science.

We leave as future work exploring the impact of memory
ports for a PORTSMASH-like attack, answering the question:
are they more of a leakage or noise source? It is also
interesting to evaluate the capabilities of PORTSMASH on
other architectures featuring SMT, especially on AMD Ryzen
systems: our initial experiments suggest it is a viable security
threat.

Finally, we conclude with a remark on how this work,
together with the increasingly fast-paced publications of sci-
entific results in the same field, confirms once again SCA as
a practical and powerful tool to find, exploit—and eventually
mitigate—significant and often underestimated threats to the
security of our data and communications.

Acknowledgments

We thank Tampere Center for Scientific Computing (TCSC)
for generously granting us access to computing cluster re-
sources.

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
804476).

This article is based in part upon work from COST Action
IC1403 CRYPTACUS, supported by COST (European Coop-
eration in Science and Technology).

We thank Nokia Foundation for funding a research visit of
Alejandro Cabrera Aldaya to Tampere University during the
development of this work.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 2019
IEEE Symposium on Security and Privacy, SP 2019, Proceedings,
20-22 May 2019, San Francisco, California, USA. IEEE, 2019, pp.
19–37. [Online]. Available: https://doi.org/10.1109/SP.2019.00002

[3] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in Proceedings of the 22nd Annual Conference on
Computer Security Applications, ACSAC 2006, Miami Beach, FL, USA,
December 11-15, 2006. IEEE Computer Society, 2006, pp. 473–482.
[Online]. Available: https://doi.org/10.1109/ACSAC.2006.20

[4] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-
aside buffer: Defeating cache side-channel protections with TLB
attacks,” in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 955–972. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/gras

[5] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A timing attack
on OpenSSL constant time RSA,” in Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, ser.
Lecture Notes in Computer Science, B. Gierlichs and A. Y. Poschmann,
Eds., vol. 9813. Springer, 2016, pp. 346–367. [Online]. Available:
https://doi.org/10.1007/978-3-662-53140-2_17

[6] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, P. Roussel,
R. Singhal, B. Toll, and K. Venkatraman, “The microarchitecture of
the Intel Pentium 4 processor on 90nm technology,” Intel Technology
Journal, vol. 8, no. 1, pp. 7–23, 2004.

[7] “Intel 64 and IA-32 architectures software developers man-
ual,” Intel, Volume 1 253665-067US, May 2018. [Online].
Available: https://software.intel.com/sites/default/files/managed/a4/60/
253665-sdm-vol-1.pdf

[8] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, “Hyper-Threading Technology architecture and
microarchitecture,” Intel Technology Journal, vol. 6, no. 1, 2002.

[9] A. Fog, Instruction tables (2018), Sep. 2018. [Online]. Available:
http://www.agner.org/optimize/instruction_tables.pdf

[10] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Retrospective:
Simultaneous multithreading: Maximizing on-chip parallelism,” in 25
Years of the International Symposia on Computer Architecture (Selected
Papers)., G. S. Sohi, Ed. ACM, 1998, pp. 115–116. [Online].
Available: http://doi.acm.org/10.1145/285930.285971

[11] C. Percival, “Cache missing for fun and profit,” in BSDCan 2005,
Ottawa, Canada, May 13-14, 2005, Proceedings, 2005. [Online].
Available: http://www.daemonology.net/papers/cachemissing.pdf

[12] E. Brickell, G. Graunke, M. Neve, and J. Seifert, “Software
mitigations to hedge AES against cache-based software side channel
vulnerabilities,” IACR Cryptology ePrint Archive, vol. 2006, no. 52,
2006. [Online]. Available: http://eprint.iacr.org/2006/052

[13] O. Acıiçmez and J. Seifert, “Cheap hardware parallelism implies cheap
security,” in Fourth International Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2007, FDTC 2007: Vienna, Austria, 10
September 2007, L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and
J. Seifert, Eds. IEEE Computer Society, 2007, pp. 80–91. [Online].
Available: https://doi.org/10.1109/FDTC.2007.4318988

[14] D. Evtyushkin and D. V. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM, 2016, pp. 843–857. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978374

[15] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment

- 14th International Conference, DIMVA 2017, Bonn, Germany, July
6-7, 2017, Proceedings, ser. Lecture Notes in Computer Science,
M. Polychronakis and M. Meier, Eds., vol. 10327. Springer, 2017, pp.
3–24. [Online]. Available: https://doi.org/10.1007/978-3-319-60876-1_1

[16] O. Acıiçmez, B. B. Brumley, and P. Grabher, “New results
on instruction cache attacks,” in Cryptographic Hardware and
Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, ser. Lecture
Notes in Computer Science, S. Mangard and F. Standaert, Eds.,
vol. 6225. Springer, 2010, pp. 110–124. [Online]. Available:
https://doi.org/10.1007/978-3-642-15031-9_8

[17] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang,
“High-speed high-security signatures,” J. Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, 2012. [Online]. Available: https://doi.org/10.
1007/s13389-012-0027-1

[18] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in Topics in Cryptology - CT-RSA
2006, The Cryptographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February 13-17, 2006, Proceedings, ser. Lecture Notes
in Computer Science, D. Pointcheval, Ed., vol. 3860. Springer, 2006,
pp. 1–20. [Online]. Available: https://doi.org/10.1007/11605805_1

[19] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014. USENIX Association, 2014, pp.
719–732. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[20] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in Detection of Intrusions and Malware,
and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, ser. Lecture
Notes in Computer Science, J. Caballero, U. Zurutuza, and R. J.
Rodríguez, Eds., vol. 9721. Springer, 2016, pp. 279–299. [Online].
Available: https://doi.org/10.1007/978-3-319-40667-1_14

[21] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam: A false
dependency attack against constant-time crypto implementations in
SGX,” in Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April
16-20, 2018, Proceedings, ser. Lecture Notes in Computer Science,
N. P. Smart, Ed., vol. 10808. Springer, 2018, pp. 21–44. [Online].
Available: https://doi.org/10.1007/978-3-319-76953-0_2

[22] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
IEEE Computer Society, 2015, pp. 605–622. [Online]. Available:
https://doi.org/10.1109/SP.2015.43

[23] G. I. Apecechea, T. Eisenbarth, and B. Sunar, “S$a: A shared
cache attack that works across cores and defies VM sandboxing -
and its application to AES,” in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
IEEE Computer Society, 2015, pp. 591–604. [Online]. Available:
https://doi.org/10.1109/SP.2015.42

[24] M. Kayaalp, N. B. Abu-Ghazaleh, D. V. Ponomarev, and A. Jaleel, “A
high-resolution side-channel attack on last-level cache,” in Proceedings
of the 53rd Annual Design Automation Conference, DAC 2016, Austin,
TX, USA, June 5-9, 2016. ACM, 2016, pp. 72:1–72:6. [Online].
Available: http://doi.acm.org/10.1145/2897937.2897962

[25] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: the
missing OS abstraction,” CoRR, vol. abs/1810.05345, 2018. [Online].
Available: http://arxiv.org/abs/1810.05345

[26] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, T. Holz and S. Savage, Eds. USENIX Association, 2016,
pp. 549–564. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/lipp

[27] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, 1987.

[28] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings, ser. Lecture Notes in Computer Science,
H. C. Williams, Ed., vol. 218. Springer, 1985, pp. 417–426. [Online].
Available: https://doi.org/10.1007/3-540-39799-X_31

[29] A. H. Koblitz, N. Koblitz, and A. Menezes, “Elliptic curve

cryptography: The serpentine course of a paradigm shift,” Journal
of Number Theory, vol. 131, no. 5, pp. 781–814, 2011. [Online].
Available: https://doi.org/10.1016/j.jnt.2009.01.006

[30] “Digital signature standard (DSS),” National Institute of Standards and
Technology, FIPS PUB 186-2, Jan. 2000.

[31] The Case for Elliptic Curve Cryptography, National Security Agency,
Oct. 2005. [Online]. Available: tinyurl.com/NSAandECC

[32] “National information assurance policy on the use of public standards
for the secure sharing of information among national security systems,”
Committee on National Security Systems, CNSSP 15, Oct. 2012.
[Online]. Available: https://www.cnss.gov/CNSS/issuances/Policies.cfm

[33] Commercial National Security Algorithm Suite, National Security
Agency, Aug. 2015. [Online]. Available: https://apps.nsa.gov/iaarchive/
programs/iad-initiatives/cnsa-suite.cfm

[34] “Commercial national security algorithm suite and quantum
computing FAQ,” National Security Agency, MFQ-U-
OO 815099-15, Jan. 2016. [Online]. Available: https:
//apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/
algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm

[35] E. Käsper, “Fast elliptic curve cryptography in OpenSSL,” in
Financial Cryptography and Data Security - FC 2011 Workshops,
RLCPS and WECSR 2011, Rodney Bay, St. Lucia, February 28
- March 4, 2011, Revised Selected Papers, ser. Lecture Notes
in Computer Science, G. Danezis, S. Dietrich, and K. Sako,
Eds., vol. 7126. Springer, 2011, pp. 27–39. [Online]. Available:
https://doi.org/10.1007/978-3-642-29889-9_4

[36] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,”
in Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
ser. Lecture Notes in Computer Science, M. Matsui, Ed., vol.
5912. Springer, 2009, pp. 667–684. [Online]. Available: https:
//doi.org/10.1007/978-3-642-10366-7_39

[37] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve
cryptography with 256-bit primes,” J. Cryptographic Engineering,
vol. 5, no. 2, pp. 141–151, 2015. [Online]. Available:
https://doi.org/10.1007/s13389-014-0090-x

[38] J. Merkle and M. Lochter, “Elliptic Curve Cryptography (ECC)
Brainpool Standard Curves and Curve Generation,” Internet Requests
for Comments, RFC Editor, RFC 5639, Mar. 2010. [Online]. Available:
https://datatracker.ietf.org/doc/rfc5639/

[39] B. Möller, “Algorithms for multi-exponentiation,” in Selected Areas
in Cryptography, 8th Annual International Workshop, SAC 2001
Toronto, Ontario, Canada, August 16-17, 2001, Revised Papers, ser.
Lecture Notes in Computer Science, S. Vaudenay and A. M. Youssef,
Eds., vol. 2259. Springer, 2001, pp. 165–180. [Online]. Available:
https://doi.org/10.1007/3-540-45537-X_13

[40] T. Allan, B. B. Brumley, K. E. Falkner, J. van de Pol, and Y. Yarom,
“Amplifying side channels through performance degradation,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9,
2016, S. Schwab, W. K. Robertson, and D. Balzarotti, Eds. ACM,
2016, pp. 422–435. [Online]. Available: http://doi.acm.org/10.1145/
2991079.2991084

[41] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, ““Ooh Aah... Just
a Little Bit”: A small amount of side channel can go a long way,” in
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014.
Proceedings, ser. Lecture Notes in Computer Science, L. Batina and
M. Robshaw, Eds., vol. 8731. Springer, 2014, pp. 75–92. [Online].
Available: https://doi.org/10.1007/978-3-662-44709-3_5

[42] N. Tuveri, S. ul Hassan, C. Pereida García, and B. B. Brumley,
“Side-channel analysis of SM2: A late-stage featurization case
study,” in Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018. ACM, 2018, pp. 147–160. [Online]. Available:
https://doi.org/10.1145/3274694.3274725

[43] J. van de Pol, N. P. Smart, and Y. Yarom, “Just a little bit
more,” in Topics in Cryptology - CT-RSA 2015, The Cryptographer’s
Track at the RSA Conference 2015, San Francisco, CA, USA, April
20-24, 2015. Proceedings, ser. Lecture Notes in Computer Science,
K. Nyberg, Ed., vol. 9048. Springer, 2015, pp. 3–21. [Online].
Available: https://doi.org/10.1007/978-3-319-16715-2_1

[44] R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis:

A toolkit for short, noisy chaotic signals,” Physica D: Nonlinear
Phenomena, vol. 58, no. 1, pp. 95 – 126, 1992. [Online]. Available:
https://doi.org/10.1016/0167-2789(92)90103-T

[45] S. M. D. Pozo and F. Standaert, “Blind source separation from single
measurements using singular spectrum analysis,” in Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings,
ser. Lecture Notes in Computer Science, T. Güneysu and H. Handschuh,
Eds., vol. 9293. Springer, 2015, pp. 42–59. [Online]. Available:
https://doi.org/10.1007/978-3-662-48324-4_3

[46] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA key extraction from mobile devices via nonintrusive physical
side channels,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 1626–1638. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978353

[47] I. Daubechies, “The wavelet transform, time-frequency localization and
signal analysis,” IEEE Trans. Information Theory, vol. 36, no. 5, pp.
961–1005, 1990. [Online]. Available: https://doi.org/10.1109/18.57199

[48] C. Pereida García and B. B. Brumley, “Constant-time callees
with variable-time callers,” in 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017,
E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 83–98. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/garcia

[49] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, no. 86, 2016. [Online]. Available:
http://eprint.iacr.org/2016/086

[50] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 640–656.
[Online]. Available: https://doi.org/10.1109/SP.2015.45

[51] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How
SGX amplifies the power of cache attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, ser.
Lecture Notes in Computer Science, W. Fischer and N. Homma,
Eds., vol. 10529. Springer, 2017, pp. 69–90. [Online]. Available:
https://doi.org/10.1007/978-3-319-66787-4_4

[52] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “CacheQuote: Efficiently recovering
long-term secrets of SGX EPID via cache attacks,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 2, pp. 171–191, 2018.
[Online]. Available: https://doi.org/10.13154/tches.v2018.i2.171-191

[53] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware,” J. Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.
[Online]. Available: https://doi.org/10.1007/s13389-016-0141-6

[54] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the first ACM
Cloud Computing Security Workshop, CCSW 2009, Chicago, IL, USA,
November 13, 2009, R. Sion and D. Song, Eds. ACM, 2009, pp. 77–84.
[Online]. Available: http://doi.acm.org/10.1145/1655008.1655019

[55] Y. Zhang and M. K. Reiter, “Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud,” in 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, November 4-8, 2013, A. Sadeghi, V. D. Gligor,
and M. Yung, Eds. ACM, 2013, pp. 827–838. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516741

[56] M. M. Godfrey and M. Zulkernine, “Preventing cache-based side-
channel attacks in a cloud environment,” IEEE Trans. Cloud
Computing, vol. 2, no. 4, pp. 395–408, 2014. [Online]. Available:
https://doi.org/10.1109/TCC.2014.2358236

[57] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Preventing
microarchitectural attacks before distribution,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
CODASPY 2018, Tempe, AZ, USA, March 19-21, 2018, Z. Zhao,
G. Ahn, R. Krishnan, and G. Ghinita, Eds. ACM, 2018, pp. 377–388.
[Online]. Available: http://doi.acm.org/10.1145/3176258.3176316

[58] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “SpyDetector: An
approach for detecting side-channel attacks at runtime,” International
Journal of Information Security, Jun. 2018. [Online]. Available:

https://doi.org/10.1007/s10207-018-0411-7
[59] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A real-time

side-channel attack detection system in clouds,” in Research in Attacks,
Intrusions, and Defenses - 19th International Symposium, RAID 2016,
Paris, France, September 19-21, 2016, Proceedings, ser. Lecture
Notes in Computer Science, F. Monrose, M. Dacier, G. Blanc, and
J. García-Alfaro, Eds., vol. 9854. Springer, 2016, pp. 118–140.
[Online]. Available: https://doi.org/10.1007/978-3-319-45719-2_6

[60] A. Raj and J. Dharanipragada, “Keep the PokerFace on! Thwarting
cache side channel attacks by memory bus monitoring and cache
obfuscation,” J. Cloud Computing, vol. 6, p. 28, 2017. [Online].
Available: https://doi.org/10.1186/s13677-017-0101-4

[61] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “MicroWalk:
A framework for finding side channels in binaries,” in Proceedings of
the 34th Annual Computer Security Applications Conference, ACSAC
2018, San Juan, PR, USA, December 03-07, 2018. ACM, 2018, pp.
161–173. [Online]. Available: https://doi.org/10.1145/3274694.3274741

[62] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García, and
N. Tuveri, PortSmash Proof-of-Concept exploit. Zenodo, Jan. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.2552315

[63] I. Markovsky, “Structured low-rank approximation and its applications,”
Automatica, vol. 44, no. 4, pp. 891–909, 2008. [Online]. Available:
https://doi.org/10.1016/j.automatica.2007.09.011

[64] “SEC 2: Recommended Elliptic Curve Domain Parameters,” Standards
for Efficient Cryptography, Standards for Efficient Cryptography Group,
SEC 2, Jan 2010. [Online]. Available: http://www.secg.org/sec2-v2.pdf

[65] V. Dolmatov and A. Degtyarev, “GOST R 34.10-2012: Digital Signature
Algorithm,” Internet Requests for Comments, RFC Editor, RFC 7091,
Dec. 2013. [Online]. Available: https://datatracker.ietf.org/doc/rfc7091/

[66] Y. Nir, S. Josefsson, and M. Pégourié-Gonnard, “Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS) Versions 1.2 and Earlier,” Internet Requests for Comments,
RFC Editor, RFC 8422, Aug. 2018. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8422/

APPENDIX A
SINGULAR SPECTRUM ANALYSIS

To improve the detection of add operations in the scalar
multiplications, we applied the filtering technique Singular
Spectrum Analysis (SSA) [44].

The SSA filter performs an eigen-spectra decomposition
of the original signal using a trajectory matrix into different
components which are then analyzed and selected accordingly
for reconstructing a filtered signal. The first step embedding
converts the single dimension signal {mk}Nk=1 of length N
into a multidimensional trajectory matrix M which contains
I column vectors each of size w where I = N − w + 1. The
window size 1 < w ≤ N/2 dictates the quality and perfor-
mance of the reconstruction phase. The second step singular
value decomposition (SVD) decomposes the trajectory matrix
M into non-zero eigenvalues λk of MM> sorted in decreasing
ranks of their magnitudes along with their corresponding
eigenvectors uk. With vk = M>uk

√
λk and Yk = ukvk the

projection matrices, SVD can be shown as:

M =
d∑

k=1

√
λkY

>
k

To obtain the reconstructed components {yi}Ni=1, next perform
a diagonal averaging also known as Hankelization by comput-
ing the average over the skewed diagonal of the projection

matrices Yk [63]. The original signal can thus be reproduced
by summing all the reconstructed components:

{mi}Ni=1 =
d∑

k=1

{yki }Ni=1

For source separation, only the useful components can be
chosen, leaving out the noisy ones from all the d possible
choices.

APPENDIX B
ECC IN OPENSSL

As stated in Section V-A, OpenSSL features several im-
plementations for ECC operations: each elliptic curve has an
associated method structure containing function pointers to
common ECC operations, and for this work we specifically
focus on the scalar multiplication operation.

The actual method structure associated with a particular
ECC cryptosystem depends on a variety of factors, including
the OpenSSL version, the particular curve instantiated, build-
time options, and capabilities of the targeted architecture. The
intent of this section is to discuss PORTSMASH applications to
OpenSSL ECC outside of P-384 and across different OpenSSL
versions and build-time options.

A. OpenSSL versions

The OpenSSL project currently actively supports three re-
leases of the library:

1.0.2 is the old long-term support (LTS) release, supported
until the end of 2019;

1.1.0 is the previous non-LTS release, currently in its final
year of support, thus updated only with security fixes;

1.1.1 the latest LTS release.
Letter releases (e.g., 1.0.2a) are periodically issued and ex-
clusively contain bug and security fixes and no new features;
minor releases (i.e., where only the last number is changed)
contain new features, but in a way that does not break binary
compatibility, so that existing applications do not need to be
recompiled; finally, major releases (e.g., from 1.0.2 to 1.1.0)
can contain major changes precluding both binary and API
compatibility, thus requiring applications to be recompiled
against the new version of the library, and, potentially, sig-
nificant changes in the application source code to adapt to
API changes.

It should be noted that the OpenSSL library is often installed
as an OS system library or bundled with binary application
packages, and as a result in most cases users depend on third
party vendors, such as OS distribution maintainers, for the
version of the library used by their applications and for its
build-time options.

This is particularly relevant in terms of support for bugs
and security fixes, as often the release strategies of third party
vendors are not compatible with that of the OpenSSL project
(see [?] for a discussion), resulting in major delays between
upstream releases and versions installed in the majority of
systems. For example, currently the latest Ubuntu Linux

LTS release (18.04)—used in many online servers—features
OpenSSL version 1.1.0g that is more than one year older
than the latest upstream letter release (1.1.0j) for that release
branch.

B. Scalar multiplication implementations

Excluding curve25519 and curve448, which are de-
fined separately, scalar multiplications for prime curves in
the OpenSSL library are handled by one of the following
implementations:
• EC_GFp_nistp256_method, based on [35], offering

a timing-resistant portable C implementation for 64-bit
architectures supporting 128-bit integer types, optimized
for the NIST P-256 curve (with variants for NIST P-
224/P-521). Support for these three methods is condi-
tional to the aforementioned architecture and compiler
support and must be explicitly enabled at compilation
time;

• EC_GFp_nistz256_method, based on [37], offers
a faster timing-resistant method for NIST P-256, using
Intel AVX2 SIMD assembly instructions to increase the
performance of finite field operations. This method is
automatically enabled at compilation time if the target
architecture supports the Intel AVX2 SIMD instructions,
unless assembly optimized implementations are explicitly
disabled at build time;

• non constant-time multiplication, based on [39, Sec. 3.2]
using a modified windowed Non-Adjacent Form (wNAF)
for scalar representation. It was the default generic im-
plementation in OpenSSL 1.1.0h and earlier (and up to
the later 1.0.2p version in the 1.0.2 branch). This is the
code path used in the end-to-end attack presented in this
work;

• (only in 1.1.1+, 1.1.0i+, 1.0.2q+) timing-resistant generic
implementation based on a Montgomery ladder, featuring
a fixed sequence of operations without scalar-dependent
branches; it was introduced during the development
of version 1.1.1 (and backported to the older release
branches starting with releases version 1.1.1i and 1.0.2q)
as a result of work by Tuveri et al. [42], further discussed
in Appendix B-C.

Of the 39 standard defined prime curves supported by
OpenSSL 1.0.2 and 1.1.0 releases, only the aforementioned
NIST P-224, P-256 and P-521 have specialized timing-
resistant implementations. Every other prime curve will use
the generic default implementation, which will be one of the
last two implementations in the above list, depending on the
OpenSSL library version. Among these curves, it is worth
mentioning:
• “Brainpool” (RFC 5639[38]) curves;
• most prime curves standardized by SECG [64], including

the secp256k1 curve (adopted for Bitcoin operations);
• any generic prime curve defined over custom parame-

ters, e.g., when using the gost6 engine to implement

6https://github.com/gost-engine/engine

RFC 7091[65] or when using explicit arbitrary parameters
in TLS versions 1.2 and earlier—a feature that has been
recently deprecated (RFC 8422[66]) but is still supported
for compatibility with legacy products.

Moreover, the specialized implementations for the three NIST
curves are not enabled if any of the mentioned requirements
is not met, so depending on architecture and compilation
options, even these curves could fall back to the default
generic implementation targeted in the end-to-end attack we
demonstrated. This is particularly relevant, considering that
often users rely on third party vendors for a binary distribution
of the library, and said vendors could prioritize portability
over performance and disable architecture-dependent features
at build time.

C. Relevant mitigations in OpenSSL

The default wNAF scalar multiplication implementation has
been the target of several side-channel attacks [36, 40–43].
Independently from this current work, this implementation was
finally replaced during the development cycle of OpenSSL
1.1.1 with a timing-resistant one, as a consequence of [42].
The set of changes described there fulfills the port-independent
code requirement we propose to mitigate the PORTSMASH
technique.

This changeset was backported to the 1.1.0 branch and
released starting with version 1.1.0i. But at the time, back-
porting to the LTS 1.0.2 branch was deemed unnecessary, due
to additional complexity in the backport process (caused by
major design differences), and a lower coverage for automated
detection of regressions and new defects. It was only as a result
of this work and the disclosure of CVE-2018-5407 that the
additional effort and risks were considered acceptable7, thus
we backported8 the changes to the 1.0.2 branch. For the old
LTS branch, our mitigation has been released since version
1.0.2q.

7https://www.openssl.org/news/secadv/20181112.txt
8https://github.com/openssl/openssl/pull/7593

 0

 50

 100

 150

 200

 250

 100 150 200 250 300 350 400 450 500 550 600

o o

Signature count

0x1 success prob.
0x1 instances

0x3 success prob.
0x3 instances

Fig. 9. Probability (percentage) of success of the lattice algorithm against
the two sets of modeled perfect traces. The dashed lines track the number of
instances running with different signature counts.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 200 300 400 500 600

K
n

o
w

n
 n

o
n

ce
 b

it
s

Signature count

0x1
0x3

Fig. 10. Cumulative known nonce bits for the lattice algorithm against the
two sets of modeled perfect traces, varying the count of signatures used to
model the lattice.

 0

 200

 400

 600

 800

 1000

 1200

 100 150 200 250 300 350 400 450 500 550 600

It
er

at
io

n
s

Signature count

0x1
0x3

Fig. 11. Number of BKZ iterations for successful instances of the lattice
algorithm against the two sets of modeled perfect traces, varying the count
of signatures used to model the lattice.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 100 150 200 250 300 350 400 450 500 550 600

T
im

e
(s

ec
o

n
d

s)

Signature count

0x1
0x3

Fig. 12. Execution time of successful instances of the lattice algorithm against
the two sets of modeled perfect traces, varying the count of signatures used
to model the lattice.

PUBLICATION
VII

Certified Side Channels
C. Pereida García, S. ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya and

B. B. Brumley

29th USENIX Security Symposium, USENIX Security 2020, August 12-14,2020.
Ed. by S. Capkun and F. Roesner. 2020, 2021–2038

Publication reprinted with the permission of the copyright holders

This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Certified Side Channels
Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, and Iaroslav Gridin,

Tampere University; Alejandro Cabrera Aldaya, Tampere University and
Universidad Tecnológica de la Habana; Billy Bob Brumley, Tampere University

https://www.usenix.org/conference/usenixsecurity20/presentation/garcia

Certified Side Channels

Cesar Pereida García1, Sohaib ul Hassan1, Nicola Tuveri1,
Iaroslav Gridin1, Alejandro Cabrera Aldaya1,2, and Billy Bob Brumley1

1Tampere University, Tampere, Finland
{cesar.pereidagarcia,n.sohaibulhassan,nicola.tuveri,iaroslav.gridin,billy.brumley}@tuni.fi

2Universidad Tecnológica de la Habana (CUJAE), Habana, Cuba
aldaya@gmail.com

Abstract
We demonstrate that the format in which private keys are per-
sisted impacts Side Channel Analysis (SCA) security. Survey-
ing several widely deployed software libraries, we investigate
the formats they support, how they parse these keys, and what
runtime decisions they make. We uncover a combination of
weaknesses and vulnerabilities, in extreme cases inducing
completely disjoint multi-precision arithmetic stacks deep
within the cryptosystem level for keys that otherwise seem
logically equivalent. Exploiting these vulnerabilities, we de-
sign and implement key recovery attacks utilizing signals
ranging from electromagnetic (EM) emanations, to granular
microarchitecture cache timings, to coarse traditional wall
clock timings.

1 Introduction

Academic SCA tends to focus on implementations of crypto-
graphic primitives in isolation. With this view, the assumption
is that any higher level protocol or system built upon imple-
mentations of these primitives will naturally benefit from SCA
mitigations in place at lower levels.

Our work questions this assumption, and invalidates it with
several concrete vulnerabilities and attacks against modern
software libraries: we dub these Certified Side Channels, since
the novel attack vector is deeply rooted in cryptography stan-
dards. For this vector, “certified” is in the certificate sense (e.g.
X.509), not in the Common Criteria sense. Counter-intuitively,
we demonstrate that the format in which keys are stored plays
a significant role in real world SCA security. Detailed security
recommendations for key persistence are scarce; e.g. FIPS
140-2 vaguely states “Cryptographic keys stored within a
cryptographic module shall be stored either in plaintext form
or encrypted form [. .] Documentation shall specify the key
storage methods employed by a cryptographic module” [1,
4.7.5].

There are (at least) two high level dimensions at play re-
garding key formats as an SCA attack vector: (i) Among

the multitude of standardized cryptographic key formats to
choose from when persisting keys: which one to choose, and
does the choice matter? Surprisingly, it does—we demon-
strate different key formats trigger different behavior within
software libraries, permeating all the way down to the low
level arithmetic for the corresponding cryptographic primitive.
(ii) At the specification level, alongside required parameters,
standardized key formats often contain optional parameters:
does including or excluding optional parameters impact se-
curity? Surprisingly, it does. We demonstrate that omitting
optional parameters can cause extremely different execution
flows deep within a software library, and also that two keys
seemingly mathematically identical at the specification level
can be treated by a software library as inequivalent, again
reaching very different arithmetic code deep within the li-
brary.

Furthermore, we demonstrate that key parsing in general is
a lucrative SCA attack vector. This is due mostly to software
engineering constraints. Complex libraries inevitably stray to
convoluted data structures containing generous nesting levels
to meet the demands of broad standardized cryptography. This
is exacerbated by the natural urge to handle keys generically
when faced with extremely diverse cryptographic standards
spanning RSA, DSA, ECDSA, Ed25519, Ed448, GOST, SM2,
etc. primitives. The motivation behind this generalization is
to abstract away underlying cryptographic details from appli-
cation developers linking against a library—more often than
not, these developers are not cryptography experts. Never-
theless, we observe that when loading keys modern security
libraries make varying design choices that ultimately impact
SCA security. From the functionality perspective, these de-
sign choices are sensible; from the security perspective, we
demonstrate they are often questionable.

Outline. Section 2 gives an overview of the related back-
ground and previous work. Section 3 discusses the vulnerabil-
ities discovered as a result of our analysis, with microarchitec-
ture SCA evaluations on OpenSSL RSA, DSA, and mbedTLS
RSA. We also demonstrate end-to-end attacks on OpenSSL
ECDSA using timing and EM side channels in Section 4. We

USENIX Association 29th USENIX Security Symposium 2021

conclude in Section 5.

2 Background

2.1 Public Key Cryptography
ECDSA. Denote an order-n generator G ∈ E of an elliptic
curve group E with cardinality f n and n a large prime and
f the small cofactor. The user’s private key α is an integer
uniformly chosen from {1 . .n− 1} and the corresponding
public key is D = [α]G. With approved hash function Hash(),
the ECDSA digital signature (r,s) on message m (denoting
with h < n the representation of Hash(m) as an integer) is

r = ([k]G)x mod n, s = k−1(h+αr) mod n (1)

where k is a nonce chosen uniformly from {1 . .n−1}.
RSA. According to the PKCS #1 v2.2 standard (RFC
8017 [55]), an RSA private key consists of the eight param-
eters {N,e, p,q,d,dp,dq, iq} where all but the first two are
secret, and N = pq for primes p, q. Public exponent e is usu-
ally small and the following holds:

d = e−1 mod lcm(p−1,q−1) (2)

In addition, Chinese Remainder Theorem (CRT) parameters
are stored for speeding up RSA computations:

dp = d mod p, dq = d mod q, iq = q−1 mod p (3)

2.2 Key Formats
Interoperability among different software and hardware plat-
forms in handling keys and other cryptographic objects re-
quires common standards to serialize and deserialize such
objects. ASN.1 or Abstract Syntax Notation One is an in-
terface description language to define data structures and
their (de/)serialization, standardized [69] jointly by ITU-T
and ISO/IEC since 1984 and widely adopted. It supports
several encoding rules, among which the Distinguished En-
coding Rules (DER), a binary format ensuring uniqueness and
concision, has been preferred for the representation of crypto-
graphic objects. PEM (RFC 7468 [45]) is a textual file format
to store and trasmit cryptographic objects, widespread despite
being originally developed as part of the now obsoleted IETF
standards for Privacy-Enhanced Mail after which it is named.
PEM uses base64 to encode the binary DER serialization of
an object, providing some degree of human readability and
support for text-based protocols like e-mail and HTTP(S).
Object Identifiers. The ASN.1 syntax also defines an
OBJECT IDENTIFIER primitive type which represents a glob-
ally unique identifier for an object. ITU-T and ISO jointly
manage a decentralized hierarchical registry of object iden-
tifiers or OID s. The registry is organized as a tree structure,
where every node is authoritative for its descendants, and

decentralization is obtained delegating the authority on sub-
trees to entities such as countries and organizations. This
mechanism solves the problem of assigning globally unique
identifiers to entities to facilitate global communication.

RSA private keys. PKCS #1 (RFC 8017 [55]) also defines
the ASN.1 DER encoding for an RSA private key, defining an
item for each of its eight parameters. As further discussed in
Section 3.4, the standard does not strictly require implemen-
tations to include all the eight parameters during serialization,
nor to invalidate the object during deserialization if one of the
parameters is not included.

EC private keys. The ANSI X9.62 standard [51] is the nor-
mative reference for the definition of the ECDSA cryptosys-
tem and the encoding of ECDSA public keys, but omits a
serialization for private keys. The SEC1 standard [2] follows
ANSI X9.62 for the public key ASN.1 and provides a DER
encoding also for EC private keys, but allows generous vari-
ation as it seems to assume different encapsulating options
depending on different protocols in which the EC private
key can be used. Flexibility in the format brings complexity
in the deserializer implementation, that needs to be stateful
w.r.t. parsing of the container of the private key encoding and
flexible enough to interoperate with other implementations
and interpretations of the standards: this already suggests
that the parsing stage shows potential as a lucrative SCA at-
tack vector. The SEC1 ASN.1 notation for ECPrivateKey
contains the private scalar as an octet string, an optional (de-
pending on the container) ECDomainParameters field, and
an optional bit string field to include the public part of the
key pair. The ECDomainParameters can be null, if the curve
parameters are specified in the container encapsulating the
ECPrivateKey, or contain either an OID for a “named” curve,
or a SpecifiedECDomain structure. The latter, simplifying,
contains a description of the field over which the EC group
is defined, the definition of the curve equation in terms of
the coefficients of its Short Weierstrass form, an encoding
of the EC base point, and its order n. Finally it can option-
ally contain a component to represent a small cofactor f as
defined at the beginning of this section. In Section 3.1 we
will further discuss about the security consequences caused
in actual implementations by the logic required to support the
cofactor as an optional field.

MSBLOB key format. MSBLOB is the OpenSSL implemen-
tation of Microsoft’s private key BLOB format1 supporting
different cryptosystems, using custom defined structures and
fields. DSS key BLOB uses an arbitrary structure, while RSA
key BLOBs follows PKCS #1 with minor differences. To iden-
tify each cryptosystem, a “magic member” is used in the key
BLOB structure—the member is the hexadecimal represen-
tation of the ASCII encoding of the cryptosystem name, e.g.
“RSA1”, “RSA2”, “DSS1”, “DSS2”, etc., where the integer

1https://docs.microsoft.com/en-us/windows/win32/
seccrypto/base-provider-key-blobs

2022 29th USENIX Security Symposium USENIX Association

dictates if it is a public or a private key. Public and private
key BLOBs are stored as binary files in little-endian order
and by default the private key BLOBs are not encrypted—it
is up to the developers to choose whether to encrypt the key.
Microsoft created the public and private key BLOBs in order
to support cryptographic service providers (CSP), i.e. third
party cryptographic software modules. It is worth noting that
both private and public BLOBs are independent from each
other, thus allowing a CSP to only support and implement the
desired format according to the cryptosystem in use, meaning
that public keys can be computed on-demand using the private
key BLOB information.

PVK key format. The PriVate Key (PVK) format is a Mi-
crosoft proprietary key format used in Windows supporting
signature generation using both DSA and RSA private keys.
Little information is available about this format but a key is
typically composed of a header containing metadata, and a
body containing a private key BLOB structure as per the pre-
vious description. Following the same idea as in the private
key BLOB, the PVK header metadata contains the “magic”
value 0xb0b5f11e2 to uniquely identify this key format. Ad-
ditionally, PVK’s header contains metadata information for
key password protection, preventing the storage of private
key information in plain text. Unfortunately, PVK is an out-
dated format and it only supports RC4 encryption, moreover,
in some cases PVK keys use a weakened encryption key to
comply with the US export restrictions imposed during the
90’s 3.

2.3 Side-Channel Analysis

SCA is a cryptanalysis technique used to target software and
hardware implementations of cryptographic primitives. The
main goal of SCA is to expose hidden algorithm state by
measuring variations in time, power consumption, electro-
magnetic radiation, temperature, and sound. These variations
might leak data or metadata that allows the retrieval of confi-
dential information such as private keys and passwords. The
history of SCA is long and rich—from the military program
called TEMPEST [31] to current commodity PCs, SCA has
deeply impacted security-critical systems and it has reached
the most popular and widely used cryptosystems over the
years such as AES, DSA, RSA, and ECC, implemented in the
most widely used cryptographic libraries including OpenSSL,
BoringSSL, LibreSSL, and mbedTLS.

SCA can be broadly categorized (w.r.t. signal procurement
techniques) in two specific research fields: hardware and soft-
ware. Both fields have evolved and developed their own tech-
niques, and the line separating them has blurred as research
improves, and attacks become more complex. Nevertheless,
the ultimate goal is still the same: extract confidential informa-

2Leetspeak for “bobsfile”!
3http://justsolve.archiveteam.org/wiki/PVK

tion from a device executing vulnerable cryptographic code.
A brief overview follows.
Hardware. Ever since their inception, System-on-Chip (SoC)
embedded devices have become passively ubiquitous in the
form of mobile devices and IoT, performing security criti-
cal tasks over the Internet. Their basic building blocks—in
terms of performing computations—are the CMOS transis-
tors, drawing current during the switching activity to depict
the behavior of logic gates. Power analysis attacks introduced
by Kocher et al. [49] rely on the fact that accumulated switch-
ing activity of these transistors influence the overall power
fluctuations while secret data dependent computations take
place on the processor and memory subsystems.

While power analysis is one way to perform SCA, devices
may also leak sensitive information through other means such
as EM [5], acoustic [34], and electric potential [36]. In con-
trast to the power side channels which require physically tap-
ping onto the power lines, EM and acoustic based SCA add
a spatial dimension. There may be slight differences when
it comes to acquiring and processing these signals, but in
essence the concept is similar to traditional power analysis,
hence the hardware based SCA techniques generally apply to
all.

Over the years more powerful SCA techniques have
emerged such as differential power analysis [49], correlation
power analysis [19], template attacks [25], and horizontal
attacks [12]. Most of these techniques rely on statistical meth-
ods to find small secret data dependent leakages.

Traditionally, hardware SCA research mainly focuses on
architecturally simpler devices such as smart cards and mi-
crocontrollers [52, 65, 66]. Being simple here does not imply
that developing and deploying such cryptosystems is sim-
pler, rather in terms of their functionality and hardware ar-
chitecture. Modern consumer electronics (e.g. smart phones)
are more feature rich, containing SoC components, memory
subsystems and multi-core processors with clock speeds in
gigahertz. These devices are often running a full operating
system (several in fact) making it possible to deploy software
libraries such as OpenSSL. More recently, a new class of
hardware side channel attacks on embedded, mobile devices
and even PCs has emerged, targeting crypto software libraries
such as OpenSSL [38, 50], GnuPG [34, 35, 36, 37], PolarSSL
[29], Android’s Bouncy Castle [13], and WolfSSL [68]. They
employ various signal processing tools to counter the noise
induced by complex systems and microarchitectures. For fur-
ther details, Tunstall [71] present an elaborate discussion on
hardware based SCA techniques, while Danger et al. [27]
and Abarzúa et al. [3] sum up various SCA attacks and their
countermeasures.
Software. The widespread use of e-commerce and the need
for security on the Internet sparked the development of cryp-
tographic libraries such as OpenSSL. Researchers quickly
began analyzing these libraries and it took a short time to
find security flaws in these libraries. Impulsed by Kocher’s

USENIX Association 29th USENIX Security Symposium 2023

work [48], SCA timing attacks quickly gained traction. By
measuring the amount of time required to perform private
key operations, the author demonstrated that it was feasible to
find Diffie-Hellman exponents, factor RSA keys, and recover
DSA keys. Later Brumley and Boneh [23] demonstrated that
it was possible to do the same but remotely, by measuring the
response time from an OpenSSL-powered web server. Other
TLS-level timing attacks include [47] with a software target
and [53] with a hardware target.

As software SCA became more complex and sophisticated,
a new subclass of attacks denominated “microarchitecture
attacks” emerged. Typically, a modern CPU executes multiple
programs either concurrently or via time-sharing, increas-
ing the need to optimize resource utilization to obtain high
performance. To achieve this goal, microarchitecture compo-
nents try to predict future behavior and future resource usage
based on past program states. Based on these observations,
researchers [15, 60] discovered that some microarchitecture
components—such as the memory subsystem—work wonder-
fully as communication channels. Due to their shared nature
between programs, some of the microarchitecture components
can be used to violate access control and achieve inter-process
communication. Among these components, researchers no-
ticed that the memory subsystem is arguably the easiest to
exploit: by observing the memory footprint an attacker can
leak algorithm state from an executing cryptographic library
in order to obtain secret keys. Since the initial discovery,
several SCA techniques have been developed to extract confi-
dential data from different memory levels and under different
threat models. Some of these techniques include FLUSH+
RELOAD [78], PRIME+PROBE [59], EVICT+TIME [59], and
FLUSH+FLUSH [42]. Moreover, recent research [9, 24, 74]
shows that most (if not all) microarchitecture components
shared among programs are a security hazard since they can
potentially be used as side-channels. Ge et al. [33] provide a
great overview on software SCA, including the types of chan-
nels, microarchitecture components, side-channel attacks, and
mitigations.

2.4 Lattice Attacks

In Section 4 we present two attacks against ECDSA signing
that differ in SCA technique, but share a common pattern: (i)
gathering several (r,s,m) tuples in a collection phase, using
SCA to infer partial knowledge about the nonce used during
signature generation; (ii) a recovery phase combines the col-
lected tuples and the associated partial knowledge to retrieve
the long-term secret key.

To achieve the latter, we recur to the common strategy of
constructing hidden number problem (HNP) [18] instances
from the collected information, and then use lattice techniques
to find the secret key. In this section we discuss the lattice
technique used to recover the private keys.

We follow the formalization used in [61], which itself

builds on the work by Nguyen and Shparlinski [57, 58], that
assumed a fixed amount of known bits (denoted `) for each
nonce used in the lattice, but also includes the improvements
by Benger et al. [14], using `i and ai to represent, respectively,
the amount of known bits and their value on a per-equation
basis.

The collection phase of [61] as well as our Section 4.2 at-
tack recovers information regarding the LSBs of each nonce,
hence it annotates the nonce associated with i-th equation
as ki = Wibi + ai, with Wi = 2`i , where `i and ai are known,
and since 0 < ki < n it follows that 0 ≤ bi ≤ n/Wi. De-
note bxcn modular reduction of x to the interval {0 . .n−1}
and |x|n to the interval {−(n− 1)/2 . .(n− 1)/2}. Combin-
ing (1), define (attacker-known) values ti = bri/(Wisi)cn and
ûi = b(ai− hi/si)/Wicn, then 0 ≤ bαti− ûicn < n/Wi holds.
Setting ui = ûi + n/2Wi we obtain vi = |αti− ui|n ≤ n/2Wi,
i.e. integers λi exist such that abs(αti− ui− λin) ≤ n/2Wi
holds. Thus ui approximate αti since they are closer than
a uniformly random value from {1 . .n− 1}, leading to an
instance of the HNP [18]: recover α given many (ti,ui) pairs.

Consider the rational d +1-dimension lattice generated by
the rows of the following matrix.

B =

2W1n 0 0

0 2W2n
. . .

...
...

...
. 0

...
0 . . . 0 2Wdn 0

2W1t1 2Wdtd 1

Denoting~x = (λ1, . . . ,λd ,α),~y = (2W1v1, . . . ,2Wdvd ,α), and
~u= (2W1u1, . . . ,2Wdud ,0), then~xB−~u=~y holds. Solving the
Closest Vector Problem (CVP) with inputs B and~u yields~x,
and hence the private key α. Finally, as in [61], we embed the
CVP into a Shortest Vector Problem (SVP) using the classical
strategy [39, Sec. 3.4], and employ an extended search space
heuristic [32, Sec. 5].

The presence of outliers among the results of the collec-
tion phase usually has a detrimental effect on the chances
of success of the lattice attack. The traditional solution is to
oversample, filtering t > d traces from the collection phase
if d traces are required to embed enough leaked information
in the lattice instance to solve the HNP. Indicating with e
the amount of traces with errors in the filtered set of size t,
picking a subset of size d uniformly at random, the proba-
bility for any such subset to be error-free is p̂ =

(t−e
d

)/(t
d

)
.

For typical values of {t,e,d}, p̂ will be small. Viewing the
process of randomly picking a subset and attempting to solve
the resulting lattice instance as a Bernoulli trial, the number of
expected trials before first success is 1/p̂. So an attacker can
compensate for small p̂ by running j = 1/p̂ jobs in parallel.

2024 29th USENIX Security Symposium USENIX Association

2.5 Triggerflow

Triggerflow [40] is a tool for tracking execution paths, previ-
ously used to facilitate SCA of OpenSSL. After users mark
up source code with annotations of Points Of Interest (POI)
and filtering rules for false positive considerations, Trigger-
flow runs the binary executable under a debugger and records
the execution paths that led up to POIs. The user supplies
binary invocation lines called “triggers”. These techniques
are useful in SCA of software, where areas that do not execute
in constant time are known and the user needs to find code
that leads up to them. The authors designed Triggerflow with
continuous integration (CI) in mind, and maintain an auto-
matic testing setup which continuously monitors all non-EOL
branches of OpenSSL for new vulnerabilities by watching
execution flows that enter known problematic areas.

Triggerflow is intended for automated regression testing
and has no support for automatic POI detection. Thus of-
fensive leakage detection methodologies including (but cer-
tainly not limited to) CacheAudit [28], templating [21, 41],
CacheD [75], and DATA [77] complement Triggerflow to
establish POIs. One approach is to apply these leakage detec-
tion methodologies, filter out false positives, limit to functions
deemed security-critical and worth tracking, then use the re-
sult to add Triggerflow source code annotations for CI. See
[40, Sec. 7] for a more extensive discussion.

3 Vulnerabilities

We used Triggerflow to analyze several code paths on multi-
ple cryptographic libraries, discovering SCA vulnerabilities
across OpenSSL and mbedTLS. In this section, we discuss
these vulnerabilities, including the unit tests we developed for
Triggerflow that detected each of them, then identify the root
cause in each case. Following Figure 1, Triggerflow executes
each line of the unit tests given in a text file. Triggerflow will
trace the execution of lines beginning with debug to detect
break points getting hit at SCA-critical points in the code.
Each such line is security critical—in these examples, gener-
ating a key pair or using the private key to e.g. digitally sign
a message. Hence if Triggerflow encounters said break points
during execution, it represents a potential SCA vulnerabil-
ity. We compiled the target executables (and shared libraries)
with debug symbols, and source code annotated using Trig-
gerflow’s syntax to mark previously known SCA-vulnerable
functions. Lines that do not begin with debug are not traced
by Triggerflow, merely executed as preparation steps for sub-
sequent triggers (e.g. setting up public fixed parameters).

Vulnerability-wise, the main results of this section are as
follows: (i) bypassing SCA countermeasures using ECC ex-
plicit parameters (Section 3.1, OpenSSL); (ii) bypassing SCA
countermeasures for DSA using PVK and MSBLOB key
formats (Section 3.2, OpenSSL); (iii) bypassing SCA coun-
termeasures for RSA by invoking key validation (Section 3.3,

1 # ECDSA with explicit curve parameters, zero cofactor

2 debug openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256

-pkeyopt ec_param_enc:explicit -outform DER -out p256.der↪→

3 sed -i 's/\x25\x51\x02\x01\x01/\x25\x51\x02\x01\x00/' p256.der

4 debug openssl dgst -sha256 -sign p256.der -keyform DER -out /dev/null

/etc/lsb-release↪→

1 # DSA with PVK key format

2 openssl genpkey -genparam -algorithm DSA -out dsa.params -pkeyopt

dsa_paramgen_bits:1024 -pkeyopt dsa_paramgen_q_bits:160↪→

3 debug openssl genpkey -paramfile dsa.params -out dsa.pkey

4 debug openssl dsa -in dsa.pkey -outform PVK -pvk-none -out dsa.pvk

5 debug openssl dgst -sha1 -sign dsa.pvk -keyform PVK -out /dev/null

/etc/lsb-release↪→

1 # DSA with MSBLOB key format

2 openssl genpkey -genparam -algorithm DSA -out dsa.params -pkeyopt

dsa_paramgen_bits:1024 -pkeyopt dsa_paramgen_q_bits:160↪→

3 debug openssl genpkey -paramfile dsa.params -out dsa.pkey

4 debug openssl dsa -in dsa.pkey -outform MS\ PRIVATEKEYBLOB -out dsa.blob

5 debug openssl dgst -sha1 -sign dsa.blob -keyform MS\ PRIVATEKEYBLOB

-out /dev/null /etc/lsb-release↪→

1 # RSA key validation in OpenSSL

2 openssl genrsa -out rsa.pem 2048

3 debug openssl rsa -in rsa.pem -check

4 debug openssl pkey -in rsa.pem -check

1 # RSA key loading in mbedTLS

2 create_rsa_pem.sh without_d > custom.pem

3 debug mbedtls_pk_sign custom.pem

Figure 1: New Triggerflow unit tests.

OpenSSL); (iv) bypassing SCA countermeasures for RSA
through key loading (Section 3.4, mbedTLS).

3.1 ECC: Bypass via Explicit Parameters

From a standardization perspective, curve data for ECC key
material gets persisted in one of two ways: either including
the specific OID that points to a named curve with fixed pa-
rameters, or explicitly specifying the curve with ASN.1 syn-
tax. Mathematically, they seem equivalent. To explore the
potential difference in security implications between these op-
tions, we constructed three keys: (i) a NIST P-256 private key
as a named curve, using the ec_param_enc:named_curve
argument to the OpenSSL genpkey utility; (ii) a NIST P-
256 private key with explicit curve parameters, using the
ec_param_enc:explicit argument; (iii) a copy of the pre-
vious key, but post-modified with the OpenSSL asn1parse
utility to remove the optional cofactor. The first two keys ad-
ditionally used the ec_paramgen_curve:P-256 argument to
specify the target curve. We highlight that, from a standards
perspective, all three of these keys are valid. We then inte-
grated the commands to produce these keys into the Trigger-
flow framework as unit tests. Finally, we added an OpenSSL
dgst utility unit test for each of these keys in Triggerflow, to
induce ECDSA signing. What follows is a discussion on the
three distinct control flow cases for each key, regarding the
security-critical scalar multiplication operation.

Named curve. Triggerflow indicated ecp_nistz256_-
points_mul handled the operation. The reason for this is
OpenSSL uses an EC_METHOD structure for legacy ECC; the
assignment of structure instances to specific curves happens
at library compile time, allowing different curves to have
different (optimized) implementations depending on archi-

USENIX Association 29th USENIX Security Symposium 2025

tecture and compiler features. This particular function is part
of the EC_GFp_nistz256_method, an EC_METHOD optimized
for AVX2 architectures [43]. The implementation is constant
time, hence this is the best case scenario.

Explicit parameters. Triggerflow indicated ec_scalar_-
mul_ladder handled the operation, through the default
EC_GFp_simple_method, the generic implementation for
curves over prime fields. In fact this is the oldest EC_METHOD
in the codebase, present since ECC support appeared in 2001.
The implementation of this particular function was main-
lined in 2018 [72] as a result of CVE-2018-5407 [9], SCA-
hardening generic curves with the standard Montgomery
ladder. Interpreting this Triggerflow result, we conclude
OpenSSL has no runtime mechanism to match explicit param-
eters to named curves present in the library. Ideally, it would
match the explicit parameters to EC_GFp_nistz256_method
for improved performance and SCA resistance. Failure to do
so bypasses one layer of SCA mitigations, but in this par-
ticular case the default method still features sufficient SCA
hardening.

Explicit parameters, no cofactor. Triggerflow indicated
ec_wNAF_mul handled the operation through the same
EC_METHOD as the previous case. This is a known SCA-
vulnerable function since 2009 [21], and is a POI maintained
in the Triggerflow patchset to annotate OpenSSL for auto-
mated CI. Root causing the failed Triggerflow unit test, the
function only early exits to the SCA-hardened ladder if both
the curve generator order and the curve cardinality cofactor
are non-zero. Since the optional cofactor is not present in the
key, the library assigns zero as the default, indicating either
the provided cofactor was zero or not provided at all. The
OpenSSL ladder implementation utilizes the cofactor as part
of SCA hardening, hence the code unfortunately falls through
to the SCA-insecure version in this case, bypassing the last
layer of SCA defenses for scalar multiplication. This is the
path we will exploit in Section 4.

Keys in the wild. While we reached a vulnerable code path
through a standards-compliant, valid, non-malicious key, the
fact is the OpenSSL CLI will not organically emit a key in
this form. One can argue that OpenSSL is far from the only se-
curity tool that produces keys conforming to the specification,
that it must subsequently parse since they are valid. Neverthe-
less, this leaves us with the question: do keys like this exist—
does this vulnerability matter? Investigating, we at least found
two deployment classes this vulnerability affects: (i) The
GOST engine4 for OpenSSL, dynamically adding support for
Russian cryptographic primitives in RFC 4357 [64]. Since
the curves from the standard are not built-in to OpenSSL, the
engine programatically constructs the curve based on fixed
parameters inside the engine. However, since the cofactor
parameter to the OpenSSL EC_GROUP_set_generator API
is optional, the engine developers omit it in earlier versions,

4https://github.com/gost-engine/engine

passing NULL. When GOST keys are persisted, they have their
own OID distinct from legacy ECC standards and only sup-
port named curves; however, the usage of these curves within
the engine hits the same exact code path. (ii) GOSTCoin5

is the official software stack for a cryptocurrency. It links
against OpenSSL for cryptographic functionality, but does
not support the GOST engine. Examining the digital wallet,
we manually extracted several DER-encoded legacy (OID-
wise) ECC private keys from the binary. Parsing these keys
revealed they are private keys with explicit parameters from
RFC 4357 [64], “Parameter Set A”. Upon closer inspection,
the cofactor is present in the ASN.1 encoding, yet explicitly
set to zero. Similar to the previous case, this is due to failure
to supply the correct cofactor to the OpenSSL EC API when
constructing the curve.

From this brief study, we can conclude that failure to pro-
vide the valid cofactor to the OpenSSL EC API when con-
structing curves programmatically (the only choice for curves
not built-in to the library), or importing a (persisted) ECC
private key with explicit parameters containing a zero or omit-
ted (spec-optional) cofactor are characteristics of applications
affected by this vulnerability.

Related work. Concurrent to our work, Takahashi and Ti-
bouchi [70] utilize explicit parameters in OpenSSL to mount
a fault injection attack. They invasively induce a fault during
key parsing to change OpenSSL’s representation of a curve
coefficient. This causes decompression of the explicit gen-
erator point to emit a point on a weaker curve, subsequently
mounting a degenerate curve attack [56]. At a high level,
the biggest differences from our work are the invasive attack
model and limited set of applicable curves.

Subsequent to our work, CVE-2020-0601 tracks the
“Curveball” vulnerability. It affects the Windows CryptoAPI
and uses ECC explicit parameters to match a named curve
in all but the custom generator point, allowing to spoof code-
signing certificates.

3.2 DSA: Bypass via Key Formatting

As the Swiss knife of cryptography, OpenSSL provides sup-
port for PVK and MSBLOB key formats to perform digital
signatures using DSA. In fact, OpenSSL has supported these
formats since version 1.0.0, hence the library has a dedicated
file in crypto/pem/pvkfmt.c for parsing these keys. The
file contains all the logic to parse Microsoft’s DSA and RSA
private key BLOBs, common to both PVK and MSBLOB
key formats. Unfortunately, the bulk of code for parsing the
keys has seen few changes throughout the years, and more
importantly it has missed important SCA countermeasures
that other parts of the code base have received [62], allowing
this vulnerability to go unnoticed in all OpenSSL branches
until now.

5https://github.com/GOSTSec/gostcoin

2026 29th USENIX Security Symposium USENIX Association

As mentioned previously, PVK and MSBLOB key files
contain only private key material but OpenSSL expects the
public key to be readily available. Thus every time it loads
any of these key formats, the library computes the correspond-
ing public key. More specifically, the upper level function
b2i_dss reads the private key material and subsequently calls
the BN_mod_exp function to compute the public key using the
default modular exponentiation function, without first setting
the constant-time flag BN_FLG_CONSTTIME. Note that this
vulnerability does not depend on whether the PVK key is en-
crypted or not, because when the code reaches the b2i_dss
function, the key has been already decrypted, and the modular
exponentiation function is already leaking private key ma-
terial. This default SCA-vulnerable modular exponentiation
algorithm follows a square-and-multiply approach—first pre-
computes a table of multipliers, and then accesses the table
during the square-and-multiply step. Already in 2005 Percival
[60] demonstrated an L1 data cache-timing attack against this
function during RSA decryption. We found that the original
flaw is still present, but this time in the context of DSA.

Figure 2 demonstrates the side-channel leakage obtained
by our L1 data-cache malicious spy process running in paral-
lel with OpenSSL during a modular exponentiation operation
while computing the DSA public key using PVK and MS-
BLOB key formats. Using the PRIME+PROBE technique, our
spy process is able to measure the latency of accessing a spe-
cific cache set (y-axis) over time (x-axis) to obtain a sequence
of pre-computed multipliers accessed during computation. In
OpenSSL a multiplier is represented as a BIGNUM struc-
ture spanning approximately across three different cache sets.
Reading from top-to-bottom and left-to-right, and after a brief
period of noise, the figure shows that every block of approxi-
mately three continuous high latency cache sets corresponds
to a multiplier access. An attacker can not only trace the
multipliers accessed, but also the order in which they were
accessed during the exponentiation, leaking more than half of
the exponent bits. This information greatly reduces the effort
to perform full key recovery. Moreover, the public key is com-
puted every time the private key is loaded, thus an attacker
has several attempts at tracing the sequence of operations
performed during the exponentiation. Our experiments reveal
that cache sets stay constant across multiple invocations of
modular exponentiation, reducing the attacker’s effort and
permitting the use of statistical techniques to improve the
leakage quality.
Keys in the wild. PVK and MSBLOB are based on MS pro-
prietary private key formats—nevertheless they are widely
found in use in open source software. MSBLOB keys are sup-
ported by MS Smart Card CSP and OpenSC6, an open source
software library for smart cards linking to OpenSSL. In fact,
OpenSC has a function7 that creates a key container—by call-

6https://github.com/OpenSC/OpenSC
7https://github.com/OpenSC/OpenSC/blob/master/src/

minidriver/minidriver.c#L3308

f_in matrix

Time

 0

 5

 10

 15

 20

 25

 30

C
ac

h
e

se
t

 50

 100

 150

 200

L
at

en
cy

Figure 2: L1 dcache trace showing distinctive access patterns
to pre-computed multipliers in cache sets 6-8, 9-11, 13-16, 15-
17, 22-24, 25-27, 28-30 during DSA public key computation.

ing the OpenSSL vulnerable function—whenever “the card
either does not support internal key generation or the caller
requests that the key be archived in the card”, facilitating the
attack in a smart card setting. On the other hand, MS Visual
Studio 2019 provides tools8 to generate, convert, and sign
Windows drivers, libraries, and catalog files using the PVK
format. In a typical workflow, MakeCert generates certificates
and the corresponding private key, then Pvk2Pfx encapsulates
private keys and certificates in a PKCS #12 container, and fi-
nally SignTool signs the driver. Interestingly, MakeCert and
SignTool successfully generate keys and signatures using
RSA and DSA, but Pvk2Pfx fails to accept any key that is
not RSA—a gap filled by the vulnerable OpenSSL, creating
compliant PKCS #12 keys. Other libraries such as jsign9,
osslsigncode10, and the Mono Project11 exist to provide
signing capabilities using MS proprietary private key formats
outside of Windows. We can expect this vulnerability to be
exploitable by an attacker targeting Windows developers.

3.3 RSA: Bypass via Key Validation

RSA key validation is a common operation required in a cryp-
tography library supporting RSA to verify that an input key
is indeed a valid RSA key. We found that OpenSSL function
RSA_check_key_ex located at crypto/rsa/rsa_chk.c
contains several SCA vulnerabilities. In fact, we found that
the affected function RSA_check_key_ex can be accessed by
two public entry points: a direct call to RSA_check_key, and
through the public EVP interface calling EVP_PKEY_check
on an RSA key. Figure 1 shows the commands in OpenSSL
leading to the affected code path through the two different
public functions. Note that any external, OpenSSL-linking
application calling any of these two public functions is also
affected.

The check function takes as input an RSA key, parses the

8https://docs.microsoft.com/en-us/windows-hardware/
drivers/devtest/tools-for-signing-drivers

9https://ebourg.github.io/jsign/
10https://sourceforge.net/projects/osslsigncode/files/

osslsigncode/
11https://www.mono-project.com/

USENIX Association 29th USENIX Security Symposium 2027

key, and reads all of the private and public components, check-
ing the correctness of all the components. In general, the func-
tion validates the primality of p and q, then it recomputes
the rest of the values {N,d,dp,dq, iq} to compare against
the parsed values and check their validity. Unfortunately, we
found that in several cases OpenSSL uses by default SCA-
vulnerable functions to recompute these secret values.
Primality testing vulnerabilities. The prime values p and q
are the first components verified during the process. The veri-
fication is done using the Miller-Rabin primality test [67] as
implemented in the function BN_is_prime_fasttest_ex.
This function calls a lower level witness function named
bn_miller_rabin_is_prime12 where a b base value is cho-
sen randomly to compute bm mod p, in which p is the candi-
date prime and the relation 2am= p−1 holds. The witness ex-
ponentiation is performed using the BN_mod_exp_mont func-
tion, where unfortunately the BN_FLG_CONSTTIME is not set
beforehand. Thus a variable-time sliding window exponen-
tiation is used, allowing a malicious process to potentially
perform a data cache-timing attack to recover half of the
bits from the exponent [60]. This is enough information to
recover both prime values p and q. Moreover, the exponentia-
tion function gets called several time by the witness function
with different b values in order to obtain confidence about the
prime values, providing multiple attempts for an attacker to
capture the leakage and perform error correction during its
key recovery attack.

In addition to the previous vulnerability, as part of the
witness function, a Montgomery setup phase occurs in
BN_MONT_CTX_set, where the inverse of 2w mod p for w-
bit architectures is computed. The modular inverse function
BN_mod_inverse is called without setting the constant-time
flag. The inverse operation uses a variation of the greatest
common divisor (GCD) algorithm, which is dependent on its
inputs {2w, p mod 2w}, thus leaking algorithm state equiva-
lent to the least significant word of both p and q.
Secret value vulnerabilities. Once the prime values p and q
are deemed correct, the key validation continues by computing
the rest of the secret components where more vulnerabilities
are found. To compute the private exponent d during the veri-
fication code path, OpenSSL uses the least common multiple
(LCM) of p− 1 and q− 1. Nevertheless, this operation is
computed as

lcm(p−1,q−1) =
(p−1) · (q−1)

gcd(p−1,q−1)
(4)

performing the GCD computation using the BN_gcd function.
This function does not have an early exit to a constant-time
function, instead it completely ignores the flag existence, so
even if it was set it would not have any effect on the code path
taken. Finally, the last vulnerability is observed during CRT
iq computation. OpenSSL computes this parameter using the

12In OpenSSL 1.0.2 the function is called witness.

BN_mod_inverse function, which yet again fails to properly
set the constant-time flag, leaving the computation q−1 mod p
unprotected.

It is worth noting that variable-time GCD functions, and
variants, potentially leak all the algorithm state. Depending
on the attacker capabilities [6], an attacker is fully capable of
recovering the input values, i.e. p and q.

As can be observed, all of the vulnerabilities leak on p and q
at different degrees, but by combining all the leaks, an attacker
can use the redundancy and number-theoretic constraints to
correct errors and obtain certainty on the bits leaked.
Keys in the wild. Surprisingly, the vulnerabilities presented
in this section do not depend on a special key format. In
fact, the vulnerabilities are triggered whenever an RSA key
is checked for validity using the OpenSSL library, thus a
potential attacker could simply wait for the right moment to
exploit these vulnerabilities. The potential impact of these
vulnerabilities is large, but it is minimized by two important
factors: the user must trigger an RSA key validation; and
the attacker must be collocated in the same CPU as the user.
Nevertheless, this is not a rare scenario, and thus exploitation
is very much possible.

3.4 RSA: Bypass via Missing Parameters
Recalling Section 2, an RSA private key is composed by
some redundant parameters while at the same time not all of
them are mandatory per RFC 8017 [55]: “An RSA private
key should be represented”. This implies that cryptography
implementations must deal with RSA private keys that do
not contain all parameters, requiring potentially computing
them on demand. Natural questions arise: (i) How do software
libraries handle this uncertainty? (ii) Does this uncertainty
mask SCA threats? Shifting focus from OpenSSL, the remain-
der of this section analyzes the open source mbedTLS library
in this regard.
Fuzzing RSA private key loading. Following the Trigger-
flow methodology, we developed unit tests for the mbedTLS
library, specifically for targeting RSA key loading code paths.
To this end, we analyzed the mbedTLS v2.18.1 bignum im-
plementation and set three POIs for Triggerflow: (i) GCD
computation, mbedtls_mpi_gcd; (ii) Modular multiplicative
inverse, mbedtls_mpi_inv_mod; (iii) Modular exponentia-
tion, mbedtls_mpi_exp_mod. We arrived at these POIs from
state-of-the-art SCA applied to cryptography libraries where
these operations are commonly exploited. The first two func-
tions are based on the binary GCD algorithm, previously
shown weak to SCA [4, 7, 10, 61, 76], while exponentiation
is a classical SCA target [17, 26, 35, 49, 62].

With these POIs, we fuzz the RSA mbedTLS private key
loading code path to identify possible vulnerabilities. The
fuzzing consists of testing the loading of an RSA private key
when some parameters are equal to zero (i.e. empty PKCS #1
parameter).

2028 29th USENIX Security Symposium USENIX Association

After configuring the potential leaking functions as Trigger-
flow POIs, we created an RSA private key fuzzing utility that
generates all possible combinations of PKCS #1-compliant
private keys. This ranges from a private key that includes all
PKCS #1 parameters to none. While the latter is clearly in-
valid as it carries no information, other missing combinations
could be interesting regarding SCA. As PKCS #1 defines
eight parameters, the number of private key combinations
compliant with this standard is 256.

Triggerflow provides a powerful framework for testing all
these combinations smoothly. Using Triggerflow for each of
these private keys, we tested the generic function of mbedTLS
for loading public keys: mbedtls_pk_parse_keyfile. The
advantage of using Triggerflow for this task is that we can
automate the whole process of testing each code corner of
this execution path, searching for SCA threats. Figure 1 (bot-
tom) shows a Triggerflow unit test of one of these parameter
combinations, with a private key missing d. Unit tests for the
other combinations are similar.
Results. For each combination, we obtained a report that in-
dicates if and where POIs were hit or not, also recording the
program return code. A quick analysis of the generated re-
ports indicates the 256 combinations group in four classes (i.e.
only four unique reports were generated for all 256 private
key parameter combinations). Table 1 shows the number of
keys for each group. The majority of private key combinations
yield an “Invalid” return code without hitting a POI before
returning.

The group “Public” contains those remaining valid private
keys for which {d, p,q} is not a subset of included parameters.
In this case, mbedTLS recognized the key as a public key
even if the CRT secret parameters are present. Nevertheless,
identified as “Public” by mbedTLS, we ignore them, since no
secret data processing takes place.

Table 1: Report groups for the 256 private keys.
Group Number of keys
Invalid 216
Public 8

POI-hit (CRT) 16
POI-hit (CRT & d) 16

The last two groups in Table 1 contain those private keys
(32 in total) that indeed hit at least one POI. Analyzing both
reports on these groups, we identified two potential leakage
points. One is related to processing of the CRT parameters,
and the other to computation of the private exponent d. We
now investigate if these hits represent an SCA threat. Ap-
pendix A details the complete list of parameter combinations
that hit a POI.
Leakage analysis: CRT. The last two report groups have at
least one hit at a Triggerflow POI in a CRT related compu-
tation. In both groups, the report regarding this code path is

identical, hence the following analysis applies to both.
The Triggerflow report reveals hitting the modular inverse

POI; the parent function is mbedtls_rsa_deduce_crt, com-
puting the CRT parameters in (3) as iq = q−1 mod p using
mbedtls_mpi_inv_mod. It is a variant of the binary extended
Euclidean algorithm (BEEA) with an execution flow highly
dependent on its inputs, therefore an SCA vulnerability. This
is similar to OpenSSL’s Section 3.3 vulnerability. Yet in con-
trast to OpenSSL, this code path in mbedTLS executes every
time this library loads a private key: the vulnerability exists
regardless of missing parameters in the private key.

Leakage analysis: private exponent. The last group in
Table 1 contains the CRT leakage previously described
in addition to one related to private exponent d process-
ing. The targeted POIs hit by all private key parame-
ter combinations in this group are mbedtls_mpi_gcd and
mbedtls_mpi_inv_mod. Both are called by the parent func-
tion mbedtls_rsa_deduce_private_exponent, that aims
at computing the private exponent if it is missing in the
private key using (2), involving a modular inversion. How-
ever, for computing lcm(p− 1,q− 1) using (4), the value
gcd(p−1,q−1) needs to be computed first. Therefore, the
report indicates a call first to mbedtls_mpi_gcd with inputs
p−1 and q−1. This call represents an SCA vulnerability as
the binary GCD algorithm is vulnerable in these instances
[4, 8, 10]. Note, this leakage is also present in OpenSSL (Sec-
tion 3.3), however the contexts differ. We observed OpenSSL
leakage when verifying d correctness, whereas mbedTLS
computes d because it is missing. This difference is crucial
regarding SCA, because OpenSSL verifies by checking if
de = 1 mod lcm(p− 1,q− 1) holds; yet mbedTLS indeed
computes d, executing a modular inversion (2). Therefore this
vulnerability is present in mbedTLS, and absent in OpenSSL.

After obtaining lcm(p−1,q−1), it computes d using (2)
through a call to mbedtls_mpi_inv_mod. [61, 76] exploit
OpenSSL’s BEEA using microarchitecture attacks, so at a
high level it represents a serious security threat. A deeper
analysis follows for this mbedTLS case.

Summarizing, the private exponent computation in
mbedTLS contains two vulnerable code paths: (i) GCD com-
putation of p− 1 and q− 1; and (ii) modular inverse com-
putation of e modulo lcm(p−1,q−1). Next, we investigate
which of these represents the most critical threat.

The inputs of the first code path (GCD computation) are
roughly the same size. This characteristic implies that, for
some SCA signals, the number of bits that can be recovered
is small and not sufficient to break RSA. [7, 61] practically
demonstrated this limitation using different SCA techniques:
the former power consumption, the latter microarchitecture
timings.

However, note the inputs of the second code path (modular
inversion) differ considerably in size. The public exponent e
is typically small, e.g. 65537. Following (4), lcm(p−1,q−1)
has roughly the same number of bits as (p− 1)(q− 1);

USENIX Association 29th USENIX Security Symposium 2029

L
at

en
cy

Time (samples)

right-shifts subtractions

Figure 3: Sequence of right-shifts and subtractions from a
FLUSH+RELOAD attack targeting mbedTLS modular inver-
sion.

more than 1024 because gcd(p−1,q−1) is small with high
probability [44]. This significant bit length difference be-
tween mbedtls_mpi_inv_mod inputs makes this algorithm
extremely vulnerable to SCA [8]. This difference implies
the attacker knows part of the algorithm execution flow be-
forehand, and it is exactly this part that is usually difficult to
obtain and considerably limits the number of bits that can be
recovered employing some SCA techniques as demonstrated
in [7, 61]. This characteristic means the attacker only needs
to distinguish the main two arithmetic operations present in
this algorithm (i.e. right-shift and subtraction) to fully recover
the input lcm(p−1,q−1) that yields d.

Regarding microarchitecture attacks, this distinction lends
itself to a FLUSH+RELOAD attack. As part of our validation,
we attacked this implementation using a FLUSH+RELOAD
attack paired with a performance degradation technique [11].
We probed two cache lines: one detecting right-shift execu-
tions, the other subtractions. Figure 3 shows the start of a
trace, demonstrating the sequence extraction of right-shifts
and subtraction is straightforward.

In addition, the key loading application threat model allows
capturing several traces corresponding to the processing of
the same secret data. Therefore, the attacker can correct errors
that may appear in captured traces (e.g. fix errors produced
by preemptions) by combining the information as they are
redundant.

Recap. After the analysis of both leaking code paths we de-
tected, we conclude the private exponent leakage is easier
to exploit than that of CRT due to the large bitlength differ-
ence between the modular inversion algorithm inputs in the
former [8, 10, 76]. On the other hand, the private exponent
leakage is only present when the private key does not include
d; whereas the CRT-related leakage always represents a threat
regardless of missing parameters [6]. The number of bits that
can be recovered exploiting these leaking code paths depends
on the side-channel signal employed. However, these code
paths potentially leak all the bits of the processed secrets, as
demonstrated in [6, 8, 10, 76].

Keys in the wild. As such, in the context of mbedTLS the
simplest example of a vulnerable RSA key is the default key
typically generated by libraries, including all parameters. We
verified this default behavior on e.g. mbedTLS, OpenSSL,
and BoringSSL. Hence such keys are ubiquitous in nature.
For example, Let’s Encrypt’s certbot tool for automated

certificate renewal only supports RSA keys. We conclude that
any application linking to mbedTLS for RSA functionality
including key parsing is potentially vulnerable, including (but
certainly not limited to) ACME-backed web servers relying
on mbedTLS for TLS functionality.

4 Two End-to-End Attacks

As highlighted in Section 3, the format used to encode a
private key can lead to the bypass of side-channel counter-
measures in cryptographic libraries: these are Certified Side
Channels. In this section we concretely instantiate the threat
in Section 3.1 with two SCA attacks against ECDSA signa-
ture generation over the popular NIST P-256 curve against
OpenSSL 1.1.1a: a remote timing attack and an EM attack.

Target application. For computing the ECDSA signatures
from the protocol stack application layer we chose RFC
3161 [79] Time Stamp Protocol. The protocol ensures the
means of establishing a time stamping service: a time stamp
request message from a client and the corresponding time
stamp response from the Trusted Timestamp Authority (TSA).
In short, the TSA acts as a trusted third party that binds the
Time Stamp Token (TST) to a valid client request message—
one way hash of some information—and digitally signs it
with the private key. Anyone with a valid TSA certificate can
thus verify the existence of the information with the particular
time stamp, ensuring timeliness and non-repudiation.

In principle, the client generates a time stamp request mes-
sage containing the version information, OID of the one way
hash algorithm, and a valid hash of the data. Optionally, the
client may also send TSA policy OID to be used for creating
the time stamp instead of TSA default policy, a random nonce
for verifying the response time of the server, and additionally
request the signing public key certificate in the TSA response
message. The server timestamp response contains a status
value and a TST with the OID for the content type and the
content itself composed of DER-encoded TST information
(TSTinfo). The TSTinfo field incorporates the version number
info, the TSA policy used to generate the time stamp response,
the message imprint (same as the hashed data in the client
request), a unique serial number for the TST, and the UTC
based TST generation time along with the accuracy in terms
of the time granularity. Depending on the client request, the
server response may additionally contain the signing certifi-
cate and the client provided nonce value. For further details
on TSP, the reader may refer to RFC 3161 [79].

Our attack exploits point multiplication in the ECDSA sig-
nature generation during the TSA response phase to recover
the long term private key of the server. As a protocol-level
target, we compiled and deployed unmodified uts-server13

v0.2.0 without debug symbols, an open source TSA server
linking against an unmodified debug build of OpenSSL 1.1.1a.

13https://github.com/kakwa/uts-server

2030 29th USENIX Security Symposium USENIX Association

We configured the server with a NIST P-256 X.509 digital cer-
tificate, using the private key containing explicit parameters
with a zero cofactor, i.e. the preconditions for our Section 3.1
vulnerability. We used the OpenSSL time stamp utility ts to
create time stamp requests with SHA256 as the hash function,
along with a request for the server’s public key certificate
for verification. We used the provided HTTP configuration
for uts-server, hence the TSP messages between the (victim)
server and our (attacker) client were transported via standard
HTTP.

Target device. We selected a Linux-based PINE A64-LTS
board with an Allwinner A64 Quad Core SoC based on
Cortex-A53 which supports a 64-bit instruction set with a
maximum clock frequency of 1.15 GHz. The board runs
Ubuntu 16.04.1 LTS without any modifications to the stock
image. We set the board’s frequency governor to “perfor-
mance”.

Threat model. As discussed (Section 3.1), when handling
such a key in OpenSSL 1.1.1a, the underlying implementa-
tion for the EC scalar multiplication is based on a wNAF
algorithm, which has been repeatedly targeted in SCA works
over the last decade, usually focusing on the recovery of the
LSBs of the secret scalar. Contributions from Google [46] par-
tially mitigated the attack vector for select named curves with
new EC_METHOD implementations, then fully even for generic
curves due to the results and contributions from [72]. With
the attack vector now open again, this section presents two
end-to-end attacks with different signal procurement meth-
ods: (i) a novel remote timing attack (Section 4.1), where it
is assumed the attacker can measure the overall wall clock
time it takes for the TSA server to respond to a request—note
this attacker is indistinguishable from a legitimate user of the
service; (ii) an EM attack (Section 4.2), similar in spirit to
[38, 72], which has the same aforementioned threat model
but additionally assumes physical proximity to non-invasively
measure EM emanations. The motivation for the two different
threat models is due to both practicality and the number of
required samples, which will become evident by the end of
this section.

4.1 ECDSA: Remote Timing Attack

In contrast to previous work on this code path and to widen po-
tential real-world application, we performed a remote timing
attack on the TSA server application via TCP. Instead of tak-
ing measurements on this code path server side like e.g. PRI-
ME+PROBE [20, 21] and FLUSH+RELOAD [11, 14, 30, 73],
we (as a non-priviliged, normal user of the service), make
network requests and measure the wall clock response time.

Experiment setup. We connected the PINE A64-LTS board
directly by Ethernet cable to a workstation equipped with an
Intel i5-4570 CPU and an onboard I217-LM (rev 04) Eth-
ernet controller. To measure the remote wall clock latency

and reduce noise, we created a custom HTTP client for time
stamp requests. Its algorithm is as follows: (i) establish a TCP
connection to the server; (ii) write the HTTP request and the
body, sans a single byte; (iii) start the timer; (iv) write the last
body byte—now the server can begin computing the digital
signature; (v) read the HTTP response headers—the server
might write at least part of them before computing the digital
signature; (vi) read one byte of HTTP response body—the
digital signature is received by the server directly from linked
OpenSSL in an octet string, so reading one byte guarantees
it has been generated; (vii) stop the timer; (viii) finish read-
ing the HTTP response; (ix) record the timing information
and digital signature in a database; (x) close the TCP con-
nection; (xi) repeat until the requested number of samples
has been gathered. We implemented the measurement soft-
ware in C to achieve maximum performance and control over
operations. For the client timer, we used the x86 rtdtsc in-
struction that is freely accessible from user space. In recent
Intel processors the constant_tsc feature is available—a
frequency-independent and easily accessible precision timer.

Performing a traditional timing analysis under the above
assumptions, we discovered a direct correlation between the
wall clock execution time of ECDSA signature generation
and the bitlength of the nonce used to compute the signature,
as shown in Figure 4. This happens because given a scalar
k and its recoded NAF representation k̂, the algorithm exe-
cution time is a function of both the NAF length of k̂ and
its Hamming weight. While the NAF length is a good ap-
proximation for the bitlength of k (in fact at most one digit
longer), its Hamming weight masks the NAF length linearly
so it is not obvious how to correlate these two factors with the
precise bitlength of k. Nevertheless, the empirical results (by
sampling) shown in Figure 4 clearly demonstrate the latter is
directly proportional to the overall algorithm execution time.

This result shares similarity to the one exploited in
CVE-2011-1945 [22] (that built the foundation for the recent
Minerva14 and TPM-FAIL [54] attacks), and in fact suggests
that CVE applied to not only binary curves using the Mont-
gomery ladder, but prime curves as well. Following their
attack methodology, we devise an attack in two phases: (i)
The collection phase exploits the timing dependency between
the execution time and the bitlength of the nonce used to
generate a signature, thus selecting (r,s,m) tuples associated
with shorter-than-average nonces; (ii) The recovery phase
then combines the partial knowledge inferred from the collec-
tion phase to instantiate an HNP instance and solve it through
a lattice technique (Section 2.4).

Collection phase. Using our custom TCP time stamp client,
across Ethernet we collect 500K traces for a single attack,
sorting by the measured latency, and filter the first t = 128
items: empirically this is closely related to the selection by
a fixed threshold suggested by Figure 4. We prefer the for-

14https://minerva.crocs.fi.muni.cz/

USENIX Association 29th USENIX Security Symposium 2031

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20.6 20.8 21.0 21.2 21.4 21.6 21.8

T
h

re
sh

o
ld

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

249
250
251
252
253
254
255
256

Figure 4: Direct correlation between wall-clock execution
time of ECDSA signature generation and the bitlength of the
nonce. Plots from left to right correspond to legend keys from
top to bottom. Measured on NIST P-256 in OpenSSL on a
Pine64-LTS, bypassing all SCA hardening countermeasures
via a private key parsing trigger.

mulation where we set the dimension t of the filtered set and
the total number of collected signatures, as these numbers are
more significant for comparison with other works or directly
used in the formalization of the subsequent lattice phase.
Lattice phase. As noted above, the collection phase in this
attack selects shorter-than-average nonces, i.e. looking at the
nonce ki as a string of bits with the same bitlength of the
generator order n,

0 < ki < 2(lg(n)−`i) < 2(lg(n)−`) < n/2` ≡ n/W < n

for some W = 2` bound, representing that at least ` con-
secutive MSBs are equal to 0. This is in contrast with the
Section 2.4 formalization, which instead implies knowledge
of nonce LSBs, so we need to slightly revise some def-
initions to frame the lattice problem using the same no-
tation. Therefore, we can define Wi = W = 2` and, simi-
larly to the formalization in Section 2.4, rearrange (1) as
ki =α(ri/si)−(−hi/si) mod n and then redefine ti = bri/sicn,
ûi = b−hi/sicn which leads once again to 0≤ bαti− ûicn <
n/Wi, from which the rest of the previous formalization fol-
lows unchanged.

Although it used a different lattice description, [22] also
dealt with a leak based on nonce MSBs, which led to an
interesting property that is valid also for the formalization
used in this particular lattice attack. Comparing the definitions
of ti, ûi, and ui above with the ones from Section 2.4, we note

that in this particular attack no analogue of the ai term features
in the equations composing the lattice problem, from which
follows that even if some ki does not strictly satisfy the bound
ki < n/W there is still a chance that the attack will succeed,
leading to a better resilience to errors (i.e., entries in the
lattice that do not strictly satisfy the bound above) in this
lattice formulation. From the attacker perspective, higher W
is desirable but requires more leakage from the victim.

Since in this formulation the attacker does not use a per-
equation Wi as the distributions are partially overlapping, the
question remains how to set W . Underestimating W is techni-
cally accurate for approximating zero-MSBs for most of the
filtered traces, but forces higher lattice dimensions and slower
computation for each job. Using a larger set of training sam-
ples, analyzing the ground truth w.r.t. the actual nonce of each
sample, we empirically determined that the distribution of
nonce bitlengths on the average set filtered by our collection
phase is a Gaussian distribution with mean lg(ki) = 247.80
and s.d. 3.81, which suggests W = 28 (8 = 256− 248) is a
better approximation of the bound on most nonces. Given the
s.d. magnitude, by trial-and-error we set W = 27 as a good
trade-off for lattice attack execution time vs. success rate.

Combining the better resilience to errors of this particu-
lar lattice formulation and the higher amount of information
carried by each trace included in the lattice instance by push-
ing W , we fixed the lattice attack parameters to d = 60 and
j = 55K and limit the maximum number of attempted lattice
reductions per job to 100 (in practice on our cluster, less than
a single minute), as we observed the overwhelming majority
of instances returned success within this time frame or not at
all.

Attack results. With these parameters, and repeating the at-
tack 100 times, we observed a 91% success rate in our re-
mote timing attack over Ethernet. The median number of jobs
needed over all attack instances was 1377 (i.e. j = 1377 was
sufficient for key recovery in the majority of cases). Those
reductions that led to successful key recovery (i.e. 91 in num-
ber) had lg(ki) = 246.85 and s.d. 3.13, while the j = 55K
reductions per each of the 9 failed overall attack instances
had lg(ki) = 247.96 and s.d. 3.87. This difference suggests:
(i) the better resilience to errors in this lattice formulation is
empirically valid, as given the stated s.d. not all ki satisfied the
bound W ; (ii) in our environment, even the failed instances
would likely succeed by tweaking lattice parameters (i.e. de-
creasing W and increasing d) and providing more parallel
computation power (i.e. increasing j).

In case of success, the attacker obtains the long-term secret
key. On failure she can repeat the collection phase (accumu-
lating more traces and improving the filtering output and the
probability of success of another lattice phase) or iteratively
tune the lattice parameters (decreasing W and increasing d)
to adapt to the features of the specific output of the collection
phase, thus improving the lattice attack’s success probability.

2032 29th USENIX Security Symposium USENIX Association

Figure 5: Experiment setup capturing EM traces using Pico-
scope USB oscilloscope with the Langer EM probe positioned
on the Pine64-LTS SoC: a TSP server connected via Ethernet
serving requests over HTTP.

4.2 ECDSA: EM Attack
In a much stronger (yet still SCA-classical) attack model as-
suming physical proximity, we now perform an EM attack on
OpenSSL ECDSA. As far as we are aware, we are the first to
exploit this code path in the context of OpenSSL and NIST P-
256: [38] target the 256-bit Bitcoin curve, and [72] the 256-bit
SM2 curve. The reason for this is our Section 3.1 vulnerability
allows us to bypass the dedicated EC_METHOD instance on this
architecture, EC_GFp_nistz256_method which is constant
time and optimized for AVX and ARMv8 architectures. The
wNAF Double and Add operations have a different set of
underlying finite field operations—square, multiply, add, sub,
inversion—resulting in distinguishable EM signatures.

Experiment setup. To capture the EM traces, we positioned
the Langer LF-U 2.5 near field probe head on the SoC where
it resulted in the highest signal quality. For digitizing the EM
emanations, we used Picoscope 6404C USB digital oscillo-
scope with a bandwidth of 500 MHz and maximum sampling
rate of 5 GSps. However, we used a lower sampling rate of
125 MSps as the best compromise between the trace quality
and processing overhead. To acquire the traces while ensuring
that the entire ECDSA trace was captured, we synchronized
the oscilloscope capture with the time stamp request message:
initiate the oscilloscope to start acquiring traces, query a time
stamp request over HTTP to the server and wait for the server
response, and finally stop the trace acquisition. We stored the
EM traces along with the DER-encoded server response mes-
sages. We parsed the messages to retrieve the hash from the
client request and the DER-encoded ECDSA signatures, used
to generate metadata for the key recovery phase. Figure 5
shows the setup we used for our attack.

Signal analysis. After capturing the traces, we moved to of-
fline post processing of the EM traces for recovering the
partial nonce information. This essentially means identifying

the position of the last Add operation. The problem is twofold:
finding the end of the point multiplication (end trigger), then
identifying the last Add operation therein. We divided the
complete signal processing phase mainly into four steps: (i)
Remove traces with errors due to acquisition process; (ii)
Find the end of the ECDSA point multiplication; (iii) Remove
traces encountering interrupts; (iv) Identifying the position
of the last Add operation. We started by selecting only those
traces which had peak magnitude to the root mean square ratio
within an emphatically selected confidence interval, evidently
removing traces where the point multiplication operation was
not captured or trace was too noisy to start with.

In the next step, we used a specific pattern at the end of
ECDSA point multiplication as our soft end trigger. To isolate
this trigger pattern from the rest of the signal, we first applied
a low pass FIR filter followed by a phase demodulation using
the digital Hilbert transform. We further enhanced this pattern
while suppressing the rest of the operations by applying root
mean square envelope with a window size roughly half its
sample size. We created a template by extracting this pattern
from 20 random traces and taking their average. We used the
Euclidean distance between the trace and template to find
the end of point multiplication. We dropped all traces where
the Euclidean distance was above an experimental threshold
value, i.e. no soft trigger found. The traces also encountered
random interrupts due to OS scheduling clearly identifiable as
high amplitude peaks. Any traces with an interrupt at the end
of point multiplication were also discarded to avoid corrupting
the detection of the Add operation.

To recover the position of the last Add operation, we ap-
plied a different set of filters on the raw trace, keeping the end
of point multiplication as our starting reference. Since the fre-
quency analysis revealed most of the Add operations energy
is between 40 MHz and 50 MHz, we applied a band pass FIR
filter around this band. Performing a digital Hilbert transform,
additional signal smoothing and peak envelope detection, the
Add operations were clearly identifiable (Figure 6).

To automatically extract the Add operation, we first used
peak extraction. However it was not as reliable since the
signals occasionally encountered noisy peaks or in some in-
stances the Add peaks were distorted. We again resorted to
the template matching method used in the previous step, i.e.
create an Add template and use Euclidean distance for pattern
matching. For each peak identified, we also applied the tem-
plate matching and measured the resulting Euclidean distance
against a threshold value. Anything greater than the threshold
was considered a false positive peak.

These steps ensured that the error rate stays low, conse-
quently increasing the success rate of the key recovery lattice
attack. We estimated the number of Double operations us-
ing the total sample length from the middle of the last Add
operation to the end of trace as illustrated in Figure 6. To ef-
fectively reduce the overlap between the sample length metric
of different Double and Add sequences, we applied K-means

USENIX Association 29th USENIX Security Symposium 2033

end trigger last A

Figure 6: Four different EM traces showing the last Add (A)
operations relative to the soft end trigger. The distance in
terms of samples between the last Add and trigger gives the
number of Double (D) operations. Top to Bottom: Trace ends
with an A, AD, ADD, ADDD.

clustering to keep sequences which were close to the cluster
mean.
Attack results. We acquired a total of 500 signatures, and
after performing the signal processing steps we were left with
422 traces. Additionally, after filtering out signatures catego-
rized as “A” and hence not useful lattice-wise, we were left
with t = 172 signatures suitable for building lattice problem
instances. We chose d = 120 as the number of signatures
to populate the lattice basis. We then constructed j = 48 in-
stances of the lattice attack, randomly selecting d-size subsets
from the t signatures for each instance. We then ran these
instances in parallel on a 2.10 GHz dual CPU Intel Xeon
Silver 4116 (24 cores, 48 threads across 2 CPUs). The first
instance to succeed in recovering the private key did so in
just over three minutes. Checking the ground truth afterwards,
e = 4 out of the t signatures were categorized incorrectly, for
a suitably small error rate of about 2.3%.

5 Conclusion

In this work, we evaluated how different choices of private key
formats and various optional parameters supported by them
can influence SCA security. We employed the automated tool
Triggerflow to analyze vulnerable code paths in well known
cryptographic libraries for various combinations of key for-
mats and optional parameters. The results uncovered several
Certified Side Channels, circumventing SCA hardened code
paths in OpenSSL (ECC with explicit parameters, DSA with
MSBLOB and PVK formats, RSA during key validation) and
mbedTLS (RSA with missing parameters). To demonstrate
the severity of these vulnerabilities, we performed microarchi-
tecture leakage analysis on RSA and DSA and also presented

end-to-end key recovery attacks on OpenSSL ECDSA using
traditional timing and EM side channels. We publish our data
set for the remote timing attack to support Open Science [63].

In the OpenSSL case, Pereida García et al. [62] conclude
the fundamental design issue around BN_FLG_CONSTTIME is
due to its insecure default nature, hypothesizing inverted logic
with secure-by-default behavior provides superior assurances.
While that would indeed have prevented CVE-2016-2178,
our work shows that runtime secure-by-default is still not
enough: simply the presence of known SCA-vulnerable code
alongside SCA-hardened code poses a security threat. For
example, in this light, in our Section 3.1 vulnerability the
zero cofactor masquerades as a virtual BN_FLG_CONSTTIME,
since the exploited code path is oblivious to the flag’s value
by design.

Mitigations. As part of the responsible disclosure process,
we notified OpenSSL and mbedTLS of our findings. At the
same time, we made several FOSS contributions to help miti-
gate these issues in OpenSSL, who assigned CVE-2019-1547
based on our work. For the Section 3.1 vulnerability, we im-
plemented a fix that manually computes the cofactor from the
field cardinality and generator order using the Hasse Bound.
This works for all standards-compliant curves—named or
with explicit parameters. To mitigate the vulnerabilities in
Section 3.2 and Section 3.3, we submitted simple patches that
set the BN_FLG_CONSTTIME correctly, steering the computa-
tions to existing SCA-hardened code. Moreover, we replaced
the variable-time GCD function in OpenSSL by a constant-
time implementation15 based on the work by Bernstein and
Yang [16]. To further reduce the SCA attack surface, we im-
plemented changes16 in the way OpenSSL creates EC key
abstractions when the associated curve is defined by explicit
parameters. The explicit parameters are matched against the
internal table of known curves, switching to an internal named
curve representation for matches, ultimately enabling the use
of specialized implementations where available. Finally, we
integrated the new Triggerflow unit tests (Figure 1). Applying
all these fixes across non-EOL OpenSSL branches as well
as the development branch, no Triggerflow POIs are subse-
quently triggered, indicated the patches are effective.

Astute readers may notice the above fixes do not remove
the vulnerable functions in question. In general, indeed this is
one option, but such a strategy requires analysis on a case-by-
case basis. These are real-world products that come with real-
world performance constraints. For example, an SCA-secure
modular exponentiation function that protects both the length
and values of the exponent can likely meet the performance
requirements for e.g. DSA signing, but not RSA verification
with a short, low-weight, and public exponent. This is the
main reason why libraries often feature multiple versions of
the same functionality with different security characteristics.

15https://github.com/openssl/openssl/pull/10122
16https://github.com/openssl/openssl/pull/9808

2034 29th USENIX Security Symposium USENIX Association

Future work. In Section 4.1, discussing the lattice formu-
lation for our attack, we highlight an increased resilience to
lattic errors compared to similar previous works. We note
here that an analysis of error resilience of different lattice
constructions and of strategies to increase the overall success
rate of lattice attacks in the presence of errors in collected
traces would constitute a valuable future contribution to this
area of research.

Our vulnerabilities in Section 3 cover only a very small
subset of possible inputs, combinations, architectures, and
settings. Another interesting research question is how to ex-
tend test coverage in a reasonable way, even considering other
libraries.

Acknowledgments. We thank Tampere Center for Scientific
Computing (TCSC) for generously granting us access to com-
puting cluster resources. The second author was supported
in part by the Tuula and Yrjö Neuvo Fund through the In-
dustrial Research Fund at Tampere University of Technology.
The third author was supported in part by a Nokia Scholar-
ship from the Nokia Foundation. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 804476).

References

[1] Security requirements for cryptographic modules. FIPS
PUB 140-2, National Institute of Standards and Technology,
May 2001. URL https://doi.org/10.6028/NIST.FIPS.
140-2.

[2] SEC 1: Elliptic Curve Cryptography. SEC 1, Standards for
Efficient Cryptography Group, May 2009. URL http://www.
secg.org/sec1-v2.pdf.

[3] Rodrigo Abarzúa, Claudio Valencia Cordero, and Julio López
Hernandez. Survey for performance & security problems of
passive side-channel attacks countermeasures in ECC. IACR
Cryptology ePrint Archive, 2019(10), 2019. URL https://
eprint.iacr.org/2019/010.

[4] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New
branch prediction vulnerabilities in OpenSSL and necessary
software countermeasures. In IMACC, volume 4887 of LNCS,
pages 185–203. Springer, 2007. URL https://doi.org/10.
1007/978-3-540-77272-9_12.

[5] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and
Pankaj Rohatgi. The EM side-channel(s). In CHES, volume
2523 of LNCS, pages 29–45. Springer, 2002. URL https:
//doi.org/10.1007/3-540-36400-5_4.

[6] Alejandro Cabrera Aldaya and Billy Bob Brumley. When one
vulnerable primitive turns viral: Novel single-trace attacks on
ECDSA and RSA. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(2):196–221, 2020. URL https://doi.org/10.
13154/tches.v2020.i2.196-221.

[7] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento,

and Santiago Sánchez-Solano. SPA vulnerabilities of the bi-
nary extended Euclidean algorithm. J. Cryptographic Engi-
neering, 7(4):273–285, 2017. URL https://doi.org/10.
1007/s13389-016-0135-4.

[8] Alejandro Cabrera Aldaya, Raudel Cuiman Márquez, Alejan-
dro J. Cabrera Sarmiento, and Santiago Sánchez-Solano. Side-
channel analysis of the modular inversion step in the RSA key
generation algorithm. I. J. Circuit Theory and Applications, 45
(2):199–213, 2017. URL https://doi.org/10.1002/cta.
2283.

[9] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Has-
san, Cesar Pereida García, and Nicola Tuveri. Port contention
for fun and profit. In IEEE S&P, pages 870–887. IEEE, 2019.
URL https://doi.org/10.1109/SP.2019.00066.

[10] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel
Alvarez Tapia, and Billy Bob Brumley. Cache-timing attacks
on RSA key generation. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(4):213–242, 2019. URL https://doi.org/10.
13154/tches.v2019.i4.213-242.

[11] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop
van de Pol, and Yuval Yarom. Amplifying side channels
through performance degradation. In ACSAC, pages 422–
435. ACM, 2016. URL http://doi.acm.org/10.1145/
2991079.2991084.

[12] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René
Reinhard, and Justine Wild. Horizontal collision correlation
attack on elliptic curves – extended version. Cryptography
and Communications, 7(1):91–119, 2015. URL https://doi.
org/10.1007/s12095-014-0111-8.

[13] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and
Mehdi Tibouchi. Side-channel analysis of Weierstrass and
Koblitz curve ECDSA on Android smartphones. In CT-RSA,
volume 9610 of LNCS, pages 236–252. Springer, 2016. URL
https://doi.org/10.1007/978-3-319-29485-8_14.

[14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “Ooh Aah... Just a Little Bit”: A small amount of side
channel can go a long way. In CHES, volume 8731 of LNCS,
pages 75–92. Springer, 2014. URL https://doi.org/10.
1007/978-3-662-44709-3_5.

[15] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. URL
http://cr.yp.to/papers.html#cachetiming.

[16] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd
computation and modular inversion. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(3):340–398, 2019. URL https:
//doi.org/10.13154/tches.v2019.i3.340-398.

[17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange, Chris-
tine van Vredendaal, and Yuval Yarom. Sliding right into
disaster: Left-to-right sliding windows leak. In CHES, vol-
ume 10529 of LNCS, pages 555–576. Springer, 2017. URL
https://doi.org/10.1007/978-3-319-66787-4_27.

[18] Dan Boneh and Ramarathnam Venkatesan. Hardness of com-
puting the most significant bits of secret keys in Diffie-Hellman
and related schemes. In CRYPTO, volume 1109 of LNCS, pages

USENIX Association 29th USENIX Security Symposium 2035

129–142. Springer, 1996. URL https://doi.org/10.1007/
3-540-68697-5_11.

[19] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
power analysis with a leakage model. In CHES, volume 3156
of LNCS, pages 16–29. Springer, 2004. URL https://doi.
org/10.1007/978-3-540-28632-5_2.

[20] Billy Bob Brumley. Faster software for fast endomor-
phisms. In COSADE, volume 9064 of LNCS, pages 127–
140. Springer, 2015. URL https://doi.org/10.1007/
978-3-319-21476-4_9.

[21] Billy Bob Brumley and Risto M. Hakala. Cache-timing tem-
plate attacks. In ASIACRYPT, volume 5912 of LNCS, pages
667–684. Springer, 2009. URL https://doi.org/10.1007/
978-3-642-10366-7_39.

[22] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks
are still practical. In ESORICS, volume 6879 of LNCS, pages
355–371. Springer, 2011. URL https://doi.org/10.1007/
978-3-642-23822-2_20.

[23] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. In USENIX Sec. USENIX As-
sociation, 2003. URL https://www.usenix.org/
conference/12th-usenix-security-symposium/
remote-timing-attacks-are-practical.

[24] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,
Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,
Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.
Fallout: Leaking data on meltdown-resistant CPUs. In ACM
CCS, pages 769–784. ACM, 2019. URL https://doi.org/
10.1145/3319535.3363219.

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template at-
tacks. In CHES, volume 2523 of LNCS, pages 13–28. Springer,
2002. URL https://doi.org/10.1007/3-540-36400-5_
3.

[26] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène
Roussellet, and Vincent Verneuil. Horizontal correlation analy-
sis on exponentiation. In ICICS, volume 6476 of LNCS, pages
46–61. Springer, 2010. URL https://doi.org/10.1007/
978-3-642-17650-0_5.

[27] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cé-
dric Murdica, and David Naccache. A synthesis of side-
channel attacks on elliptic curve cryptography in smart-cards.
J. Cryptographic Engineering, 3(4):241–265, 2013. URL
https://doi.org/10.1007/s13389-013-0062-6.

[28] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan
Reineke. CacheAudit: A tool for the static analysis of cache
side channels. ACM Trans. Inf. Syst. Secur., 18(1):4:1–4:32,
2015. URL https://doi.org/10.1145/2756550.

[29] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm,
Lejla Batina, Jean-Luc Danger, and Sylvain Guilley. Dis-
mantling real-world ECC with horizontal and vertical tem-
plate attacks. In COSADE, volume 9689 of LNCS, pages
88–108. Springer, 2016. URL https://doi.org/10.1007/
978-3-319-43283-0_6.

[30] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking
OpenSSL implementation of ECDSA with a few signatures.
In ACM CCS, pages 1505–1515. ACM, 2016. URL https:
//doi.org/10.1145/2976749.2978400.

[31] Jeffrey Friedman. Tempest: A signal problem. NSA
Cryptologic Spectrum, 2(3):26–30, 1972. URL https://
www.nsa.gov/Portals/70/documents/news-features/
declassified-documents/cryptologic-spectrum/
tempest.pdf.

[32] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice
enumeration using extreme pruning. In EUROCRYPT, volume
6110 of LNCS, pages 257–278. Springer, 2010. URL https:
//doi.org/10.1007/978-3-642-13190-5_13.

[33] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermea-
sures on contemporary hardware. J. Cryptographic Engi-
neering, 8(1):1–27, 2018. URL https://doi.org/10.1007/
s13389-016-0141-6.

[34] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extrac-
tion via low-bandwidth acoustic cryptanalysis. In CRYPTO,
volume 8616 of LNCS, pages 444–461. Springer, 2014. URL
https://doi.org/10.1007/978-3-662-44371-2_25.

[35] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran
Tromer. Stealing keys from PCs using a radio: Cheap elec-
tromagnetic attacks on windowed exponentiation. In CHES,
volume 9293 of LNCS, pages 207–228. Springer, 2015. URL
https://doi.org/10.1007/978-3-662-48324-4_11.

[36] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your
hands off my laptop: physical side-channel key-extraction at-
tacks on PCs - extended version. J. Cryptographic Engineer-
ing, 5(2):95–112, 2015. URL https://doi.org/10.1007/
s13389-015-0100-7.

[37] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran
Tromer. ECDH key-extraction via low-bandwidth electro-
magnetic attacks on PCs. In CT-RSA, volume 9610 of LNCS,
pages 219–235. Springer, 2016. URL https://doi.org/10.
1007/978-3-319-29485-8_13.

[38] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer,
and Yuval Yarom. ECDSA key extraction from mobile de-
vices via nonintrusive physical side channels. In ACM CCS,
pages 1626–1638. ACM, 2016. URL http://doi.acm.org/
10.1145/2976749.2978353.

[39] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-
key cryptosystems from lattice reduction problems. In
CRYPTO, volume 1294 of LNCS, pages 112–131. Springer,
1997. URL https://doi.org/10.1007/BFb0052231.

[40] Iaroslav Gridin, Cesar Pereida García, Nicola Tuveri, and
Billy Bob Brumley. Triggerflow: Regression testing by ad-
vanced execution path inspection. In DIMVA, volume 11543
of LNCS, pages 330–350. Springer, 2019. URL https://doi.
org/10.1007/978-3-030-22038-9_16.

[41] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on in-
clusive last-level caches. In USENIX Sec., pages

2036 29th USENIX Security Symposium USENIX Association

897–912. USENIX Association, 2015. URL https:
//www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/gruss.

[42] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Ste-
fan Mangard. Flush+flush: A fast and stealthy cache
attack. In DIMVA, volume 9721 of LNCS, pages 279–
299. Springer, 2016. URL https://doi.org/10.1007/
978-3-319-40667-1_14.

[43] Shay Gueron and Vlad Krasnov. Fast prime field elliptic-
curve cryptography with 256-bit primes. J. Cryptographic
Engineering, 5(2):141–151, 2015. URL https://doi.org/
10.1007/s13389-014-0090-x.

[44] M. Jason Hinek. Cryptanalysis of RSA and its variants.
Chapman & Hall/CRC Cryptography and Network Security.
CRC Press, 2010. ISBN 978-1-4200-7518-2. URL https:
//doi.org/10.1201/9781420075199.

[45] Simon Josefsson and Sean Leonard. Textual encodings of
PKIX, PKCS, and CMS structures. RFC 7468, RFC Editor,
April 2015. URL https://datatracker.ietf.org/doc/
rfc7468/.

[46] Emilia Käsper. Fast elliptic curve cryptography in OpenSSL.
In Financial Cryptography Workshops, volume 7126 of LNCS,
pages 27–39. Springer, 2011. URL https://doi.org/10.
1007/978-3-642-29889-9_4.

[47] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. Attacking
RSA-based sessions in SSL/TLS. In CHES, volume 2779 of
LNCS, pages 426–440. Springer, 2003. URL https://doi.
org/10.1007/978-3-540-45238-6_33.

[48] Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In CRYPTO, volume
1109 of LNCS, pages 104–113. Springer, 1996. URL https:
//doi.org/10.1007/3-540-68697-5_9.

[49] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In CRYPTO, volume 1666 of LNCS, pages
388–397. Springer, 1999. URL https://doi.org/10.1007/
3-540-48405-1_25.

[50] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall.
SoC it to EM: ElectroMagnetic side-channel attacks on a com-
plex System-on-Chip. In CHES, volume 9293 of LNCS, pages
620–640. Springer, 2015. URL https://doi.org/10.1007/
978-3-662-48324-4_31.

[51] Accredited Standards Committee X9, editor. ANSI X9.62-
2005: Public Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA). ANSI American National Standards Institute, 2005.

[52] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan.
Examining smart-card security under the threat of power anal-
ysis attacks. IEEE Trans. Computers, 51(5):541–552, 2002.
URL https://doi.org/10.1109/TC.2002.1004593.

[53] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel, and Erik Tews. Revis-
iting SSL/TLS implementations: New Bleichenbacher
side channels and attacks. In USENIX Sec., pages
733–748. USENIX Association, 2014. URL https:

//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/meyer.

[54] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Na-
dia Heninger. TPM-FAIL: TPM meets timing and
lattice attacks. In USENIX Sec. USENIX Associa-
tion, 2020. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi.

[55] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas
Rusch. PKCS #1: RSA cryptography specifications version
2.2. RFC 8017, RFC Editor, November 2016. URL https:
//datatracker.ietf.org/doc/rfc8017/.

[56] Samuel Neves and Mehdi Tibouchi. Degenerate curve attacks:
extending invalid curve attacks to Edwards curves and other
models. IET Information Security, 12(3):217–225, 2018. URL
https://doi.org/10.1049/iet-ifs.2017.0075.

[57] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the Digital Signature Algorithm with partially known nonces. J.
Cryptology, 15(3):151–176, 2002. URL https://doi.org/
10.1007/s00145-002-0021-3.

[58] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Des. Codes Cryptogr., 30(2):201–217, 2003.
URL https://doi.org/10.1023/A:1025436905711.

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: The case of AES. In CT-RSA, volume
3860 of LNCS, pages 1–20. Springer, 2006. URL https:
//doi.org/10.1007/11605805_1.

[60] Colin Percival. Cache missing for fun and profit. In BSD-
Can, 2005. URL http://www.daemonology.net/papers/
cachemissing.pdf.

[61] Cesar Pereida García and Billy Bob Brumley. Constant-
time callees with variable-time callers. In USENIX
Sec., pages 83–98. USENIX Association, 2017. ISBN
978-1-931971-40-9. URL https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/
presentation/garcia.

[62] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom.
“Make sure DSA signing exponentiations really are constant-
time”. In ACM CCS, pages 1639–1650. ACM, 2016. URL
http://doi.acm.org/10.1145/2976749.2978420.

[63] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav
Gridin, Alejandro Cabrera Aldaya, and Billy Bob Brumley.
CVE-2019-1547: research data and tooling. Zenodo, April
2020. URL https://doi.org/10.5281/zenodo.3736311.

[64] Vladimir Popov, Serguei Leontiev, and Igor Kurepkin. Addi-
tional cryptographic algorithms for use with GOST 28147-89,
GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-
94 algorithms. RFC 4357, RFC Editor, January 2006. URL
https://datatracker.ietf.org/doc/rfc4357/.

[65] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. Power
analysis attacks and countermeasures. IEEE Design & Test of
Computers, 24(6):535–543, 2007. URL https://doi.org/
10.1109/MDT.2007.200.

USENIX Association 29th USENIX Security Symposium 2037

[66] Jean-Jacques Quisquater and David Samyde. Electromag-
netic analysis (EMA): measures and counter-measures for
smart cards. In E-smart, volume 2140 of LNCS, pages 200–
210. Springer, 2001. URL https://doi.org/10.1007/
3-540-45418-7_17.

[67] Michael O. Rabin. Probabilistic algorithm for testing primal-
ity. J. Number Theory, 12(1):128–138, 1980. ISSN 0022-
314X. URL https://doi.org/10.1016/0022-314x(80)
90084-0.

[68] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and
Ruggero Susella. Breaking Ed25519 in WolfSSL. In CT-RSA,
volume 10808 of LNCS, pages 1–20. Springer, 2018. URL
https://doi.org/10.1007/978-3-319-76953-0_1.

[69] ITU-T Telecommunication standardization sector of ITU, ed-
itor. ITU-T X.690 Information technology – ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER) and Distinguished Encoding Rules
(DER). ITU International Telecommunication Union, Au-
gust 2015. URL http://handle.itu.int/11.1002/1000/
12483.

[70] Akira Takahashi and Mehdi Tibouchi. Degenerate fault attacks
on elliptic curve parameters in OpenSSL. In EuroS&P, pages
371–386. IEEE, 2019. URL https://doi.org/10.1109/
EuroSP.2019.00035.

[71] Michael Tunstall. Smart card security. In Smart Cards, To-
kens, Security and Applications, pages 217–251. Springer,
second edition, 2017. URL https://doi.org/10.1007/
978-3-319-50500-8_9.

[72] Nicola Tuveri, Sohaib ul Hassan, Cesar Pereida García, and
Billy Bob Brumley. Side-channel analysis of SM2: A late-
stage featurization case study. In ACSAC, pages 147–160.
ACM, 2018. URL https://doi.org/10.1145/3274694.
3274725.

[73] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a
little bit more. In CT-RSA, volume 9048 of LNCS, pages
3–21. Springer, 2015. URL https://doi.org/10.1007/
978-3-319-16715-2_1.

[74] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund,
Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. RIDL: rogue in-flight data load.
In IEEE S&P, pages 88–105. IEEE, 2019. URL https:
//doi.org/10.1109/SP.2019.00087.

[75] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. CacheD: Identifying cache-based timing
channels in production software. In USENIX Sec., pages
235–252. USENIX Association, 2017. URL https:
//www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/wang-shuai.

[76] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single
trace attack against RSA key generation in Intel SGX SSL.
In AsiaCCS, pages 575–586. ACM, 2018. URL http://doi.
acm.org/10.1145/3196494.3196524.

[77] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller,
Stefan Mangard, and Georg Sigl. DATA - differential ad-

dress trace analysis: Finding address-based side-channels in
binaries. In USENIX Sec., pages 603–620. USENIX Associ-
ation, 2018. URL https://www.usenix.org/conference/
usenixsecurity18/presentation/weiser.

[78] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Sec., pages 719–732. USENIX Asso-
ciation, 2014. ISBN 978-1-931971-15-7. URL https:
//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom.

[79] Robert Zuccherato, Patrick Cain, Carlisle Adams, and Denis
Pinkas. Internet X.509 public key infrastructure time-stamp
protocol (TSP). RFC 3161, RFC Editor, August 2001. URL
https://datatracker.ietf.org/doc/rfc3161/.

A mbedTLS vulnerable RSA keys

Table 2: RSA keys that follow leaking mbedTLS code paths.
Missing parameters are marked with •. Note, the first row
belongs to a key with all included parameters indicating that
it leaks through CRT computation.

Group N e p q d dp dq iq

CRT

• • •
• •
• •
•

• •
•

•
•
• • • •
• • •
• • •
• •
• • •
• •
• •

CRT & d

•
• • • •
• • •
• • •
• •
• • •
• •
• •

• •
• • • • •
• • • •
• • • •
• • •
• • • •
• • •
• • •

2038 29th USENIX Security Symposium USENIX Association

266

	pereida_titlepages
	pereida_dissertation_corrected
	Preface
	Abstract
	Abbreviations
	Original publications
	Author's contribution
	Introduction
	Main Contributions
	Scope
	Outline

	Background
	The Microarchitecture
	Pipelining
	The Cache Hierarchy

	Cache-Timing Attacks and Techniques
	A Brief History of SCA against OpenSSL

	Results
	Make Sure DSA Signatures are closer to Constant-Time
	A Cache-Timing Attack on Constant-Time NIST P-256
	Single-Trace Cache-Timing Attack on RSA Key Generation
	A Game of Whack-A-Mole
	Towards an SCA-secure OpenSSL
	Port Contention Side-Channel Attack
	Side-Channel Attacks Enabled by Cryptographic Key Formats
	Summary of Mitigations on OpenSSL

	Conclusions
	References
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI
	Publication VII

	Blank Page
	Blank Page

