4,275 research outputs found

    An integrated information retrieval and document management system

    Get PDF
    This paper describes the requirements and prototype development for an intelligent document management and information retrieval system that will be capable of handling millions of pages of text or other data. Technologies for scanning, Optical Character Recognition (OCR), magneto-optical storage, and multiplatform retrieval using a Standard Query Language (SQL) will be discussed. The semantic ambiguity inherent in the English language is somewhat compensated-for through the use of coefficients or weighting factors for partial synonyms. Such coefficients are used both for defining structured query trees for routine queries and for establishing long-term interest profiles that can be used on a regular basis to alert individual users to the presence of relevant documents that may have just arrived from an external source, such as a news wire service. Although this attempt at evidential reasoning is limited in comparison with the latest developments in AI Expert Systems technology, it has the advantage of being commercially available

    OCRonym: Entity Extraction and Retrieval for Scanned Books

    Get PDF
    In the past five years, massive book-scanning projects have produced an explosion in the number of sources for the humanities, available on-line to the broadest possible audiences. Transcribing page images by optical character recognition makes many searching and browsing tasks practical for scholars. But even low OCR error rates compound into high probability of error in a given sentence, and the error rate is even higher for names. We propose to build a prototype system for information extraction and retrieval of noisy OCR. In particular, we will optimize the extraction and retrieval of names, which are highly informative features for detecting topics and events in documents. We will build statistical models of characters and words from scanned books to improve lexical coverage, and we will improve name categorization and disambiguation by linking document contexts to external sources such as Wikipedia. Our testbed comes from over one million scanned books from the Internet Archive

    DARIAH and the Benelux

    Get PDF

    Examining and improving the effectiveness of relevance feedback for retrieval of scanned text documents

    Get PDF
    Important legacy paper documents are digitized and collected in online accessible archives. This enables the preservation, sharing, and significantly the searching of these documents. The text contents of these document images can be transcribed automatically using OCR systems and then stored in an information retrieval system. However, OCR systems make errors in character recognition which have previously been shown to impact on document retrieval behaviour. In particular relevance feedback query-expansion methods, which are often effective for improving electronic text retrieval, are observed to be less reliable for retrieval of scanned document images. Our experimental examination of the effects of character recognition errors on an ad hoc OCR retrieval task demonstrates that, while baseline information retrieval can remain relatively unaffected by transcription errors, relevance feedback via query expansion becomes highly unstable. This paper examines the reason for this behaviour, and introduces novel modifications to standard relevance feedback methods. These methods are shown experimentally to improve the effectiveness of relevance feedback for errorful OCR transcriptions. The new methods combine similar recognised character strings based on term collection frequency and a string edit-distance measure. The techniques are domain independent and make no use of external resources such as dictionaries or training data

    Assessing the impact of OCR quality on downstream NLP tasks

    Get PDF
    A growing volume of heritage data is being digitized and made available as text via optical character recognition (OCR). Scholars and libraries are increasingly using OCR-generated text for retrieval and analysis. However, the process of creating text through OCR introduces varying degrees of error to the text. The impact of these errors on natural language processing (NLP) tasks has only been partially studied. We perform a series of extrinsic assessment tasks — sentence segmentation, named entity recognition, dependency parsing, information retrieval, topic modelling and neural language model fine-tuning — using popular, out-of-the-box tools in order to quantify the impact of OCR quality on these tasks. We find a consistent impact resulting from OCR errors on our downstream tasks with some tasks more irredeemably harmed by OCR errors. Based on these results, we offer some preliminary guidelines for working with text produced through OCR
    corecore