28,535 research outputs found

    An operational definition of quark and gluon jets

    Full text link
    While "quark" and "gluon" jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition of quark and gluon jets that is readily applicable at colliders. Rather than specifying a per-jet flavor label, we aggregately define quark and gluon jets at the distribution level in terms of measured hadronic cross sections. Intuitively, quark and gluon jets emerge as the two maximally separable categories within two jet samples in data. Benefiting from recent work on data-driven classifiers and topic modeling for jets, we show that the practical tools needed to implement our definition already exist for experimental applications. As an informative example, we demonstrate the power of our operational definition using Z+jet and dijet samples, illustrating that pure quark and gluon distributions and fractions can be successfully extracted in a fully well-defined manner.Comment: 38 pages, 10 figures, 1 table; v2: updated to match JHEP versio

    Bayesian learning of joint distributions of objects

    Full text link
    There is increasing interest in broad application areas in defining flexible joint models for data having a variety of measurement scales, while also allowing data of complex types, such as functions, images and documents. We consider a general framework for nonparametric Bayes joint modeling through mixture models that incorporate dependence across data types through a joint mixing measure. The mixing measure is assigned a novel infinite tensor factorization (ITF) prior that allows flexible dependence in cluster allocation across data types. The ITF prior is formulated as a tensor product of stick-breaking processes. Focusing on a convenient special case corresponding to a Parafac factorization, we provide basic theory justifying the flexibility of the proposed prior and resulting asymptotic properties. Focusing on ITF mixtures of product kernels, we develop a new Gibbs sampling algorithm for routine implementation relying on slice sampling. The methods are compared with alternative joint mixture models based on Dirichlet processes and related approaches through simulations and real data applications.Comment: Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale, AZ, US

    Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints

    Full text link
    Unsupervised estimation of latent variable models is a fundamental problem central to numerous applications of machine learning and statistics. This work presents a principled approach for estimating broad classes of such models, including probabilistic topic models and latent linear Bayesian networks, using only second-order observed moments. The sufficient conditions for identifiability of these models are primarily based on weak expansion constraints on the topic-word matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no assumptions are made on the distribution among the latent variables, the approach can handle arbitrary correlations among the topics or latent factors. In addition, a tractable learning method via ā„“1\ell_1 optimization is proposed and studied in numerical experiments.Comment: 38 pages, 6 figures, 2 tables, applications in topic models and Bayesian networks are studied. Simulation section is adde

    Modeling Documents as Mixtures of Persons for Expert Finding

    Get PDF
    In this paper we address the problem of searching for knowledgeable persons within the enterprise, known as the expert finding (or expert search) task. We present a probabilistic algorithm using the assumption that terms in documents are produced by people who are mentioned in them.We represent documents retrieved to a query as mixtures of candidate experts language models. Two methods of personal language models extraction are proposed, as well as the way of combining them with other evidences of expertise. Experiments conducted with the TREC Enterprise collection demonstrate the superiority of our approach in comparison with the best one among existing solutions

    On the Topic of Jets: Disentangling Quarks and Gluons at Colliders

    Get PDF
    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z-plus-jet sample. While jet topics are defined directly from hadron-level multi-differential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.Comment: 8 pages, 4 figures, 1 table. v2: Improved discussion to match PRL versio
    • ā€¦
    corecore