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We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of
a close mathematical relationship between distributions of observables in jets and emergent themes in sets
of documents, we can apply recent techniques in “topic modeling” to extract jet topics from the data with
minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply
jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also
determine separate quark and gluon rapidity spectra from a mixed Z-plus-jet sample. While jet topics are
defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-
principles theoretical calculations, with potential implications for how to define quark and gluon jets
beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for
extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron
Collider.
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When quarks and gluons are produced in high-energy
particle collisions, their fragmentation and hadronization
via quantum chromodynamics (QCD) results in collimated
sprays of particles called jets. To extract separate informa-
tion about quark and gluon jets though, one typically needs
to know the relative fractions of quark and gluon jets in the
data sample of interest, estimated by convolving matrix
element calculations with nonperturbative parton distribu-
tion functions (PDFs). Recent progress in jet substructure
—the detailed study of particle patterns and correlations
within jets [1–10]—has offered new avenues to tag and
isolate quark and gluon jets [11–26], with recent applica-
tions at the Large Hadron Collider (LHC) [27–35]. Still,
there are considerable theoretical uncertainties in the
modeling of quark and gluon jets, as well as more
fundamental concerns about how to define quark and gluon
jets from first principles in QCD [36–39]. In particular,
quark and gluon partons carry color charge, while jets are
composed of color-singlet hadrons, so there is presently no
unambiguous definition of “quark” and “gluon” jet at the
hadron level.
In this Letter, we introduce a data-driven technique to

extract underlying distributions for different jet types from
mixed samples using quark and gluon jets as an example.
We call our method “jet topics” because of a mathematical
connection to topic modeling, an unsupervised learning

paradigm for discovering emergent themes in a corpus of
documents [40]. Jet topics are defined directly from
measured multidifferential cross sections, requiring no
inputs from simulation or theory. In this way, jet topics
offer a practical way to define jet classes, allowing us to
label quark and gluon jet distributions at the hadron level
without reference to the underlying partons.
At colliders like the LHC, it is nearly impossible to

kinematically isolate pure samples of different jets (i.e.,
quark jets, gluon jets, boostedW jets, etc.). Instead, collider
data consist of statistical mixtures Ma of K different types
of jets. For any jet substructure observable x, such as jet
mass, the distribution pMa

ðxÞ in mixed sample Ma is a
mixture of the K underlying jet distributions pkðxÞ:

pMa
ðxÞ ¼

XK

k¼1

fðaÞk pkðxÞ; ð1Þ

where fðaÞk is the fraction of jet type k in sample a, with
P

K
k¼1 f

ðaÞ
k ¼ 1 for all a and

R
dxpkðxÞ ¼ 1 for all k.

For the specific case of quark (q) and gluon (g) jet
mixtures, we have

pMa
ðxÞ ¼ fðaÞq pqðxÞ þ ð1 − fðaÞq ÞpgðxÞ: ð2Þ

Of course, there are well-known caveats to this picture of jet
generation, which go under the name of “sample depend-
ence.” For instance, quark jets from the Z þ jet process are
not exactly identical to quark jets from the dijet process due
to soft color correlations with the entire event [37], though
these correlations are power suppressed in the small-jet-
radius limit [41–43]. Also, more universal quark-gluon

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 120, 241602 (2018)
Editors' Suggestion Featured in Physics

0031-9007=18=120(24)=241602(8) 241602-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/159108331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.241602&domain=pdf&date_stamp=2018-06-12
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1103/PhysRevLett.120.241602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


definitions can be obtained using jet grooming methods
[44–52]. Here, we assume that sample-dependent effects
can either be quantified or mitigated, taking Eq. (2) as the
starting assumption for our analysis.
Mixed quark-gluon samples were previously studied in

the context of classification without labels (CWoLa) [53]
(see, also, Refs. [54–58]). Via Eq. (2), one can prove that
the optimal binary mixed-sample classifier pM1

ðxÞ=pM2
ðxÞ

is a monotonic rescaling of the optimal quark-gluon
classifier pqðxÞ=pgðxÞ. This means that a classifier trained
to optimally distinguish M1 (e.g., Z þ jet) from M2 (e.g.,
dijets) is optimal for distinguishing quark from gluon jets
without requiring jet labels or aggregate class proportions.
The CWoLa framework though does not directly yield
information about the individual quark and gluon distri-
butions pqðxÞ and pgðxÞ.
With jet topics—and with topic modeling more

generally—one can obtain the full distributions pkðxÞ and
fractions fðaÞk solely from the mixed-sample distributions in
Eq. (1), subject to requirements which will be spelled out
below. As originally posed, topic modeling aims to expose
emergent themes in a collection of text documents (a corpus)
[40]. A topic is a distribution over words in the vocabulary.
Documents are taken to be unstructured bags of words. Each
document arises from an unknownmixture of topics: a topic
is sampled according to the mixture proportions and then a
word is chosen according to that topic’s distribution over the
vocabulary. As long as each topic has words unique to it,
known as anchor words [59,60], topic-modeling algorithms
can learn the underlying topics and proportions from the
corpus alone.
Intriguingly, the generative process for producing counts

of words in a document is mathematically identical to
producing jet observable distributions via Eq. (1), as
summarized in Table I. For the case of quark-gluon jet
mixtures, we have suggestively depicted the process of
writing “jet documents” in Fig. 1. Anchor words are
analogous to having phase-space regions where each of
the underlying distributions is pure, and the presence of
these anchor bins is necessary for jet topics to yield the
underlying quark and gluon distributions.

Because of its theoretical transparency and asymptotic
guarantees, we use the Demix method [60] to extract
jet topics, though other algorithms yield comparable
results. The key idea is to undo the mixing of the two
fundamental distributions in Eq. (1) by maximally sub-
tracting the two mixtures from one another, such that
the zeros of the subtracted distributions correspond to the
anchor bins. Adopting the notation of Ref. [60], let
κðM1jM2Þ be the largest subtraction amount κ such that
pM1

ðxÞ − κpM2
ðxÞ ≥ 0, namely,

κðMijMjÞ ¼ min
x

pMi
ðxÞ

pMj
ðxÞ : ð3Þ

We refer to κ as the reducibility factor (equivalently, the
minimum of the mixed-sample likelihood ratio). The jet
topics T1 and T2 are then the normalized maximal sub-
tractions of M2 from M1,

pT1
ðxÞ ¼ pM1

ðxÞ − κðM1jM2ÞpM2
ðxÞ

1 − κðM1jM2Þ
; ð4Þ

and analogous for pT2
ðxÞ. The jet topics are unique and

universal in that they are independent of the mixtures used
to construct them.
The goal is for the topic distributions pT1

ðxÞ and pT2
ðxÞ

to match the underlying quark and gluon jet distributions
pqðxÞ and pgðxÞ. There are three required conditions for
this to occur. Two of them (shared with CWoLa) are sample
independence and different purities, i.e., that the jet
samples are obtained from Eq. (2) with different values

of fðaÞq . The third condition is the presence of anchor bins,
which can be stated more formally as mutual irreduci-
bility: Each underlying distribution pkðxÞ is not a mixture
of the remaining underlying distributions plus another
distribution [55].

TABLE I. The correspondence between topic models and jet
distributions. Note that topic modeling treats each document as an
unstructured bag of words in the same way that a collection of jets
has no intrinsic ordering.

Topic model Jet distributions

Word Histogram bin
Vocabulary Jet observable(s)
Anchor word Pure phase-space region (anchor bin)
Topic Type of jet (jet topic)
Document Histogram of jet observable(s)
Corpus Collection of histograms

FIG. 1. The generation of mixed samples of quark and gluon
jets highlighting the correspondence with topic models. Each jet
is either a quark or gluon jet sampled according to the underlying
quark fraction. The observable is then sampled according to a
universal distribution for that jet type. Each mixed-sample
observable distribution is then a mixture of the two universal
distributions, giving rise to a jet document.
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Note that this is a much weaker requirement than the
distributions being fully separated. In the quark-gluon
context, a necessary and sufficient condition for mutual
irreducibility is that the reducibility factors κðqjgÞ ¼
κðgjqÞ ¼ 0 for feature representation x. We later explore
the implications of this condition for QCD.With these three
conditions satisfied, the mixture proportions are uniquely

determined via the reducibility factors. Taking fð1Þq > fð2Þq ,
inserting Eq. (2) into Eq. (3) yields

κðM1jM2Þ ¼
1 − fð1Þq

1 − fð2Þq

; κðM2jM1Þ ¼
fð2Þq

fð1Þq

: ð5Þ

Even without mutual irreducibility, the extracted jet
topics will still relate to the underlying quark and gluon
distributions. Specifically, jet topics yield the “gluon-
subtracted quark distribution”

pqjgðxÞ ¼
pqðxÞ − κðqjgÞpgðxÞ

1 − κðqjgÞ ; ð6Þ

and the “quark-subtracted gluon distribution” defined
analogously. By universality, the topics calculated from
pure samples via Eq. (6) and from mixtures via Eq. (4) are
identical. These may be useful in their own right, particu-
larly if the quark-gluon fractions are uncertain, but κðqjgÞ
and κðgjqÞ can be determined analytically or from simu-
lation (see Fig. 4 below).
We now turn to a practical demonstration of the jet topics

method for realistic quark and gluon samples. Following
Ref. [37], we consider two mixed jet processes at the LHC:
the quark-enriched Z þ jet process and the gluon-enriched
dijets process. See Ref. [61] for alternative selections for
quark- or gluon-enriched samples. The parton shower
PYTHIA 8.226 [62,63] is used to generate 500 000 jets atffiffiffi
s

p ¼ 13 TeV including hadronization and multiple parton
interactions (i.e., underlying event). Detector-stable, non-
neutrino particles are clustered into anti-kt jets [64] with
radius R ¼ 0.4 using FASTJET 3.3.0 [65]. The hardest jet(s)
in each event (one jet for Z þ jet and up to two jets for
dijets) are selected if they have transverse momentum pT ∈
½250; 275� GeV and rapidity jyj ≤ 2. These cuts resulted in
the Z þ jet process having (PYTHIA-labeled) quark fraction

fð1Þq ¼ 0.88 and the dijet process having fð2Þq ¼ 0.37. We
use the constituent multiplicity within a jet as the feature
representation x, since it is known to be a good quark-
gluon discriminant [18].
In Fig. 2, we present the result of extracting two jet

topics from these samples. Shown are the constituent
multiplicity distributions from the original Z þ jet and
dijet samples, from PYTHIA-labeled Z þ quark and Z þ
gluon samples, and from the jet topics T1 and T2 using
Eq. (4). The uncertainties are estimated by assuming� ffiffiffiffi

N
p

bin count uncertainties and only considering bins with
more than 30 events. We determine the κ values of Eq. (3)

by selecting the most constraining (anchor) bin: that with
the lowest upper uncertainty bar on the ratio. Remarkably,
the two extracted jet topics overlap very well with the
underlying quark and gluon distributions, providing prac-
tical evidence that Eq. (4) works as desired, at least for
constituent multiplicity. We verified that similar results
could be obtained from samples with different pT cuts and
frommixtures of dijets at different rapidities. This approach
is similar to the template extraction procedure in Ref. [24],
with the important distinction that the quark-gluon fractions
need not be specified a priori.
In Fig. 3, we use the extracted jet topics to construct

separate jet rapidity spectra for quark and gluon jets in the
Z þ jet samples. Binning the Z þ jet sample into ten
rapidity bins in jyj < 2, we find the mixture of the two
topics extracted above that most closely matches the

FIG. 2. The jet topics method applied to constituent multi-
plicity starting with Z þ jet (pink) and dijet (purple) distributions
from PYTHIA 8.226. There is good agreement between the two
extracted jet topics (orange and green) and pure Z þ quark and
Z þ gluon distributions (red and blue).

FIG. 3. Cross sections for jet topics (orange and green) using
topic fractions extracted from the Z þ jet sample across ten
rapidity bins. The extracted topic cross sections closely track
the underlying Z þ quark and Z þ gluon cross sections (red
and blue).
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constituent multiplicity histogram in each rapidity bin,
minimizing the squared error to find the best mixture. This
is an example of the general problem of extracting sample

fractions fðaÞk from various mixed samples. As desired, the
extracted topic cross sections in Fig. 3 track the true quark
and gluon rapidity cross sections.
Thus, just from a collection of mixed-sample histograms,

one can make progress toward extracting both the under-
lying distributions pkðxÞ and the fraction of each jet topic

fðaÞk . Crucially, Figs. 2 and 3 are just novel projections of
the hadron-level multidifferential jet cross section
d3σ=dpTdydnconst on two independent samples, making
jet topics implementable on existing LHC jet measurements
(e.g., Ref. [33]). The agreement between the operationally
defined jet topics and the theoretically ambiguous quark
and gluon distributions may even suggest using mutual
irreducibility of the final-state distributions to define quark
and gluon jets.
From the perspective of first-principles QCD, the impli-

cations of mutual irreducibility are simple yet profound.
For the reducibility factors κðqjgÞ and κðgjqÞ to be zero,
there must be phase-space regions almost entirely domi-
nated by quark or gluon jets. In the leading-logarithmic
(LL) limit, mutual irreducibility can be achieved with any
jet substructure observable that counts the number of parton
emissions, such as “soft drop multiplicity” [26]. In the LL
limit, quark and gluon jets have the same emission profile
differing only by a color factor in their emission density,
CF ¼ 4=3 for quarks and CA ¼ 3 for gluons. Ignoring the
ΛQCD regulator, counting these (infinitely many) emissions
results in arbitrarily well-separated quark and gluon
Poissonian distributions [26] and, therefore, mutual irre-
ducibility. Beyond LL order though, naive quark-gluon
definitions may not lead to mutual irreducibility, since
running-coupling, higher-order, and nonperturbative effects
generically contaminate the anchor bins. That said, as long
as these effects maintain sample independence (perhaps
achieved via grooming), then one can still use Eq. (6) to
define subtracted quark and gluon labels.
Interestingly, many jet substructure observables do not

lead to quark-gluon mutual irreducibility, even at LL
accuracy. Consider, for instance, the jet mass m (or any
jet angularity [66–68]). Jet mass exhibits Casimir scaling at
LL order, meaning that the cumulative density functions
ΣiðmÞ are related to each other by Σg ¼ ΣCA=CF

q [19,20].
The probability distributions are then given by
pi ¼ dΣi=dm. Substituting this into Eq. (3) immediately
yields for all observables with Casimir scaling

κðgjqÞ ¼ CA

CF
minΣ

CA
CF

−1
q ¼ 0; ð7Þ

κðqjgÞ ¼ CF

CA
minΣ

1−CA
CF

q ¼ CF

CA
; ð8Þ

since CA=CF ¼ 9=4 > 1 and Σ takes all values between
0 and 1. Because of Eq. (8), jet mass alone is not sufficient
to extract the quark distribution at LL order without
additional information.
On the other hand, if the reducibility factors are known,

then the subtracted distributions in Eq. (6) can be inverted.
This is shown in Fig. 4 for the jet mass, where the quark
topic has been corrected using the value κðqjgÞ ¼ 0.40 at
35 GeV determined from the PYTHIA Z þ q=g distribu-
tions, which is known to differ from the LL expectation
[37]. This analysis is performed up to 35 GeV to avoid
sample-dependent effects in the high-mass tails of the
distributions. The qualitative behavior of the topics agrees
with the LL predictions of Eqs. (7) and (8): no correction is
needed to obtain the gluon topic, and the quark topic is a
nontrivial mixture of the jet topics. Given the good agree-
ment seen here, it would be interesting to apply jet topics to
groomed jet mass measurements [69,70], where grooming
is an essential ingredient that allows κðqjgÞ to be calculated
to high precision [49–52].
There are many potential uses for the jet topics frame-

work at the LHC. Focusing just on quark and gluon jets,
one often wants to separately measure quark and gluon
distributions from mixed data samples, without relying on
theory or simulation for fraction estimates. To determine
PDFs, it would be beneficial to isolate different partonic
subprocesses, and this could be feasible as long as jet topics
is applied both to data and to fixed-order QCD calculations.
Similar subprocess isolation might be useful in monojet
searches for dark matter by aiding in signal-background
discrimination or in setting improved limits on specific new
physics models [71,72]. For extracting the strong coupling
constant αs from (groomed) jet shape distributions, it would
be beneficial to determine the quark and gluon jet fractions

FIG. 4. The jet topics method applied to jet mass up to 35 GeV
(up to the black dashed line). The gray curve is the corrected
quark topic using PYTHIA to determine κðqjgÞ extrapolated
beyond 35 GeV by letting jet topic 1 go negative. There is good
agreement between the κ-corrected quark topic (gray) and the
pure Z þ quark distribution (red).
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using data-driven methods, since there are uncertainties
associated with whether αs comes multiplied by CF or CA
[73]. The extracted topic fractions could be also be used to
augment training with CWoLa, since the classifier operat-
ing points could then be determined entirely from the data.
In heavy ion collisions, quarks and gluons are expected to
be modified differently in medium due to their different
color charges, and jet topics may allow for fully data-driven
studies of separate quark and gluon jet modifications.
In conclusion, phrasing jet mixtures as a topic-modeling

problem makes available a variety of new and more
sophisticated statistical and mathematical tools for jet
physics (see, e.g., Refs. [59,60,74–88]), including recent
efforts to determine the appropriate number of topics to use
from the data [89–91]. We emphasize that jet topics can be
applied to any set of multidifferential cross sections—in
experiment or in theory—as long as the criteria of sample
independence, different purities, and mutual irreducibility
are met. Furthermore, mutual irreducibility need not be
assumed if the subtracted distributions in Eq. (6) are
sufficient for the intended application or if the reducibility
factors are known from theory or simulation. Of course,
experimental studies are needed to understand the system-
atic and statistical uncertainties associated with jet topics for
LHCmeasurements and searches, and theoretical studies are
needed to determine the interplay of jet topics with precision
calculations. It would also be interesting to design jet
substructure observables specifically targeted for mutual
irreducibility. More generally, topic models may find appli-
cations in collider physics beyond jets and in other disci-
plines beyond collider physics, since extracting signal and
background distributions from mixtures is a ubiquitous
challenge faced when analyzing and interpreting rich
data sets.
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