52,696 research outputs found

    Forbidden Extension Queries

    Get PDF
    Document retrieval is one of the most fundamental problem in information retrieval. The objective is to retrieve all documents from a document collection that are relevant to an input pattern. Several variations of this problem such as ranked document retrieval, document listing with two patterns and forbidden patterns have been studied. We introduce the problem of document retrieval with forbidden extensions. Let D={T_1,T_2,...,T_D} be a collection of D string documents of n characters in total, and P^+ and P^- be two query patterns, where P^+ is a proper prefix of P^-. We call P^- as the forbidden extension of the included pattern P^+. A forbidden extension query asks to report all occ documents in D that contains P^+ as a substring, but does not contain P^- as one. A top-k forbidden extension query asks to report those k documents among the occ documents that are most relevant to P^+. We present a linear index (in words) with an O(|P^-| + occ) query time for the document listing problem. For the top-k version of the problem, we achieve the following results, when the relevance of a document is based on PageRank: - an O(n) space (in words) index with O(|P^-|log sigma+ k) query time, where sigma is the size of the alphabet from which characters in D are chosen. For constant alphabets, this yields an optimal query time of O(|P^-|+ k). - for any constant epsilon > 0, a |CSA| + |CSA^*| + Dlog frac{n}{D} + O(n) bits index with O(search(P)+ k cdot tsa cdot log ^{2+epsilon} n) query time, where search(P) is the time to find the suffix range of a pattern P, tsa is the time to find suffix (or inverse suffix) array value, and |CSA^*| denotes the maximum of the space needed to store the compressed suffix array CSA of the concatenated text of all documents, or the total space needed to store the individual CSA of each document

    On Optimal Top-K String Retrieval

    Full text link
    Let D{\cal{D}} = {d1,d2,d3,...,dD}\{d_1, d_2, d_3, ..., d_D\} be a given set of DD (string) documents of total length nn. The top-kk document retrieval problem is to index D\cal{D} such that when a pattern PP of length pp, and a parameter kk come as a query, the index returns the kk most relevant documents to the pattern PP. Hon et. al. \cite{HSV09} gave the first linear space framework to solve this problem in O(p+klogk)O(p + k\log k) time. This was improved by Navarro and Nekrich \cite{NN12} to O(p+k)O(p + k). These results are powerful enough to support arbitrary relevance functions like frequency, proximity, PageRank, etc. In many applications like desktop or email search, the data resides on disk and hence disk-bound indexes are needed. Despite of continued progress on this problem in terms of theoretical, practical and compression aspects, any non-trivial bounds in external memory model have so far been elusive. Internal memory (or RAM) solution to this problem decomposes the problem into O(p)O(p) subproblems and thus incurs the additive factor of O(p)O(p). In external memory, these approaches will lead to O(p)O(p) I/Os instead of optimal O(p/B)O(p/B) I/O term where BB is the block-size. We re-interpret the problem independent of pp, as interval stabbing with priority over tree-shaped structure. This leads us to a linear space index in external memory supporting top-kk queries (with unsorted outputs) in near optimal O(p/B+logBn+log(h)n+k/B)O(p/B + \log_B n + \log^{(h)} n + k/B) I/Os for any constant hh{log(1)n=logn\log^{(1)}n =\log n and log(h)n=log(log(h1)n)\log^{(h)} n = \log (\log^{(h-1)} n)}. Then we get O(nlogn)O(n\log^*n) space index with optimal O(p/B+logBn+k/B)O(p/B+\log_B n + k/B) I/Os.Comment: 3 figure

    Shared-Constraint Range Reporting

    Get PDF
    Orthogonal range reporting is one of the classic and most fundamental data structure problems. (2,1,1) query is a 3 dimensional query with two-sided constraint on the first dimension and one sided constraint on each of the 2nd and 3rd dimension. Given a set of N points in three dimension, a particular formulation of such a (2,1,1) query (known as four-sided range reporting in three-dimension) asks to report all those K points within a query region [a, b]X(-infinity, c]X[d, infinity). These queries have overall 4 constraints. In Word-RAM model, the best known structure capable of answering such queries with optimal query time takes O(N log^{epsilon} N) space, where epsilon>0 is any positive constant. It has been shown that any external memory structure in optimal I/Os must use Omega(N log N/ log log_B N) space (in words), where B is the block size [Arge et al., PODS 1999]. In this paper, we study a special type of (2,1,1) queries, where the query parameters a and c are the same i.e., a=c. Even though the query is still four-sided, the number of independent constraints is only three. In other words, one constraint is shared. We call this as a Shared-Constraint Range Reporting (SCRR) problem. We study this problem in both internal as well as external memory models. In RAM model where coordinates can only be compared, we achieve linear-space and O(log N+K) query time solution, matching the best-known three dimensional dominance query bound. Whereas in external memory, we present a linear space structure with O(log_B N + log log N + K/B) query I/Os. We also present an I/O-optimal (i.e., O(log_B N+K/B) I/Os) data structure which occupies O(N log log N)-word space. We achieve these results by employing a novel divide and conquer approach. SCRR finds application in database queries containing sharing among the constraints. We also show that SCRR queries naturally arise in many well known problems such as top-k color reporting, range skyline reporting and ranked document retrieval

    Space-efficient data structures for string searching and retrieval

    Get PDF
    Let D = {d_1, d_2, ...} be a collection of string documents of n characters in total, which are drawn from an alphabet set Sigma =[sigma] ={1,2,3,...sigma}. The top-k document retrieval problem is to maintain D as a data structure, such that when ever a query Q=(P, k) comes, we can report (the identifiers of) those k documents that are most relevant to the pattern P (of p characters). The relevance of a document d_r with respect to a pattern P is captured by score(P, d_r), which can be any function of the set of locations where P occurs in d_r. Finding the most relevant documents to the user query is the central task of any web-search engine. In the case of web-data, the documents can be demarcated along word boundaries. All the search engines use inverted index as the back-bone data structure. For each word occurring in the document collection, the inverted index stores the list of documents where it appears. It is often augmented with relevance score and/or positional information. However, when data consists of strings (e.g., in bioinformatics or Asian language texts), there are no word demarcation boundaries and the queries are arbitrary substrings instead of being proper valid words. In this case, string data structures have to be used and central approach is to use suffix tree (or string B-tree) with appropriate augmenting data structures. The work by Hon, Shah and Vitter [FOCS 2009], and Navarro and Nekrich [SODA 2012] resulted in a linear space data structure with optimal O(p+k) query time solution for this problem. This was based on geometric interpretation of the query. We extend this central problem, in two important areas of massive data sets. First, we consider an external memory disk based index, where we give near optimal results. Next, we consider compression aspects of data structure, reducing the storage space. This is central goal of the active research field of succinct data structures. We present several results, which improve upon several previous results, and are currently the best known space-time trade-offs in this area

    String Searching with Ranking Constraints and Uncertainty

    Get PDF
    Strings play an important role in many areas of computer science. Searching pattern in a string or string collection is one of the most classic problems. Different variations of this problem such as document retrieval, ranked document retrieval, dictionary matching has been well studied. Enormous growth of internet, large genomic projects, sensor networks, digital libraries necessitates not just efficient algorithms and data structures for the general string indexing, but indexes for texts with fuzzy information and support for queries with different constraints. This dissertation addresses some of these problems and proposes indexing solutions. One such variation is document retrieval query for included and excluded/forbidden patterns, where the objective is to retrieve all the relevant documents that contains the included patterns and does not contain the excluded patterns. We continue the previous work done on this problem and propose more efficient solution. We conjecture that any significant improvement over these results is highly unlikely. We also consider the scenario when the query consists of more than two patterns. The forbidden pattern problem suffers from the drawback that linear space (in words) solutions are unlikely to yield a solution better than O(root(n/occ)) per document reporting time, where n is the total length of the documents and occ is the number of output documents. Continuing this path, we introduce a new variation, namely document retrieval with forbidden extension query, where the forbidden pattern is an extension of the included pattern.We also address the more general top-k version of the problem, which retrieves the top k documents, where the ranking is based on PageRank relevance metric. This problem finds motivation from search applications. It also holds theoretical interest as we show that the hardness of forbidden pattern problem is alleviated in this problem. We achieve linear space and optimal query time for this variation. We also propose succinct indexes for both these problems. Position restricted pattern matching considers the scenario where only part of the text is searched. We propose succinct index for this problem with efficient query time. An important application for this problem stems from searching in genomic sequences, where only part of the gene sequence is searched for interesting patterns. The problem of computing discriminating(resp. generic) words is to report all minimal(resp. maximal) extensions of a query pattern which are contained in at most(resp. at least) a given number of documents. These problems are motivated from applications in computational biology, text mining and automated text classification. We propose succinct indexes for these problems. Strings with uncertainty and fuzzy information play an important role in increasingly many applications. We propose a general framework for indexing uncertain strings such that a deterministic query string can be searched efficiently. String matching becomes a probabilistic event when a string contains uncertainty, i.e. each position of the string can have different probable characters with associated probability of occurrence for each character. Such uncertain strings are prevalent in various applications such as biological sequence data, event monitoring and automatic ECG annotations. We consider two basic problems of string searching, namely substring searching and string listing. We formulate these well known problems for uncertain strings paradigm and propose exact and approximate solution for them. We also discuss a constrained variation of orthogonal range searching. Given a set of points, the task of orthogonal range searching is to build a data structure such that all the points inside a orthogonal query region can be reported. We introduce a new variation, namely shared constraint range searching which naturally arises in constrained pattern matching applications. Shared constraint range searching is a special four sided range reporting query problem where two constraints has sharing among them, effectively reducing the number of independent constraints. For this problem, we propose a linear space index that can match the best known bound for three dimensional dominance reporting problem. We extend our data structure in the external memory model

    Document Retrieval on Repetitive Collections

    Full text link
    Document retrieval aims at finding the most important documents where a pattern appears in a collection of strings. Traditional pattern-matching techniques yield brute-force document retrieval solutions, which has motivated the research on tailored indexes that offer near-optimal performance. However, an experimental study establishing which alternatives are actually better than brute force, and which perform best depending on the collection characteristics, has not been carried out. In this paper we address this shortcoming by exploring the relationship between the nature of the underlying collection and the performance of current methods. Via extensive experiments we show that established solutions are often beaten in practice by brute-force alternatives. We also design new methods that offer superior time/space trade-offs, particularly on repetitive collections.Comment: Accepted to ESA 2014. Implementation and experiments at http://www.cs.helsinki.fi/group/suds/rlcsa

    Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces

    No full text
    This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library
    corecore