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Abstract
Document retrieval is one of the most fundamental problem in information retrieval. The object-
ive is to retrieve all documents from a document collection that are relevant to an input pattern.
Several variations of this problem such as ranked document retrieval, document listing with two
patterns and forbidden patterns have been studied. We introduce the problem of document
retrieval with forbidden extensions.

Let D = {T1,T2, . . . ,TD} be a collection of D string documents of n characters in total,
and P+ and P− be two query patterns, where P+ is a proper prefix of P−. We call P− as the
forbidden extension of the included pattern P+. A forbidden extension query 〈P+, P−〉 asks
to report all occ documents in D that contains P+ as a substring, but does not contain P− as
one. A top-k forbidden extension query 〈P+, P−, k〉 asks to report those k documents among
the occ documents that are most relevant to P+. We present a linear index (in words) with an
O(|P−|+occ) query time for the document listing problem. For the top-k version of the problem,
we achieve the following results, when the relevance of a document is based on PageRank:

an O(n) space (in words) index with O(|P−| log σ + k) query time, where σ is the size of
the alphabet from which characters in D are chosen. For constant alphabets, this yields an
optimal query time of O(|P−|+ k).
for any constant ε > 0, a |CSA|+ |CSA∗|+D log n

D +O(n) bits index with O(search(P ) + k ·
tSA · log2+ε n) query time, where search(P ) is the time to find the suffix range of a pattern P ,
tSA is the time to find suffix (or inverse suffix) array value, and |CSA∗| denotes the maximum
of the space needed to store the compressed suffix array CSA of the concatenated text of all
documents, or the total space needed to store the individual CSA of each document.
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1 Introduction and Related Work

Retrieving useful information from massive textual data is a core problem in information
retrieval. Document listing, a natural formulation of this problem, has exciting applications in
search engines, bioinformatics, data and Web mining. The task is to index a given collection
of strings or documents, such that the relevant documents for an input query can be retrieved
efficiently. More formally, let D be a given collection of D string documents of total size
n characters. Given a query pattern P , document listing is to report all the documents
that contain P as a substring. The problem was introduced by Matias et al. [19]. Later,
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Muthukrishnan [22] proposed a linear space index with optimal query time of O(|P |+ occ),
where occ is the number of documents reported. Following this, several variations were
introduced. Hon et al. [13] proposed the top-k variation i.e., retrieve the k documents that
are most relevant to P for some integer k provided at query time They presented a linear
index with O(|P |+k log k) time. Later this was improved to optimal O(|P |+k) time [14, 23].
Compressed indexes have also been proposed for this variation [14, 17, 21, 25].

Most of the earlier document retrieval problems focus on the case where the query
consists of a single pattern P . Often the queries are not so simplistic. Muthukrishnan [22]
also considered the case of two patterns, say P and Q, and showed that by maintaining
an O(n3/2 logO(1) n) space index, documents containing both P and Q can be reported in
O(|P |+ |Q|+

√
n+ occ) time. Cohen and Porat [4] presented an O(n logn) space (in words)

index with query time O(|P |+ |Q|+
√
n · occ log5/2 n), which was improved by Hon et al. [15]

to an O(n) space index with query time O(|P |+ |Q|+
√
n · occ log3/2 n). Also see [14, 13]

for a succinct solution and [18] for a recent result on the hardness of this problem.
Fischer et al. [5] introduced the document listing with forbidden pattern problem which

consists of two patterns P and Q, and all documents containing P but not Q are to be
reported. They presented an O(n3/2) bit solution with query time O(|P |+ |Q|+

√
n+ occ).

Hon et al. [16] presented an O(n) word index with query time O(|P |+ |Q|+
√
n · occ log5/2 n).

Later, Biswas et al. [1] offered linear space (in words) and O(|P |+ |Q|+
√
nk) query time

solution for the more general top-k version of the problem, which yields a linear space and
O(|P |+ |Q|+

√
n · occ) solution to the listing problem. They also showed that this is optimal

via a reduction from the set intersection/difference problem.
In this paper, we introduce the document listing with forbidden extension problem, which

is a stricter version of the forbidden pattern problem, and asks to report all documents
containing an included pattern P+, but not its forbidden extension P−, where P+ is a proper
prefix of P−. As shown by Biswas et al. [1], the forbidden pattern problem of Fischer et
al. [5] suffers from the drawback that linear space (in words) solutions are unlikely to yield
a solution better than O(

√
n/occ) per document reporting time. Thus, it is of theoretical

interest to see whether this hardness can be alleviated by putting further restrictions on the
forbidden pattern. We show that indeed in case when the forbidden pattern is an extension
of the included pattern, by maintaining a linear space index, the document listing problem
can be answered in optimal O(|P−|+ occ) time. For further theoretical interest, we study
the following more general top-k variant.

I Problem 1 (top-k Document Listing with Forbidden Extension). Let D = T1,T2, . . . ,TD
be D weighted strings (called documents) of n characters in total, where each character is
chosen from an alphabet of size σ. Our task is to index D such that when a pattern P+, its
extension P−, and an integer k come as a query, among all documents containing P+, but
not P−, we can report the k most weighted ones.

Results. Our contributions to Problem 1 are summarized in the following theorems.

I Theorem 1. The top-k forbidden extension queries can be answered by maintaining an
O(n)-words index in O(|P−| log σ + k) time.

I Theorem 2. Let CSA be a compressed suffix array on D of size |CSA| bits using which
we can find the suffix range of a pattern P in search(P ) time, and suffix (or inverse suffix)
array value in tSA time. Also, denote by |CSA∗| the maximum of the space needed to store
the compressed suffix array CSA of the concatenated text of all documents, or the total space
needed to store the individual CSA of each document. By maintaining CSA and additional
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322 Forbidden Extension Queries

|CSA∗|+D log n
D +O(n) bits structure, we can answer top-k forbidden extension queries in

O(search(P−) + k · tSA · log2+ε n) time

The rest of the paper is organized as follows. In Section 2, we briefly discuss standard
data-structures, and terminologies. In Section 3, we present a linear index and arrive at
Theorem 1. In Section 4, we present a succinct space index and arrive at Theorem 2. Finally,
we conclude the paper in Section 5.

2 Preliminaries

We refer the reader to [11] for standard definitions and terminologies. We assume the
Word-RAM model of computation, where the word size is ω = Θ(logn). Throughout this
paper, D = {T1,T2, . . . ,TD} is a collection of D documents of total size n characters, where
each character is chosen from an alphabet of size σ. Each document in D has a special
terminating character that does not appear anywhere in the document. Furthermore, we
assume that the PageRank of a document Td is d, and Td is more relevant than Td′ iff d < d′.

The generalized suffix tree GST is a compacted trie that stores all (non-empty) suffixes of
every string in D. The GST consists of n leaves and at most n− 1 internal nodes. We use `i
to denote the ith leftmost leaf of GST i.e., the leaf corresponding to the ith lexicographically
smallest suffix of the concatenated text T of every document. Further, doc(i) denotes the
index of the document to which the suffix corresponding to `i belongs. Let GST(u) be the
sub-tree of GST rooted at u, and leaf(u) be the set of leaves in GST(u). We use leaf(u, v) to
denote the leaves in GST(u) but not in GST(v). The number of nodes (resp. concatenation
of edge labels) on the path from root to a node u is denoted by depth(u) (resp. path(u)).
The locus of P , denoted by locus(P ), is the highest node u such that path(u) is prefixed by P .
Then, the suffix range of P is [Lu, Ru], where Lu and Ru are the leftmost and the rightmost
leaves in GST(u). By maintaining GST of D in O(n) words of space, the locus of any pattern
P can be computed in O(|P |) time, where |P | is the length of P . In general, suffix trees
arrays require O(n) words for storage. Compressed Suffix Array reduces this space close to
the size of the text with a slowdown in query time.

Let u and v be any two nodes in GST. Then listk(u, v) is the set of k most relevant
document identifiers in list(u, v) = {doc(i) | `i ∈ leaf(u)} \ {doc(i) | `i ∈ leaf(v)}. Any
superset of listk(u, v) is called a k-candidate set and is denoted by candk(u, v). Given
candk(u, v), we can find listk(u, v) in time O(|candk(u, v)|) using order statistics [1].

Moving forward, we use CSA to denote a compressed suffix array for D that occupies |CSA|
bits. Using CSA, we can find the suffix range of P in search(P ) time, and can compute a suffix
array value (i.e., the text position of the suffix corresponding to a leaf) or inverse suffix array
value (i.e., the lexicographic rank of a suffix) in tSA time. Also, p+ and p− (resp. [sp+, ep+]
and [sp−, ep−]) denotes the loci (resp. suffix ranges) of P+ and P− respectively. Since P−
is an extension of P+, p− ∈ GST(p+), leaf(p−) ⊆ leaf(p+), and sp+ ≤ sp− ≤ ep− ≤ ep+.

3 Linear Space Index

In this section, we present our linear space index. We use some well-known range reporting
data-structures [2, 24, 26] and the chaining framework of Muthukrishnan [14, 22], which has
been extensively used in problems related to document listing.Using these data structures,
we first present a solution to the document listing problem. Then, we present a simple linear
index for the top-k version of the problem, with a O(|P−| logn+ k logn) query time. Using
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p+

p−

d3 d2 d4 d1 d4 d5 d1 d2

root

. . . . . .

sp− ep− ep+sp+

. . .. . . d5 d3

(a) Chaining structure.

p+

p−

d3 d2 d4 d1 d4 d5 d1 d2

root

sp− ep− ep+sp+

d6d6 d3

Type C

Type A

Type B

(b) Types of chains.

Figure 1 Chaining framework. Although leaf(p+) has documents d1, d2, d3, d4, and d5, only d2

and d3 qualify as output, since d1, d4, and d5 are present in leaf(p−).

more complicated techniques, based on the heavy path decomposition of a tree, we improve
this to arrive at Theorem 1.

Orthogonal Range Reporting Data Structure.

I Fact 1 ([24]). A set of n weighted points on an n× n grid can be indexed in O(n) words
of space, such that for any k ≥ 1, h ≤ n and 1 ≤ a ≤ b ≤ n, we can report k most weighted
points in the range [a, b]× [0, h] in decreasing order of their weights in O(h+ k) time.

I Fact 2 ([26]). A set of n 3-dimensional points (x, y, z) can be stored in an O(n)-word data
structure, such that we can answer a three-dimensional dominance query in O(logn+ output)
time, with outputs reported in the sorted order of z-coordinate.

I Fact 3 ([2]). Let A be an array of length n. By maintaining an O(n)-words index, given
two integers i, j, where j ≥ i, and a positive integer k, in O(k) time, we can find the k largest
(or, smallest) elements in the subarray A[i..j] in sorted order.

Chaining Framework. For every leaf `i in GST, we define next(i) as the minimum index
j > i, such that doc(j) = doc(i). We denote i as the source of the chain and next(i) as the
destination of the chain. We denote by (−∞, i) (resp. (i,∞)) the chain that ends (resp.
starts) at the first (resp. last) occurrence `i of a document. Figure 1(a) illustrates chaining.

The integral part of our solution involves categorizing the chains into the following 3
types, and then build separate data structure for each type.
Type A: i < sp+ and ep− < next(i) ≤ ep+

Type B: sp+ ≤ i < sp− and next(i) > ep+

Type C: sp+ ≤ i < sp− and ep− < next(i) ≤ ep+

Figure 1(b) illustrates different types of chains. It is easy to see that any output of forbidden
extension query falls in one of these 3 types. Also observe that the number of chains is
n. For a type A chain (i, next(i)), we refer to the leaves `i and `next(i) as type A leaves;
similar remarks hold for type B and type C chains. Also, LCA of a chain (i, j) refers to the
LCA of the leaves `i and `j . Furthermore, with slight abuse of notation, for any two nodes
u, v ∈ GST, we denote by depth(u, v), the depth of the LCA of the nodes u and v.
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324 Forbidden Extension Queries

Document Listing Index. Linear space index for the forbidden extension document listing
problem is achieved by using Fact 3. We store two arrays as defined below.
Asrc: Asrc[i]=next(i), for each chain (i, next(i))
Adest: Adest[next(i)]=i, for each chain (i, next(i))
Querying in Asrc within the range [sp+, sp− − 1] will give us the chains in descending order
of their destination, we stop at ep− to obtain all the Type B and Type C chains. We query
in Adest within the range [ep− + 1, ep+] to obtain the chains in ascending order of their
source and stop at sp+ to obtain all the type A chains. Time, in addition to that required
for finding the suffix ranges, can be bounded by O(|P−|+ occ).

3.1 A Simple O(|P−| logn+ k logn) time Index
We start with a simple indexing scheme for answering top-k forbidden extension query. In
this section, we design data structures by processing different types of chains separately and
mapping them into range reporting problem.

Processing Type A and Type B Chains. For type A chains, we construct range reporting
data structure, as described in Fact 1, with each chain (i, j), j = next(i), mapped to a
weighted two dimensional point (j, depth(i, j)) with weight doc(i). Likewise, for type B
chains, we map chain (i, j) to the point (i, depth(i, j)) with weight doc(i). Recall that d is
the PageRank of the document Td. For Type A chains, we issue a range reporting query
for [ep− + 1, ep+]× [0, depth(p+)]. For Type B chains, we issue a range reporting query for
[sp+, sp− − 1]× [0, depth(p+)]. In either case, we can obtain the top-k leaves in sorted order
of their weights in O(|P−|+ k) time, which gives us the following lemma.
I Lemma 3. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type A and Type B leaves in time O(|P−|+ k).

Processing Type C Chains. We maintain the 3-dimensional dominance structure of Fact 2
at each node of GST. For a chain (i, j), j = next(i), we store the point (i, j, doc(i)) in the
dominance structure maintained in the node lca(i, j). For query answering, we traverse
the path from p+ to p−, and query the dominance structure of each node on this path
with x-range [−∞, sp− − 1] and y-range [ep− + 1,∞]. Any chain falling completely outside
of GST(p+) will not be captured by the query, since their LCA lies above p+. There can
be at most depth(p−) − depth(p+) + 1 ≤ |P−| = Θ(n) sorted lists containing k elements
each. The logn factor in the query of Fact 2 is due to locating the first element to be
extracted; each of the remaining (k − 1) elements can be extracted in constant time per
element. Therefore, time required for dominance queries (without extracting the elements) is
bounded by O(|P−| logn). Using a max-heap of size O(n), we obtain the top-k points from
all the lists as follows: insert the top element from each list into the heap, and extract the
maximum element from the heap. Then, the next element from the list corresponding to the
extracted element is inserted into the heap. Clearly, after extracting k elements, the desired
top-k identifiers are obtained. Time required is O(k logn), which gives the following lemma.
I Lemma 4. There exists a O(n) words space data-structure for answering top-k documents
with forbidden extension queries in O(|P−| logn+ k logn) time.

3.2 O(|P−| logσ + k) Index
In this section, we prove Theorem 1. Note that type A and type B chains can be processed
in O(|P−| + k) time by maintaining separate range reporting data structures (refer to
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Section 3.1). Therefore, in what follows, the emphasis is to obtain type C outputs. Recall
that for processing type C chains in Section 3.1, we traversed the path from p+ to p−, and
query the individual data structure at each node. Our idea for more efficient solution is to
group together the data structures of the nodes falling on the same heavy path.

Heavy Path Decomposition. We revisit the heavy path decomposition of a tree T , proposed
by Harel et al. [12]. For any internal node u, the heaviest child of u is the one having the
maximum number of leaves in its subtree (ties broken arbitrarily). The first heavy path of T
is the path starting at T ’s root, and traversing through every heavy node to a leaf. Each
off-path subtree of the first heavy path is further decomposed recursively. Thus, a tree with
m leaves has m heavy paths. With slight abuse of notation, let leaf(hpi) be the leaf where
heavy path hpi ends. Let v be a node on a heavy path and u be a child of v not on that
heavy path. We say that the subtree rooted at u hangs from node v.

I Property 1. For a tree having m nodes, the path from the root to any node v traverses at
most logm heavy paths.

Heavy Path Tree. We construct the heavy path tree TH , in which each node corresponds
to a distinct heavy path in GST. The tree TH has n nodes as there are so many heavy
paths in GST. For a heavy path hpi of GST, the corresponding node in TH is denoted by
hi. All the heavy paths hanging from hpi in GST are the children of hi in TH . Let the first
heavy path in the heavy path decomposition of GST be hpr, and T1, T2, . . . , be the subtrees
hanging from hpr. The heavy path tree TH is recursively defined as the tree whose root is hr,
representing hpr, having children h1, h2, . . . with subtrees in TH resulting from the heavy
path decomposition of T1, T2, . . . respectively. Figure 2 illustrates heavy path decomposition
of GST and the heavy path tree TH . Based on the position of a hanging heavy path w.r.t.
hpi in GST, we divide the children of hi into two groups: left children hli and right children
hri . A child heavy path hj of hi belongs to hli (resp. hri ) if leaf(hpj) falls on the left (resp.
right) of leaf(hpi) in GST. The nodes in hli and hri are stored contiguously in TH . We traverse
the left attached heavy paths of hpi in GST in top-to-bottom order, include them as the
nodes of hli, and place them in left-to-right order as children of hi in TH . The hri nodes are
obtained by traversing the right attached heavy paths of hpi in GST in bottom-to-top order,
and place them after the hli nodes in TH in left-to-right order.

Transformed Heavy Path Tree. We transform the heavy path tree TH into a binary search
tree T tH . For each node hi in TH , we construct a left (resp. right) binary tree BThl

i
(resp.

BThr
i
) for the left children hli (resp. right children hri ). Leaves of BThl

i
(resp. BThr

i
) are the

nodes of hli (resp. hri ) preserving the ordering in TH . The binary tree BThl
i
(resp. BThr

i
) has a

path, named left spine (resp. right spine), denoted by LShi
(resp. RShi

) containing blog |hli|c
(resp. blog |hri |c) nodes, denoted by dl1, dl2, . . . (resp. dr1, dr2, . . . ) in the top-to-bottom
order. The right child of dli is dli+1. Left subtree of dli is a height balanced binary search
tree containing h2i−1 , . . . , hb2i−1c as the leaves and dummy nodes for binarization. Right
spine is constructed in similar way, however left child of dri is dri+1 and left subtree contains
the leaves of hri in a height balanced binary tree. Clearly, the length of LShi

(resp. RShi
) is

bounded by blog |hli|c (resp. blog |hri |c). Subtrees hanging from the nodes of hli and hri are
decomposed recursively. See Figure 2(c) for illustration. We have the following important
property of T tH .
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hpr

hp1

hp2 hp3

hp4

hp5

hp6

hp7

hp8

hp9

hp10

hp11

(a) Heavy path decomposition of GST.

h1 h2 h3 h4 h5 h6 h7 h8 h9
h10 h11

hr

(b) Heavy path tree TH .

h1

h7 h8

h9 h10

hr

dl1

dl2

dl3

h6

dl5

h5h4

h3h2

dl4

dr1

dr2 h11

dr4

dl6

LShr RShr

dr5

dr3

(c) Transformed heavy path tree T t
H .

Figure 2 Heavy path decomposition, heavy path tree, and transformed heavy path tree.

I Lemma 5. Let u be an ancestor node of v in GST. The path length from u to v is duv.
The node u (resp. v) falls on the heavy path hp1 (resp. hpt) and let h1 (resp. ht) be the
corresponding node in T tH . Then, the h1 to ht path in T tH has O(min(duv log σ, log2 n)) nodes,
where σ is the size of the alphabet from which characters in the documents are chosen.

Proof. We first recall from Property 1 that the height of TH is O(logn). Since each node
in TH can have at most n children, each level of TH can contribute to O(logn) height in
T tH . Thus, the height of T tH is bounded by O(log2 n). Hence, the log2 n bound in the lemma
is immediate. Let p1, p2, . . . , pt be the segments of the path from u to v traversing heavy
paths hp1, hp2, . . . , hpt, where pi ∈ hpi, 1 ≤ i ≤ t. Let h1, h2, . . . , ht be the corresponding
nodes in T tH . We show that the number of nodes traversed to reach from hi to hi+1 in T tH is
O(|pi| log σ). Without loss of generality, assume hi+1 is attached on the left of of hi and falls
in the subtree attached with dlx on spine LShi . We can skip all the subtrees attached to
the nodes above dlx on LShi

. One node on a heavy path can have at most σ heavy paths
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as children. Thus, the number of nodes traversed on the spine is O(|pi| log σ). Within the
subtree of the dlx, we can search the tree to find the desired heavy path node. Since, each
node in the GST can have at most σ heavy paths as children, the height of this subtree is
bounded by O(log σ). For each pi, we may need to traverse the entire tree height to locate
the desired heavy path, and hence the lemma follows. J

Associating the chains. Let hpi (resp. hpj) be the heavy path having i (resp. j) as the
leaf node in GST and hi (resp. hj) as the corresponding heavy path node in T tH . Then, we
associate chain (i, j) with lca(hi, hj) in T tH .

Constructing the Index. Our index consists of two components, maximum chain depth
structure (MDS) and transformed heavy path structure (THS) defined as follows.
MDS component: Let hpt be the heavy path in the original heavy path decomposition

(i.e., not a dummy heavy path), associated with chain (i, j), j = next(i). Let, di =
depth(i, leaf(hpt)) and dj = depth(j, leaf(hpt)). Define maxDepth(i, j) = max(di, dj). Let
mt be the number of chains associated with hpt. Create two arrays At and A′t, each of
length mt. For each chain (i, j) associated with hpt, store doc(i) in the first empty cell of
the array At, and maxDepth(i, j) in the corresponding cell of the array A′t. Sort both the
arrays w.r.t the values in A′t. For each node u lying on hpt, maintain a pointer to the
minimum index x of A such that A′t[x] = depth(u). Discard the array A′t. Finally, build
the 1-dimensional sorted range-reporting structure (Fact 3) over At. Total space for all t
is bounded by O(n) words.

THS component: We construct the transformed heavy path tree T tH from GST. Recall that
every chain in GST is associated with a node in T tH . For each node hi in T tH , we store two
arrays, chain source array CSi and chain destination array CDi. The arrays CSi (resp.
CDi) contains the weights (i.e., the document identifier) of all the chains associated with
hi sorted by the start (resp. end) position of the chain in GST. Finally we build the
RMQ data structure (Fact 4) RMQCSi

and RMQCDi
over CSi and CDi respectively.

Total space can be bounded by O(n) words.
I Fact 4 ([6, 7]). By maintaining a 2n+o(n) bits structure, range maximum query(RMQ)
can be answered in O(1) time (without accessing the array).

Query Answering. Query answering is done by traversing from p+ to p− in GST. We start
with the following observation.

I Observation 1. For every type C chain (i, j), lca(i, j) falls on the p+ to p− path in GST.

This observation is crucial to ensure that we do not miss any type C chain in query answering.
We consider the following two cases for query answering.

3.2.1 p+ and p− falls on the same heavy path
In this case, we resort to component MDS for query answering. Assume that p+ and p−
fall on heavy path hpt. Note that a chain (i, j) qualifies as an output, iff maxDepth(i, j)
falls within the range [depth(p+), depth(p−)− 1]. See Figure 3(a) for illustration. For query
answering, follow the pointers from p+ and p− to the indexes x and y in the array At, and
issue the query 〈x, y − 1, k〉 in the corresponding Fact 3 data structure. Note that Type A
and Type B outputs can arise. We obtain the following lemma.
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p+

p−

i1 j1 L(hp)sp+ ep+

hp

sp− ep−i2 j2

MaxDepth(i1, j1)

MaxDepth(i2, j2)

(a) Chain (i1, j1) qualifies since
maxDepth(i, j) ∈ [depth(p+), depth(p−)).
(i2, j2) does not qualify.

depth(p+) depth( L(hp))depth(p−)

query region

0

(b) Query range in the 1-dimensional sorted range
reporting structure of hp.

Figure 3 p+ and p− falling on the same heavy path.

I Lemma 6. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type C leaves in O(|P−|+ k) time when p+ and p−
falls on the same heavy path.

3.2.2 p+ and p− falls on different heavy paths
Let p1, p2, . . . , pt be the path segments of the path from p+ to p− traversing heavy paths
hp1, hp2, . . . , hpt, where pi ∈ hpi, 1 ≤ i ≤ t. Let h1, h2, . . . , ht be the corresponding nodes in
T tH . In the following subsection, we show how to obtain answers for h1 through ht−1; we
resolve ht separately. We use the THS component for processing the chains with LCA on
h1, h2, . . . , ht−1. We start with the following lemma.

I Lemma 7. Let (i, j) be a chain associated with a node hk in T tH . If p− falls on the left
(resp. right) subtree of hk, and sp+ ≤ i < sp− (resp. ep− < j ≤ ep+), then (i, j) is qualified
as an output of the forbidden extension query.

Proof. Recall that chain (i, j) is associated with hk = lca(hi, hj) in T tH , where hi and hj are
the heavy path nodes corresponding to i and j respectively. This implies hi (resp. hj) falls
on the left (resp. right) subtree of hk. If p− falls on the left of hpk then j > ep−. The added
constraint sp+ ≤ i < sp− ensures that chain (i, j) is either a Type B or a Type C chain,
both of which are qualified as an output of the forbidden extension query. The case when p−
falls on the right of hk is symmetric. J

Lemma 7 allows us to check only the source or destination of a chain based on the position of
p−, and collect the top weighted chains; this is facilitated using the RMQ data structure. We
traverse the nodes in T tH from p+ to p−. At each node hk, if p− falls on the left of hk, we issue
a range maximum query within the range [sp+, sp− − 1] on RMQCSk

which gives us the top
answer from each node in O(1) time. Note that, [sp+, sp−− 1] range needs to be transformed
for different RMQCS structures. We use fractional cascading for the range transformation
to save predecessor searching time (refer to Appendix A for detailed discussion). Since the
height of the tree is O(log2 n) (refer to Lemma 5) at any instance, there are at most O(log2 n)
candidate points. We use the atomic heap of Fredman and Willard [9] which allows constant
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Figure 4 Marked nodes and Prime nodes with respect to grouping factor g.

time insertion and delete-max operation when the heap size is O(log2 m), where m is the
size of the universe. By maintaining each candidate point in the atomic heap, the highest
weighted point (among all candidate points) can be obtained in constant time. Also, once
the highest weighted point from a heavy path node is obtained, each subsequent candidate
point can be obtained and inserted into the the atomic heap in O(1) time. Hence the query
time is bounded by the number of nodes traversed in T tH . From lemma 5, we obtain that the
number of nodes traversed is bounded by O(min(|P−| log σ, log2 n)).

For hpt, we utilize component MDS. Let rt be the root of heavy path hpt. A chain (i, j)
qualifies as an output, iff maxDepth(i, j) falls within the range [depth(rt), depth(p−)− 1]. For
query answering, follow the pointers from rt and p− to the indexes x and y in the array At,
and issue the query 〈x, y − 1, k〉 in the corresponding Fact 3 data structure. Note that Type
A and Type B outputs can arise.

From the above discussion, we obtain the following lemma.

I Lemma 8. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type C leaves in O(|P−| log σ + k) time when p+

and p− falls on different heavy paths.

Combining Lemmas 3, 6, and 8, we obtain the result stated in Theorem 1.

4 Succinct Index

In this section, we prove Theorem 2. The key idea is to identify some special nodes in
the GST, pre-compute the answers for a special node and its descendant special node, and
maintain these answers in a data structure. By appropriately choosing the special nodes, the
space can be bounded by O(n) bits. Using other additional compressed data structures for
document listing [14], we arrive at our claimed result.

We begin by identifying certain nodes in GST as marked nodes and prime nodes based
on a parameter g called grouping factor [13]. First, starting from the leftmost leaf in GST,
we combine every g leaves together to form a group. In particular, the leaves `1 through `g
forms the first group, `g+1 through `2g forms the second, and so on. We mark the LCA of
the first and last leaves of every group. Moreover, for any two marked nodes, we mark their
LCA (and continue this recursively). Note that the root node is marked, and the number of
marked nodes is at most 2dn/ge. See Figure 4 for an illustration.

Corresponding to each marked node (except the root), we identify a unique node called
the prime node. Specifically, the prime node u′ corresponding to a marked node u∗ is the
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node on the path from root to u∗, which is a child of the lowest marked ancestor of u∗; we
refer to u′ as the lowest prime ancestor of u∗. Since the root node is marked, there is always
such a node. If the parent of u∗ is marked, then u∗ is same as u′. Also, for every prime node,
the corresponding closest marked descendant (and ancestor) is unique. Therefore number of
prime nodes is one less than the number of marked nodes. The following lemma highlights
some important properties of marked and prime nodes.

I Fact 5 ([1, 14]). (i) In constant time we can verify whether any node has a marked
descendant or not. (ii) If a node u has no marked descendant, then |leaf(u)| < 2g. (iii) If u∗
is the highest marked descendant of u, and u is not marked, then |leaf(u, u∗)| ≤ 2g. (iv) If u′
is the lowest prime ancestor of u∗. Then |leaf(u′, u∗)| ≤ 2g.

We now present a framework for proving the following lemma.

I Lemma 9. Assume the following.
(a) The highest marked node u∗ and the sequence of prime nodes (if any) on the path from

p+ to p− can be found in tprime time.
(b) For any leaf `i, we can find the corresponding document in tDA time.
(c) For any document identifier d and a range of leaves [sp, ep], we can check in t∈ time,

whether d belongs in {doc(i) | sp ≤ i ≤ ep}, or not.
For any function f(n), such that f(n) = Ω(1) and f(n) = o(n), by maintaining CSA and
additional O((n/f(n)) log2 n) bits structures, we can answer top-k forbidden extension queries
in O(search(P−) + tprime + k · f(n) · (tDA + t∈)) time.

Creating the Index. First we maintain a full-text index CSA on the document collection D.
Let gκ = dκ ·f(n)e, where κ is a parameter to be defined later. We begin by marking nodes in
the GST as marked and prime nodes, as defined previously, based on gκ. Consider any prime
node u, and let u↑ and u↓ be its nearest marked ancestor and descendant (both of which
are unique) respectively. We compute the arrays listκ(u↑, u) and listκ(u, u↓), each sorted by
increasing importance (i.e., document identifier). The arrays are maintained in the node u
w.r.t grouping factor gκ. Note that explicitly maintaining each array requires O(κ logn) bits.
Space required in bits for all prime nodes w.r.t gκ can be bounded by O((n/gκ)κ logn) i.e.,
by O((n/f(n)) logn) bits. We maintain this data-structure for κ = 1, 2, 4 . . . , D. Total space
is bounded by O((n/f(n)) log2 n) bits.

Querying Answering. For a top-k forbidden extension query 〈P+, P−, k〉, we begin by
locating the suffix ranges [sp+, ep+] and [sp−, ep−] of the patterns P+ and P− respectively;
this can be achieved in time bounded by search(P−) using the CSA. If the suffix ranges
are the same, then clearly every document containing P+ also contains P−, and the top-k
list is empty. So, moving forward, we assume otherwise. Note that it suffices to obtain a
k-candidate set of size O(k · f(n)) in the time of Lemma 9.

Let k′ = min{D, 2dlog ke}. Note that k ≤ k′ < 2k. Moving forwards, we talk of prime and
marked nodes w.r.t grouping factor g′ = dk′f(n)e. We can detect the presence of marked
nodes below p+ and p− in constant time using Fact 5. Let the prime nodes on the path
from p+ to p− be u1, u2, . . . , ut in order of depth. Possibly, t = 0. For each prime node
ut′ , 1 ≤ t′ ≤ t, we denote by u↑t′ and u

↓
t′ , the lowest marked ancestor (resp. highest marked

descendant) of the ut′ . We have the following cases.

I Case 1. We consider the following two scenarios: (i) GST(p+) does not contain any
marked node, and (ii) GST(p+) contains a marked node, but the path from p+ to p− does
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1, u1) and Listk(u1, u

↓
1)

are stored in this node

For k = 1, 2, 4, · · · , D

Figure 5 Illustration of storage scheme and retrieval at every prime node w.r.t grouping factor g.
Left and right fringes in leaf(p+ \ u↑1) and leaf(u↓t \ p−) are bounded above by g′.

not contain any prime node. In either case, |leaf(p+, p−)| ≤ 2g′ (refer to Fact 5). The
documents corresponding to these leaves constitute a k-candidate set, and can be found in
O(g′ · tDA) time i.e., in O(k · f(n) · tDA) time. Now, for each document d, we check whether
d ∈ {doc(i) | i ∈ [sp−, ep−]}, which requires additional O(g′ · t∈) time. Total time can be
bounded by O(g′ · (tDA + t∈)) i.e., by O(k · f(n) · (tDA + t∈)).

I Case 2. If the path from p+ to p− contains a prime node, then let u∗ be the highest
marked node. Possibly, u∗ = p+. Note that u↑1 is same as u∗, and that u↓t is either p− or
a node below it. For any t′, clearly listk′(ut′ , u↓t′) and listk′(u↑t′ , ut′) are mutually disjoint.
Similar remarks hold for the lists stored at two different prime nodes t′ and t′′, 1 ≤ t′, t′′ ≤ t.
Furthermore, let d be an identifier in one of the lists corresponding to ut′ . Clearly there is
no leaf `j ∈ GST(p−), such that doc(j) = d. We select the top-k′ document identifiers from
the stored lists (arrays) in the prime nodes u1 through ut. Time, according to the following
fact, can be bounded by O(t+ k).

I Fact 6 ([2, 8]). Given m sorted integer arrays, we can find the k largest values from all
these arrays in O(m+ k) time.

Now, we consider the fringe leaves leaf(p+, u∗) and leaf(ut, p−), both of which are bounded
above by 2g′ (refer to Fact 5). The ranges of the these leaves are found in constant time
using the following result of Sadakane and Navarro [27].

I Lemma 10 ([27]). An m node tree can be maintained in O(m) bits such that given a node
u, we can find [sp(u), ep(u)] in constant time.

The relevant documents corresponding to these fringe leaves can be retrieved as in Case 1.
Clearly, these fringe documents along with the k documents obtained from the stored lists
constitute our k-candidate set. Time required can be bounded by O(t+ k + g′ · (tDA + t∈)) i.e,
by O(t+ k · f(n) · (tDA + t∈)).

Note that t ≤ depth(p−) ≤ |P−| = O(search(P−)), and Lemma 9 follows. J

We are now equipped to prove Theorem 2. First, the highest marked node and the t prime
nodes from p+ to p− are obtained using Lemma 11 in O(logn+ t) time. Maintain the data-
structure of this lemma for with κ = 1, 2, 4, . . . , D. Space can be bounded by O( n

f(n) logn)
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bits. Computing doc(i) is achieved in tSA time, according to Lemma 12. Checking whether
a document d belongs in a contiguous range of leaves is achieved in O(tSA · log logn) using
Lemma 13. Theorem 2 is now immediate by choosing f(n) = log2 n.

I Lemma 11. By maintaining O((n/gκ) logn) bits in total, we can retrieve the highest
marked node, and all t prime nodes, both w.r.t grouping factor gκ = dκ · f(n)e, that lie on
the path from p+ to p− in time bounded by O(logn+ t).

Proof. We use the following result of Patil et al. [26]: a set of n three-dimensional points
(x, y, z) can be stored in an O(n logn) bits data structure, such that for a three-dimensional
dominance query 〈a, b, c〉, in O(logn+ t) time, we can report all t points (x, y, z) that satisfies
x ≤ a, y ≥ b, and z ≥ c with outputs reported in the sorted order of z coordinate.

For each prime node w, we maintain the point (Lw, Rw, |path(w)|) in the data structure
above, where Lw and Rw are the leftmost and the rightmost leaves in GST(w). Total space
in bits can be bounded by O((n/gκ) logn) bits. The t prime nodes that lie on the path from
p+ to p− are retrieved by querying with 〈sp− − 1, ep− + 1, |P+|〉. Time can be bounded by
O(logn+ t). Likewise, we maintain a structure for marked nodes. Using this, we can obtain
the highest marked node in O(logn) time. J

I Lemma 12. Given a CSA, the document array can be maintained in additional n+ o(n)
bits such that for any leaf `i, we can find doc(i) in tSA time i.e., tDA = tSA.

Proof. We use the following data-structure [10, 20]: a bit-array B[1 . . .m] can be encoded in
m+ o(m) bits, such that rankB(q, i) = |{j ∈ [1..i] | B[j] = q}| can be found in O(1) time.

Consider the concatenated text T of all the documents which has length n. Let B be a
bit array of length n such that B[i] = 1 if a document starts at the position i in the text T.
We maintain a rank structure on this bit-array. Space required is n+ o(n) bits. We find the
text position j of `i in tSA time. Then doc(i) = rankB(1, j), and is retrieved in constant time.
Time required can be bounded by tSA. J

I Lemma 13. Given the suffix range [sp, ep] of a pattern P and a document identifier
d, by maintaining CSA and additional |CSA∗|+D log n

D + O(D) + o(n) bits structures, in
O(tSA log logn) time we can verify whether d ∈ {doc(i) | i ∈ [sp, ep]}, or not.

Proof. Number of occurrences of d in a suffix range [sp, ep] is given by rankDA(d, ep) −
rankDA(d, sp− 1). Space and time complexity is due to the following result of Hon et al. [14]:
the document array DA can be simulated using CSA and additional |CSA∗| + D log n

D +
O(D) + o(n) bits structures to support rankDA operation in O(tSA log logn) time. J

5 Concluding Remarks

In this paper, we introduce the problem of top-k forbidden extension query, and propose
a linear space index for answering such queries. By maintaining a linear space index, the
general forbidden pattern query for an included pattern P , and a forbidden pattern Q, can be
answered in O(|P |+ |Q|+

√
n · occ) time, where occ is the number of documents reported. We

show that by maintaining a linear space index, we can answer forbidden extension queries in
optimal O(|P−|+ occ) time. We also address the more general top-k version of the problem,
where the relevance measure is based on PageRank. We show that by maintaining linear
space index, we obtain a query time of O(|P−| log σ + k), which is optimal for constant
alphabets. Furthermore, we obtain a succinct solution to this problem.
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A Range Transformation using Fractional Cascading

We employ the fractional cascading idea of Chazelle et.al [3] for predecessor searching in CS
array. Successor searching and CD array are handled in a similar way. The idea is to merge
the CS array for siblings and propagate the predecessor information from bottom-to-top.
Two arrays are used for this purpose: merged siblings array MS and merged children array
MC. Let hi be an internal node in T tH having sibling hj and two children leaf nodes hu
and hv. Array MCu (resp. MCv) is same as CSu (resp. CSv) and stored in hu (resp. hv).
The arrays CSu and CSv are merged to form a sorted list MSuv. Note that, CSv values are
strictly greater than CSu; therefore, CSu and CSv form two disjoint partitions in MSlr after
sorting. We denote the left partition as MSluv and the right partition as MSruv. We also
store a pointer from each value in MSluv (MSruv) to its corresponding value in MCu (resp.
MCv). The list MCi is formed by merging CSi with every second item from MSlr. With
each item x in MCi, we store three numbers: the predecessor of x in CSi, the predecessor of
x in MSluv and the predecessor of x in MSruv. Total space required is linear in the number
of chains, and is bounded by O(n) words.

Using this data structure, we show how to find predecessor efficiently. Let hw be an
ancestor node of hz in T tH . We want to traverse hw to hz path and search for the predecessor
of x in CSi, where hi is a node on the hw to hz path. When we traverse from a parent node
hi to a child node hj , at first we obtain the predecessor value in parent node using MCi.
If hj is the left (resp. right) children of hi, we obtain the predecessor value in MSljk (resp.
MSrjk), where hk is the sibling of hj . Following the pointer stored at MSljk or MSrjk, we
can get the predecessor value at MCj , and proceed the search to the next level. This way
we can obtain the transformed range at each level in O(1) time.
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