6,365 research outputs found

    Reducing Network Traffic in Unstructured P2P Systems Using Top-k Queries

    Get PDF
    A major problem of unstructured P2P systems is their heavy network traffic. This is caused mainly by high numbers of query answers, many of which are irrelevant for users. One solution to this problem is to use Top-k queries whereby the user can specify a limited number (k) of the most relevant answers. In this paper, we present FD, a (Fully Distributed) framework for executing Top-k queries in unstructured P2P systems, with the objective of reducing network traffic. FD consists of a family of algorithms that are simple but effec-tive. FD is completely distributed, does not depend on the existence of certain peers, and addresses the volatility of peers during query execution. We vali-dated FD through implementation over a 64-node cluster and simulation using the BRITE topology generator and SimJava. Our performance evaluation shows that FD can achieve major performance gains in terms of communication and response time

    Query processing in P2P systems

    Get PDF
    Peer-to-peer (P2P) computing offers new opportunities for building highly distributed data systems. Unlike client-server computing, P2P is a very dynamic environment where peers can join and leave the network at any time. This yields important advantages such as operation without central coordination, peers autonomy, and scale up to large number of peers. However, providing high-level data management services is difficult. Most techniques designed in distributed database systems which statically exploit schema and network information no longer apply. New techniques are needed which should be decentralized, dynamic and self-adaptive. In this paper, we survey the techniques which have been developed for query processing in P2P systems. We first give an overview of the existing P2P networks, and com-pare their properties from the perspective of data management. Then, we discuss the ap-proaches which are used for schema mapping. Then, we describe the algorithms which have been proposed for query routing. In particular, we focus on query routing in unstructured net-works and DHTs. Finally, we present the techniques which have been proposed for processing complex queries, e.g. top-k queries, in P2P systems, in particular in DHTs

    Query management in a sensor environment

    Get PDF
    Traditional sensor network deployments consisted of fixed infrastructures and were relatively small in size. More and more, we see the deployment of ad-hoc sensor networks with heterogeneous devices on a larger scale, posing new challenges for device management and query processing. In this paper, we present our design and prototype implementation of XSense, an architecture supporting metadata and query services for an underlying large scale dynamic P2P sensor network. We cluster sensor devices into manageable groupings to optimise the query process and automatically locate appropriate clusters based on keyword abstraction from queries. We present experimental analysis to show the benefits of our approach and demonstrate improved query performance and scalability

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Semantic Flooding: Semantic Search across Distributed Lightweight Ontologies

    Get PDF
    Lightweight ontologies are trees where links between nodes codify the fact that a node lower in the hierarchy describes a topic (and contains documents about this topic) which is more specific than the topic of the node one level above. In turn, multiple lightweight ontologies can be connected by semantic links which represent mappings among them and which can be computed, e.g., by ontology matching. In this paper we describe how these two types of links can be used to define a semantic overlay network which can cover any number of peers and which can be flooded to perform a semantic search on documents, i.e., to perform semantic flooding. We have evaluated our approach by simulating a network of 10,000 peers containing classifications which are fragments of the DMoz web directory. The results are promising and show that, in our approach, only a relatively small number of peers needs to be queried in order to achieve high accuracy
    • 

    corecore